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Abstract: Research Highlights: Estimates using measurements from a sample of approximately
132,000 field plots imply that while the species composition of US forests varies substantially across
different age groups, the specific gravity of wood in those forests does not. This suggests that
models using increasingly accurate spaceborne measurements of tree size to model forest biomass
do not need to consider stand age as a covariate, greatly reducing model complexity and calibration
data requirements. Background and Objectives: Upcoming lidar and radar platforms will give us
unprecedented information about how big the trees around the world are. To estimate biomass from
these measurements, one must know if tall trees in young stands have the same biomass density as
trees of equal size in older stands. Conventional succession theory suggests that fast-growing pioneers
often have lower wood (and biomass) density than the species that eventually dominate older stands.
Materials and Methods: We used a nationally consistent database of field measurements to analyze
patterns of both wood specific gravity (WSG) across age groups in the United States and changes of
species composition that would explain any shifts in WSG. Results: Shifts in species composition
were observed across 12 different ecological divisions within the US, reflecting both successional
processes and management history impacts. However, steady increases in WSG with age were not
observed, and WSG differences were much larger across ecosystems than across within-ecosystem
age groups. Conclusions: With no strong evidence that age is important in specifying how much
biomass to ascribe to trees of a particular size, field data collection can focus on acquiring reference
data in poorly sampled ecosystems instead of expanding existing samples to include a range of ages
for each level of canopy height.
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1. Introduction

Forest biomass is a globally important carbon reservoir, and forest growth can significantly
mitigate the climate-altering effects of fossil fuel emissions [1,2]. There are a number of incipient
spaceborne missions designed to measure forest biomass around the planet:

(1) GEDI (NASA’s Global Ecosystem Dynamics Investigation) uses waveform lidar to measure
aboveground biomass (AGB) at 22-m footprints, which is in turn used to infer mean biomass at
the level of 1-km grid cells [3–5];

(2) BIOMASS (a European Space Agency Earth Explorer mission) uses P-band radar to map AGB at
200m spatial resolution [6];

(3) NISAR (joint mission between NASA and the Indian Space Research Organisation) operates an
L-band and an S-band synthetic aperture radar that enables observation of biomass change at
hectare scales [7]; and,
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(4) ICESAT-2 (NASA) uses linear tracks of pulse-counting lidar that, in combination with other
instruments, allows measurement of vegetation biomass [8].

While sensors such as these provide observations closely correlated with forest structure, biomass
must be inferred through the use of models calibrated with ground measurements [9–11]. Such models
imply, sometimes explicitly [12], a stand-level wood density: a ratio of measured canopy volume to
biomass. What these models do not consider, to our knowledge, is any sensitivity of wood specific
gravity (WSG) to stand age.

This is surprising for two reasons. First, within individual ecosystems, it is well understood
that faster-growing pioneer species often have lower WSG than later-successional trees [13,14].
If young stands are indeed dominated by lower-density species, models applied to remote sensing
data from those stands will generally over-predict biomass. This is important because a promising
application of globally collected biomass data is inference of ecosystem carbon dynamics by estimating
the difference in average carbon content of stands with different ages. This process, sometimes
called “chronosequencing” when used with inventory plots [15], provides insight into rates of
carbon accumulation.

Over-prediction of the WSG of young stands in this framework would obscure both the impact
of stand-replacing disturbances upon carbon stocks and the rate of carbon re-growth. The fact that
biomass models are generally not sensitive to stand age is also surprising because long-term, spatially
exhaustive records of forest disturbance are widely available [16,17]. Such records could be used to
both develop and apply age-sensitive models.

In this paper, we used the nationally comprehensive inventory of the US Forest Service’s
FIA (Forest Inventory and Analysis) Program to evaluate the degree to which stand-level mean
WSG depends upon stand age. FIA maintains a grid of inventory plots (approximately 1 plot per
2430 hectares), across which a variety of tree- and stand-level attributes are measured every 5–10 years.
This sample is the basis for the forest component of the US Greenhouse Gas Inventory [18] and can also
support detailed assessment of model scaling properties across a wide range of conditions (e.g., [19]).
We made estimates of mean basal area-weighted WSG (with uncertainty) for each 10-year age bin
within 12 ecological divisions covering the conterminous United States.

To understand any changes in WSG as a function of stand age, we used the same database to
evaluate how the proportional distribution (by share of total basal area) of the eight most common
species (again, by basal area) changed across age bins in each ecoregion. While there is no reason to
see ecosystems of the United States as globally representative, analysis across 12 diverse, data-rich
regions was intended to suggest the degree to which stand age’s impact on WSG should or should not
be considered in efforts to model AGB from remotely sensed measurements.

2. Methods

The goal of this study was to estimate, for each of the ecological divisions shown in Figure 1,
the mean WSG for forests in ten-year age classes. This required knowing stand age and average basal
area-weighted WSG at the level of the FIA condition. Conditions, which are mapped sub-divisions of
FIA plots defined by boundaries related to variables such as land cover class and forest type, are the
finest unit at which stand age is assigned. Inclusion probability of all conditions within FIA’s spatially
balanced simple random sample frame are known, so once mean WSG was known for each condition, FIA’s
standard estimation protocols [20] could be used to derive ecozone-level estimates of WSG by age class.

In this investigation, it was important to include seedlings along with more mature trees in the
basal area weighting process. Though seedlings (diameter less than 2.54 cm) have no recorded basal area
in the database, such trees can be the only cohort in the critical first age bin (1–10 years old). FIA only
measures these trees on micro-plots (2.07 m radius) nested within each of the four sub-plots (7.32 m
radius) making up the standard plot design. We calculated basal area for each measured seedling based
upon an arbitrarily chosen diameter of 1 cm. We likewise included saplings (2.54–12.7 cm diameter),
which are also measured on micro-plots, but do have recorded diameters.
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Figure 1. Ecological divisions [21] used here to analyze trends in WSG and species turnover across 
the United States. 
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then estimated at the ecological division scale, accounting for the proportion of the area sampled by 
each condition, following [21]. To provide context around any differences across ages in mean WSG, 
total basal area by tree species for each age bin was also calculated (ibid.).  

Figure 1. Ecological divisions [21] used here to analyze trends in WSG and species turnover across the
United States.

Because the probabilities of inclusion for seedlings and saplings observed on micro-plots and
trees observed on sub-plots were different, it was necessary to convert (from [22]) the sums of both
basal area and the product of basal area and WSG to per-unit-area terms to determine mean basal
area-weighted wood density at the condition level:

yik =
∑4

j ∑t yijkt

∑4
j aijk

+
∑4

j ∑t y′ijkt

∑4
j a′ijk

(1)

where yijkt = the attribute of interest associated with tree t on subplot j covering condition k on plot
i. aijk = the area used to observe the attribute of interest on subplot j covering condition k on plot i.
y′ijkt = the attribute of interest associated with tree t on subplot or microplot j covering condition k on plot
i. a′ijk = the area used to observe the attribute of interest (microplot j) covering condition k on plot i and
yik is calculated first where y = basal area (B) and then where y = basal area * wood specific gravity (BG).

Wood density, G, is assessed by FIA at the species level, using values from historical studies [23].
Condition-level basal area-weighted density, Gik, is then isolated through:

Gik =
(BG)ik

Bik
(2)

Stand age at the condition level is assigned by field crews through coring representative overstory
trees at breast height and adding a fixed amount of time to represent the period between stand
establishment and pith development at breast height [24]. Mean WSG per 10-year age class was
then estimated at the ecological division scale, accounting for the proportion of the area sampled by
each condition, following [21]. To provide context around any differences across ages in mean WSG,
total basal area by tree species for each age bin was also calculated (ibid.).
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3. Results

Measurements in this study were based upon 3,548,265 tree measurements and 2,695,735 seedling
measurements collected across 132,582 FIA plots (Table 1). The area of each ecological division ranged
from 0.4 to 67.9 million hectares (ha). The overall basal-weighted mean WSG varied by region from 0.4
(Mountain Regime of the Temperate Steppe division) to 0.65 (Tropical/Subtropical Desert).

Table 1. Sample properties and results by Ecological Division.

Division FIA Estimate of
Forestland (million ha)

Measured
Trees/Seedlings

Measured
Plots

Number of
Surveyed Species

Mean Specific
Gravity Estimate

Warm Continental (210) 35.6 733,108/821,979 21,196 177 0.45
Hot Continental (220) 47.8 617,470/571,091 25,031 194 0.52

Subtropical (230) 67.9 919,398/551,384 32,217 204 0.50
Marine (240) 13.8 311,115/149,696 9371 63 0.42
Prairie (250) 10.9 81,551/72,208 4883 156 0.56

Mediterranean (260) 14.2 164,136/65,526 5315 78 0.44
Tropical/Subtropical Steppe (310) 27.9 153,967/77,679 9888 188 0.59
Tropical/Subtropical Desert (320) 6.5 18,572/8268 2168 73 0.65
Temperate Steppe (330) without

Mountain Regime 4.5 27,468/23,904 1823 93 0.45

Temperate Steppe (330) just
Mountain Regime 35.2 417,743/292,708 15,411 63 0.4

Temperate Desert (340) 12.5 99,703/56,268 5140 41 0.54
Savannah (410) 0.4 4034/5025 139 37 0.48

Significant shifts in species distributions occurred across age classes in each ecological division.
Figure 2 shows these shifts in terms of the changing fraction of total basal area by species across age
bins (limited to eight most common species by basal area); scientific names of all species are listed in
Appendix A. In some cases, species are well represented either in the younger or older age groups.
For example, in the Tropical/Subtropical Desert division, honey mesquite is dominant in the younger
age classes but virtually absent in the older classes, while Utah juniper shows the opposite trend.
A species’ fractional basal area across age bins may also remain relatively stable (e.g., western hemlock
in the Marine division), or it may be multi-modal (e.g., loblolly pine in the Subtropical division).
The WSG assigned by FIA to the species shown in Figure 2 varies from 0.29 (northern white cedar) to
0.8 (live oak).

Despite the dynamic distribution of tree species by age class, basal area-weighted WSG remained
relatively constant in most regions. The only place where WSG trended consistently upward over age
groups was the Hot Continental division, and even there the mean difference between the 1–10-year-old
age group and the over 171-year-old group was just 0.05. Sampling errors were small relative to
estimated mean specific gravity, with the exception of some of the rarer, older age groups in the
Tropical/Sub-tropical Desert and the Temperate Steppe (non-mountain) divisions (Figure 2).

The largest change in WSG across age groups at the division level was actually a decline with age;
mean density went from 0.69 at 11–20 years to 0.48 at 101–110 years in the Tropical/Subtropical Steppe
division. Changes in most ecological divisions were much smaller, and in no case was there a sharp
discontinuity in density from younger to older stands. The range of average specific gravity was
greater across ecological divisions, ranging from 0.4 to 0.65 (Table 1), than within ecological divisions
across age groups (Figure 2).
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height, for example—actually hold in the populations where the model is applied? There is broad 
awareness of this issue in the context of transferring models across regions [27]. The issue is less 

Figure 2. Species distribution by basal area across age groups of the eight most common species in each
ecological division (left) and the division’s basal area-weighted mean wood specific gravity across age,
considering all species (right). Error bars represent FIA sampling error. Bar color on the right matches
the division’s color on the map in Figure 1.

4. Discussion

Understanding the rate of AGB recovery following disturbance is critical for predicting forest
carbon dynamics and for identifying the potential impact of forest management in mitigating climate
change. Support for such assessments is relatively simple when extensive inventory data are available;
designed samples used by inventories promote representativeness, and measurement error of field
samples is generally presumed to be negligible. Williams et al. [25] refined net ecosystem productivity
(NEP) functions used in a process model (the Carnegie-Ames-Stanford Approach) by plotting measured
AGB against stand age at a large number of FIA locations. This allowed improved characterization of
the role of disturbance and management in carbon dynamics of US forests.

Additional uncertainties become relevant when basic data about biomass and biomass change
must be modeled from remote sensing. For example, vegetation demographic models, which track
multiple size classes within a given plant functional type to predict outcomes under different
scenarios, can use remotely sensed forest biomass maps as benchmark constraints [26]. One type of
uncertainty involved with using remote sensing as a benchmark involves transferability: does the
relationship used to build the underlying model—between biomass and lidar- or radar-measured
height, for example—actually hold in the populations where the model is applied? There is broad
awareness of this issue in the context of transferring models across regions [27]. The issue is less
appreciated when models are built locally but might not be appropriate for transfer across different
successional stages. This is particularly relevant if the difference in predicted biomass between old
and young stands is being used to infer a rate of biomass accumulation.

The question addressed by this paper was relatively narrow: with an emerging generation of
active remote sensing platforms capable of supporting ecosystem demography and other approaches
to tracking carbon dynamics, should models targeting prediction of forest biomass explicitly account
for stand age? Remote sensing generally only measures canopy structure, requiring models to either
implicitly or explicitly assign the wood density (measured by specific gravity) needed to infer biomass.
If WSG were found to change radically with stand age, perhaps due to successional processes, it would
argue for broad use of age-sensitive models.

Given the relatively high precision of our estimates (approximately 500 field plots per age bin
per region), it is clear that shifts in WSG do occur with stand age (Figure 2). However, our results
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suggested that differences in WSG at the ecological division scale are much lower across stand age than
they are across ecosystems. With field resources scarce in many regions, this argues for prioritizing
collection of new data in under-sampled ecosystems above sampling a range of ages for each tree
size category.

Our analysis treated WSG as a species-specific constant, ignoring variation that might occur due
to soil properties [28] or stand density [29]. However, site-level variation probably had a minimal
effect across such a large sample. More serious with respect to our goal of comparing wood density
across age groups would be a case where the specific gravity of wood added by individual trees
changes as the trees age. Investigations into this question, though, have shown wood density to
vary only slightly as a function of tree age and factors such as competition that may co-vary with
tree age [30,31]. Treating WSG as a constant also ignores variation that may occur across ecological
gradients. There is evidence that, both within and across species, WSG can vary with climatic factors
such as temperature and precipitation [32,33]. Assigning more regionally specific density values
(assuming they are correct) for species such as Douglas fir, which range from moist lowland forests to
drier high-elevation systems, would lead to more accurate estimates of mean WSG across age groups.
Until nationally comprehensive empirical data exist that can be used to refine the WSG values used by
FIA, the impact of local ecological variation will remain unknown.

It is reasonable to ask why it appears mean WSG does not increase with age, as one might expect
from an idealized scenario where fast-growing colonizer species are replaced by slower-growing,
longer-lived trees. This dynamic undoubtedly occurs on some sites, and species composition does vary
strongly by age in many of the regions studied. In some cases, succession simply does not produce
a change in average WSG. For instance, red alder, which fixes nitrogen and is an early colonizer
following disturbance [34], occurred in younger stands in the Marine division, but not in older stands.
At the same time, slower-growing, shade tolerant species such as mountain hemlock and silver fir
represented a significant share of basal area only in the region’s older stands. However, the wood of
red alder, silver fir, and mountain hemlock all have specific gravities between 0.37 and 0.42; succession
in this region did not bring a big change in mean wood density.

More broadly, the role of human impact must be acknowledged. Age bins in Figure 2 do not
represent uninterrupted successional pathways; management of regeneration and historical harvest
patterns have manipulated species distributions for centuries. For example, loblolly pines were
relatively rare in the pre-European forests of the southern United States. The collapse of the cotton
industry in the 1880s provided abandoned fields where loblolly pine had an establishment advantage
because of their light, easily dispersed seeds [35]. Fire suppression allowed these new loblolly stands
to thrive in the following decades [ibid], explaining the species’ importance in the region’s older
age classes. Loblolly pine is also widely used in plantations, where it is managed on relatively short
rotations. This complex history explains the species’ multi-modal age distribution in Figure 2, and more
importantly illustrates how human intervention affects the demography of our forests.

This study notably did not cover a tropical system, and work in other areas should assess
whether our results—the relative insensitivity of WSG at regional scales to stand age—apply elsewhere.
While tropical species such as cecropia fit the stereotype of low-density colonizers [36], many disturbed
tropical sites are colonized by longer-lived pioneers with life forms closer to those of primary forest
trees [37]. Human intervention may likewise disrupt presumed successional trends, as was the case
with loblolly pine in the Subtropical Division.

5. Conclusions

In general, it is convenient that average WSG—the amount of biomass per unit volume—does not
vary strongly with stand age. New remote sensing platforms are giving us unprecedented information
about tree size, but we would need significantly more calibration data, and more complex models,
if large trees in young stands had consistently higher or lower biomass than large trees in older
stands. Differences in WSG were much greater across ecosystems than across age groups within the
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same ecosystem. This finding allows the community to focus upon acquiring reference data in poorly
sampled ecosystems instead of expanding existing samples to include a range of ages for each level of
canopy height.
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Appendix A. Scientific Names for Cited Tree Species

Common Name Latin binomial Common Name Latin binomial

Pacific silver fir Abies amabilis (Dougl. ex Louden) lodgepole pine Pinus contorta Douglas ex Loud.)
balsam fir Abies balsamea (L.) Mill. two-needle pinyon Pinus edulis Engelm.

white fir
Abies concolor (Gord. & Glend.) Lindl.

ex Hildebr.
slash pine Pinus elliottii Engelm.

grand fir Abies grandis (Dougl. ex D. Don.) Lindl. Jeffrey pine Pinus jeffreyi Balf.
subalpine fir Abies lasiocarpa (Hook.) Nutt. singleleaf pinyon Pinus monophylla Torr. & Frém.

California red fir Abies magnifica A. Murr. ponderosa pine Pinus ponderosa C. Lawson
bigleaf maple Acer macrophyllum Pursh eastern white pine Pinus strobus L.

red maple Acer rubrum L. loblolly pine Pinus taeda L.
sugar maple Acer saccharum L. eastern cottonwood Populus deltoids Bartram ex Marsh.

red alder Alunus rubra Bong. quaking aspen Populus tremuloides Michx.
yellow birch Betula alleghaniensis Britton honey mesquite Prosopis glandulosa Torr.
incense cedar Calocedrus decurrens (Torr.) Florin velvet mesquite Prosopis velutina Woot.

hackberry Celtis occidentalis L. black cherry Prunus serotine Ehrh.
mountain-mahogany Cercocarpus ledifolius Nutt. Douglas-fir Pseudotsuga menziesii

buttonwood-mangrove Conocarpus erectus L. white oak Quercus alba L.
American beech Fagus grandifolia Ehrh. Arizona white oak Quercus arizonica Sarg.

white ash Fraxinus americana L. canyon live oak Quercus chrysolepis Liebm.
green ash Fraxinus pennsylvanica Marsh. southern red oak Quercus falcata Michx.

black walnut Juglans nigra L. Gambel oak Quercus gambelii Nutt.
Ashe juniper Juniperus ashei J. Buchholz laurel oak Quercus laurifolia Michx.

alligator juniper Juniperus deppeana Steud. bur oak Quercus macrocarpa Michx.

redberry juniper
Juniperus coahuilensis (Martiñez) Gausen

ex R.P. Adams
chestnut oak Quercus montana Willd.

oneseed juniper Juniperus monosperma (Engelm.) Sarg. water oak Quercus nigra L.
western juniper Juniperus occidentalis Hook. northern red oak Quercus rubra L.

Utah juniper Juniperus osteosperma (Torr.) Little post oak Quercus stellate Wangenh.
Pinchot juniper Juniperus pinchotii Sudworgh black oak Quercus velutina Lam.

Rocky Mountain juniper Juniperus scopulorum Sarg. live oak Quercus virginiana Mill.
eastern redcedar Juniperus virginiana L. American mangrove Rhizophora mangle L.

western larch Larix occidentalis Nutt. cabbage palmetto
Sabal palmetto (Walter)

Lodd. ex Schult. & Schult. f.

sweetgum Liquidambar styraciflua L. redwood
Sequoia sempervirens

(Lamb. ex D. Don.) Endl.
yellow poplar Liriodendron tulipifera L. pond cypress Taxodium ascendens Brongn.

tanoak
Lithocarpus densiflorus
(Hook. & Arn.) Rehd.

baldcypress Taxodium distichum (L.) Rich.

melaleuca Melaleuca quinquenervia (Cav.) S.F. Blake northern white-cedar Thuja occidentalis L.
swamp tupelo Nyssa biflora Walter western redcedar Thuja plicata) Donn ex D. Don

redbay Persea borbonia (L.) Spreng. eastern hemlock Tsuga Canadensis L.
Engelmann spruce Picea engelmannii Parry ex Engelm. western hemlock Tsuga heterophylla (Raf.) Sarg.

red spruce Picea rubens Sarg. mountain hemlock Tsuga mertensiana (Bong.) Carrière
shortleaf pine Pinus echinata Mill. American elm Ulmus Americana L.
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