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Abstract: Forest aboveground biomass (AGB) estimation modeling based on remote sensing is an
important method for large-scale biomass estimation; the accuracy of the estimation models has been
a topic of broad and current interest. In this study, we used permanent sample plot data and Landsat
8 Operational Land Imager (OLI) images of western Hunan. Remote-sensing-based models were
developed for different vegetation types, and different crown density classes were incorporated. The
linear model, linear dummy variable model, and linear mixed-effects model were used to determine
the most effective and accurate method for remote-sensing-based AGB estimation. The results show
that the adjusted coefficient of determination (R2

adj) and root mean square error (RMSE) of the linear
dummy model and linear mixed-effects model were significantly better than those of the linear
model; the R2

adj increased more than 0.16 and the RMSE decreased more than 2.12 for each vegetation
type, and the F-test also showed significant differences between the linear model and linear dummy
variable model and between the linear model and linear mixed-effects model. The accuracies of
the AGB estimations of the linear dummy variable model and the linear mixed-effects model were
significantly better than those of linear model in the thin and dense crown density classes. There were
no significant differences in the AGB estimation performance between the linear dummy variable
model and linear mixed-effects model; these two models were more flexible and more suitable than
the linear model for remote-sensing-based AGB estimation. The results of this study provide a new
approach for solving the low-accuracy estimations of linear models.

Keywords: aboveground biomass estimation; remote sensing; crown density; low-accuracy
estimation; model comparison

1. Introduction

Forest ecosystems provide important ecosystem services and are an important component of
the earth’s energy cycle. Forest biomass is a fundamental parameter for describing the structure and
function of forest ecosystems [1,2]. Many ecosystem processes are impacted by forest biomass and, in
turn, forest biomass is impacted by these processes [3]. Forests provide important terrestrial carbon
storage. Studies on forest biomass are essential for determining the carbon storage, carbon balance,
and carbon cycling at the regional and global levels.

Due to difficulties in measuring forest belowground biomass, the majority of previous studies
have mostly focused on forest aboveground biomass (AGB). The estimation of AGB is an essential
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task for assessing carbon stocks and carbon balance [4]. In past studies, three main approaches have
been used to estimate forest AGB, namely: process-based ecosystem models, field measurements, and
a combination of forest inventory plots and remotely sensed data [5,6]. The remote-sensing-based
method has been commonly used in the last decades for several reasons: (1) Remote sensing data
covers large areas, allowing for the assessment of the spatial variation of vegetation and making
it possible to determine the spatial distribution and pattern of biomass in large areas and complex
forest landscapes; (2) multiple sensors and multiple spatial resolutions can be used for forest biomass
research at different scales; and (3) multi-temporal remote sensing images provide long-term, dynamic,
and continuous AGB observations [7,8].

The rapid development of remote sensing technology has provided a wide variety of remotely
sensed imagery data for AGB estimation. The data can be divided into three categories: (1) optical
remote sensing data such as Landsat, Systeme Probatoire d’Observation de la Terre (SPOT),
moderate-resolution imaging spectroradiometer (MODIS), QuickBird, ASTER, Advanced Very
High-Resolution Radiometer (AVHRR), and China-brazil earth resource satellite (CBERS); (2) active
remote sensing data including Radar and Lidar; and (3) the integration of multisource remote sensing
data [5,9–13]. In particular, Landsat has been commonly used for forest biomass estimation in
combination with sample plots because the images can be freely downloaded, have medium spatial
(30 m × 30 m) and temporal (16 days) resolutions, and have wide coverage [14,15]. In many countries,
the spatial resolution of Landsat is similar to the size of sample plots in national forest inventories,
thus reducing the spatial errors in matching the pixels and the sample plots [8].

Generally, forest stands with different biomass have different forest structures and different
biophysical parameters. These features are reflected in remote sensing images as different colors,
structures, and textures. Using feature extraction methods, the image parameters that are closely
related to forest biomass can be extracted from the remote sensing images, and forest biomass can
be estimated. Vegetation information in remote sensing images is mainly reflected by the spectral
characteristics. The spectral differences in leaves and vegetation canopies and their changes over time
differ in different spectral bands [9,16,17]. Vegetation parameters derived from optical remote sensing
include vegetation indices, leaf area index, absorbed photosynthetically active radiation (APAR), and
various image transformations [18–20]. Landsat images can be used to derive spectral information
that can be correlated with forest inventory AGB data [21]. The remote sensing information is strongly
related to several forest parameters and the use of spectral variables in modeling forest biomass has a
long history. The Landsat variables that have been commonly used include spectral bands, vegetation
indices (e.g., normalized differential vegetation index (NDVI), Enhanced Vegetation Index (EVI)),
image transformations (e.g., principal component analysis (PCA) and tasseled cap transformation
(TCT)), and texture images [5,15,22–26].

Parametric algorithms and nonparametric algorithms have been applied for AGB estimation [27].
In parametric algorithms, it is assumed that the direct or indirect relationships between the remotely
sensed parameters and the forest AGB can be expressed using regression models. The application of
parametric algorithms over large areas requires the assumption of spatially homogeneous relationships
between the ground-based information and remote-sensing data. Parametric algorithms are easy to
apply but are weak in terms of describing the complex relationship between AGB and remote sensing
data. In addition, the accuracy of the algorithms largely relies on the statistical robustness. In contrast
to parametric algorithms, nonparametric algorithms do not have explicit equations [28] and do not
assume a normal distribution of the independent and dependent variables. Nonparametric algorithms
are more flexible to describe the nonlinear relationship between AGB and image data, but the physical
mechanisms of the models are not clear and there are risks of over-fitting.

The linear model was frequently used in forest biomass estimation based on remote sensing.
In previous studies, when the linear models were built for estimating AGB, the remote sensing factors
were directly considered as fixed effect variables. The linear models did not consider the effects of
forest characteristics, effects which may influence the independent variables and the model fitting,
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which in turn affect the fitting accuracy of the models. In this study, based on the analysis of the
differences between the independent variables and AGB of different vegetation types in different
crown density classes, the basic AGB linear models using remote sensing were built. The crown
density classes which were considered as the influencing factor (random effect or dummy variable)
were introduced into the model, and the linear dummy variable model and linear mixed-effects model
were fitted to estimate AGB. The accuracies of the linear model, linear dummy variable model, and
linear mixed-effects model were compared.

2. Materials and Methods

2.1. Study Area

The study area is located in “Greater Xiangxi”, an area that borders on the Hubei, Chongqing, and
Guizhou provinces in the west of Hunan Province, including Xiangxi Tujia and Miao, Zhangjiajie, and
Huaihua City (Figure 1). The study area is located in a transition zone between the Yunnan-Guizhou
Plateau and the Jiangnan hills where medium and low mountains account for more than 70% of the
area. The climate of this region is a typical subtropical monsoon humid climate with an average annual
temperature of about 16 ◦C and an annual precipitation of about 1400 mm. The natural conditions of
this region are complex with a sensitive ecological environment, and the area is underdeveloped in
terms of socioeconomic development. The area is an important forestry area in Hunan Province with
abundant tree biodiversity. The forest area in the region covers more than 49,000 square kilometers
and the tree harvest volume is 156,000,000 m3. However, the distribution of the forest resources in
this region is extremely uneven, the forest biomass in different stand ages is heterogeneous, and forest
productivity is low [29,30].
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Figure 1. The location of study area: (a) The study area location in China; (b) the western Hunan in
Hunan province; and (c) a false color composite of Landsat 8 OLI band 6 in red, band 5 in green, and
band 4 in blue.

2.2. Field Survey Data

In this study, 377 fixed sample plots of typical forests were used including 125 fixed sample plots
of pine forests (Pure or Pinus massoniana dominant forests with a small mixture of broadleaf trees
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and shrubs), 162 fixed sample plots of Chinese fir forests (Pure or Cunnigjamia lanceolate (Lamb.) Hook
dominant forests with very small mixture of Pinus massoniana and shrubs), and 90 fixed sample plots
of mixed forests (dominant species including Pinus massoniana, Cunnigjamia lanceolate (Lamb.) Hook,
Cinnamomum camphora (L.) Presl., Cupressus funebris Endl., and shrubs) (Figure 2). The fixed sample
plots were surveyed in 2014 and the plots were systematically laid out in a grid of 4 × 8 km with a
plot size of 0.067 ha (China National Forest Continuous Inventory (NFCI) Technical Regulations). The
biomass conversion factor method was used to convert the stand volume into forest AGB [31,32]. The
sample plots were divided into three vegetation types including pine, Chinese fir (fir), and mixed
forest (mixed). The statistics of the sample plots of the crown density classes are summarized in Table 1.
All of the plots had a mean AGB of 47.7 Mg/ha with a standard deviation of 30.06 Mg/ha. The mixed
forest had the highest mean AGB and standard deviation, and pine forest had the lowest mean AGB
and minimum AGB value (Table 1). The mean AGB values were lowest for the pine forest in each
crown density class. The differences in the AGB were determined for the crown density classes: There
were significant differences in the AGB of each vegetation type between the thin, medium, and dense
crown density classes. The AGB of the medium plots was not significantly different from that of the
average for four vegetation types.Forests 2019, 10, x FOR PEER  5 of 17 
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Table 1. The basic statistics of the sample plots by crown density classes and vegetation types.

Vegetation
Type

Crown
Density

AGB (Mg/ha)

No. Minimum Mean Maximum Standard Deviation

Pine

Thin 41 1.05 16.40 47.33 10.61
Middle 70 3.61 33.60 83.58 17.06
Dense 14 6.16 51.17 118.07 35.57
Total 125 1.05 29.65 118.07 20.94

Fir

Thin 54 22.76 31.11 57.46 8.70
Middle 77 24.72 51.18 130.87 18.37
Dense 31 55.55 92.55 154.48 30.65
Total 162 22.76 52.41 154.48 28.68

Mixed

Thin 18 24.52 37.70 65.42 10.53
Middle 53 31.74 62.13 131.03 24.02
Dense 19 41.28 92.57 171.53 37.06
Total 90 24.56 63.67 171.53 30.86

Total

Thin 113 1.05 26.65 65.42 12.77
Middle 200 3.61 48.11 131.03 22.68
Dense 64 6.16 83.26 171.53 37.39
Total 377 1.05 47.70 171.53 30.06

2.3. Remote Sensing Data

In this research, two Landsat 8 Operational Land Imager (OLI) L1T product images (path/rows:
119/39 and 119/40, cloud cover <10%) acquired on 24 December 2013 were used. The first seven bands
of the images were used in this study, including the Coastal band, Blue band, Green band, Red band,
near-infrared (NIR) band, and two shortwave infrared (SWIR) bands. The coordinate system of the
images was the Universal Transverse Mercator coordinate system with zone 49 north. The dark object
subtraction method was used for atmospheric calibration [33]. ASTER global digital elevation model
(GDEM) data with the same coordinate system and same spatial resolution as the OLI images were
used for the topographic correction of the Landsat 8 OLI images using a C-correction approach [34].
The images were mosaicked into one image (Figure 1).

The vegetation information in remote sensing imagery were reflected by the spectral
characteristics, spectral differences, and spectral changes of the vegetation canopy in different bands.
Vegetation indices were used to reflect the existence, quantity, quality, state, and spatial and temporal
distribution characteristics of vegetation, and biophysical properties had already been estimated by
vegetation indices. The most widely used vegetation indices were based on remotely sensed data
measured in visible-red and near-infrared spectral wavebands such as the normalized difference
vegetation index (NDVI) [35]. Atmospherically resistant vegetation index (ARVI), soil adjusted
vegetation index (SAVI), atmospherically resistant vegetation index (ARVI), and enhance vegetation
index (EVI) were derived from NDVI. The results of image transformations, such as the first principal
component from the Principal Component Analysis, showed stronger relationships with biomass than
individual spectral bands [5]. Texture information referred to the pattern of intensity variations in the
remote sensing image, and the texture based on gray level co-occurrence matrix was effective and
important in describing the spatial distribution and structure information of forest.

A total of 340 spectral variables were calculated from the OLI images to fully exploit the
remote sensing information, including the original image bands, vegetation indices, image transform
algorithms, and grey-level co-occurrence matrix-based texture measures (Table 2) [8]. The Pearson
product-moment correlation coefficient was used to analyze the relationships between AGB and the
spectral variables; the spectral variables which had significant correlations with AGB were used as
independent variables. A stepwise regression was used to develop the AGB linear regression models.
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Table 2. Spectral variables derived from a total of seven bands for the Landsat 8 OLI image.

Spectral Variables Definitions of Spectral Variables No.

Original Band
b1—coastal, b2—blue, b3—green (GRN), b4—red (RED), b5—near
infrared (NIR), b6—shortwave infrared1 (SWIR1), b7—shortwave
infrared2 (SWIR2)

7

Inversions of bandi IBi = 1/bi, i = 1, . . . ,7 7
Simple two-band ratios (SRi,j) SRi,j = bi/bj, i, j = 1, . . . 7; i 6= j 42

Three-band ratios SRi,j,k = bi/
(

bj + bk

)
, i, j, k = 1, . . . ,7; i 6= j 6= k, j < k 106

Vegetation indices

Normalized difference vegetation index (NDVI), atmospherically
resistant vegetation index (ARVI), soil adjusted vegetation index
(SAVIl = (b5 − b4)(1 + l)/(b5 + b4 + l), l = 0.1), atmospherically
resistant vegetation index (ARVI), enhance vegetation index (EVI),
albedo, sum of three visible bands (VIS234, VIS234 = b2 + b3 + b4)

7

Principal component analysis The first 3 PCs from principal component analysis (PCA1, PCA2, PCA3) 3

Texture measures

Grey-level co-occurrence matrix-based texture measures of original
bands (bi), including contrast (biCONj), correlation (biCORj), dissimilarity
(biDISj), entropy (biENj), homogeneity (biHOj), angular second moment
(biSEMj), mean (biMEj), and variance(biVAj) with different window sizes j
(3 × 3, 5 × 5, 7 × 7)

168

2.4. Statistical Model

In forestry research, the variables are mostly continuous variables and can be directly used for
model fitting. Sometimes, categorical and qualitative variables are also needed in some studies because
they may influence the model results. In modeling, these variables are considered mixed-effects or
dummy variables when they are added to regression models. The sample plots were divided into three
crown density classes based on the inventory data, i.e., thin (<0.4), medium (0.4 ~ 0.7), and dense (≥0.7)
(Figure 2). The crown density classes represented the dummy variable and mixed-effects variable in
the linear regression models.

For the AGB estimation, a linear regression model (model 1) without the crown density, linear
dummy variable model (model 2), and linear mixed-effects model (model 3) were fitted and compared
in this study. Model 2 and model 3 were implemented by considering the dummy variables and
random-effects in the linear regression model, respectively. The equations of these three models were
introduced by Tang et al. and Fu et al. [36,37].

During the stepwise regression for model 1, the multi-collinearity, which creates highly sensitive
parameter estimators with inflated variances and improper model selection, was assessed for each pair
of the selected spectral variables using the variance inflation factor (VIF). For the linear dummy variable
model and linear mixed-effects model, two methods exist to add dummy variables or random-effects
to the linear model. One approach is to add them to the intercept, and another approach is to add
them to all parameters (intercept and slope) of the linear model. In order to avoid multicollinearity in
the linear dummy variable model and allow for the comparison of the two models, both the linear
dummy variable model and linear mixed-effects model were fitted by adding dummy variables
or random-effects to the intercept. Furthermore, two variance-covariance structures needed to be
determined to fit the linear mixed-effects model: (1) Determine the variance-covariance structure
(R matrix) of the fixed effect; and (2) determine the variance-covariance structure (D matrix) of the
random effect [38,39]. In this study, the D matrix was a diagonal matrix (pdDiag), the R matrix was
divided into two parts, the variance structure of R was a power function, and the covariance structure
of R was a spherical function.

2.5. Model Fitting and Evaluating

The linear regression model, linear dummy variable model, and linear mixed-effects model
were used to establish the AGB estimation models of the pine forest, fir forest, mixed forest, and
all-vegetation. All models were fitted using the RStudio software.
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The accuracies of the predicted AGB values for the models were evaluated using the adjusted
coefficient of determination (R2

adj) and the root mean square error (RMSE). The difference between
model 1 and model 2 and between model 1 and model 3 were evaluated using the F-test. The residuals
were analyzed to determine the AGB estimation performance of the three models in the different crown
density classes. In order to compare the performance improvement of the linear model by the linear
dummy variable model (model 2) and linear mixed-effects model (model 3) for AGB estimation, the
accuracy of the model 1, model 2, and model 3 were assessed using the percentage root mean square
error (RMSE%) and percentage mean residual deviation (Bias%) of the different crown density classes
(thin, medium, dense, and total). The difference between model 2 and model 3 was also assessed.

R2 = 1−
n

∑
i=1

(yi − ŷi)
2/

n

∑
i=1

(yi − yi)
2 (1)

R2
adj = 1−

(
1− R2

)n− 1
n− k

(2)

RMSE =

√√√√ n

∑
i=1

(yi − ŷi)
2

n
(3)

RMSE% =
RMSE

y
× 100 (4)

Bias% =
∑n

i=1
(yi−ŷi)

n
y

× 100 (5)

where yi is the observed biomass values, y is the arithmetic mean of all observed biomass values, ŷi
is the estimated biomass values based on models, n is the sample number, and k is the number of
parameters of each model.

3. Results

The Pearson correlation coefficients between all spectral variables and the AGB were calculated
and 30 variables had significant correlation with the AGB of four vegetation types. The correlation
coefficients are listed in Table 3. The result showed that the correlation coefficients were not higher
than 0.260 for all the 30 spectral variables, and 11 texture features had significant correlation with
the AGB.

Table 3. Pearson correlation coefficients between remote sensing factors and aboveground
biomass (AGB).

Variables Correlation
Coefficients Variables

Correlation
Coefficients Variables

Correlation
Coefficients Variables

Correlation
Coefficients

b3 −0.254 ** SR37 −0.236 ** SR416 −0.210 ** b4ME5 −0.276 **
b4 −0.233 ** SR46 −0.207 ** SR417 −0.215 ** b7COR7 0.258 **

VIS234 −0.260 ** SR47 −0.227 ** SR426 −0.206 ** b3ME7 −0.251 **
ARVI 0.162 * SR64 0.227 ** b3ME3 −0.265 ** b4ME7 −0.242 **
IB4 0.247 ** SR73 0.236 ** b4ME3 −0.247 ** b2SEM5 0.251 **
IB2 0.232 ** SR124 0.210 ** b5VA3 0.272 ** b2SEM7 0.230 **

SR14 0.228 ** SR134 0.204 * b2COR5 0.260 ** —— ——
SR41 −0.244 * SR327 −0.229 ** b3ME5 −0.279 ** —— ——

* Indicates a significance level of 0.05 and ** a significance level of 0.01.

Three types of models for each dependent variable (i.e., AGB of total vegetation, AGB of pine
forest, AGB of fir forest, and AGB of mixed forest) were developed using the spectral variables which
were selected by stepwise regression as the independent variable (Tables 4 and 5). Twelve models
were obtained. Parameter estimates of models 1–3 for different vegetation types are presented in
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Tables 4 and 5. The independent variables of the total vegetation AGB were dominated by the image
texture information, and the independent variables of the pine, fir, and mixed forests were dominated
by the image texture information and spectral features. The model standard coefficients of the linear
models showed that the texture information contributed more to the AGB estimation than the spectral
features, which indicated that the texture information was important for AGB estimation in this study.

Table 4. Parameter estimates of the linear model (model 1).

Vegetation
Type Parameter Estimate Std.coef p-Value Vegetation

Type Parameter Estimate Std.coef p-Value

Pine

b2COR5 24.14 0.33 <0.01

Fir

b5VA3 1.14 0.25 <0.01
SR327 −165.54 −0.27 <0.01 IB2 1061.00 0.61 <0.01

b2SEM5 19.47 0.17 <0.01 b2SEM7 36.49 0.24 <0.01
b3ME5 6.90 0.40 <0.01

Mixed
b7COR7 30.55 0.30 <0.01 Total

vegetation

b3ME7 −3.62 −0.25 <0.01
b4ME7 −10.05 −0.60 <0.01 b5VA3 0.83 0.14 <0.01
VIS234 9.00 0.36 <0.01 b2SEM5 15.36 0.09 <0.05

Table 5. Parameter estimates of the linear dummy variable model (model 2) and linear mixed-effects
model (model 3).

Vegetation
Type

Model 2 Vegetation
Type

Model 3

Parameter Estimate S.D. p-Value Parameter Estimate S.D. p-Value

Pine
b2COR5 16.70 4.77 <0.01

Pine
b2COR5 13.35 3.77 <0.01

SR327 −113.52 48.43 <0.05 SR327 −118.00 21.87 <0.01
b2SEM5 16.85 6.86 <0.05 b2SEM5 12.67 6.15 <0.05

Fir

b5VA3 0.62 0.22 <0.01

Fir

b5VA3 0.16 0.20 <0.05
IB2 732.08 208.43 <0.01 IB2 515.01 172.84 <0.01

b2SEM7 17.18 7.68 <0.05 b2SEM7 5.74 6.06 <0.05
b3ME5 5.29 2.08 <0.01 b3ME5 4.44 1.69 <0.01

Mixed
b7COR7 23.65 7.636 <0.01

Mixed
b7COR7 10.55 6.79 <0.05

b4ME7 −4.80 3.665 <0.05 b4ME7 −1.42 2.86 <0.05
VIS234 6.28 5.165 <0.05 VIS234 0.74 4.09 <0.05

Total
vegetation

b3ME7 −2.20 0.66 <0.01 Total
vegetation

b3ME7 −1.60 0.50 <0.01
b5VA3 0.48 0.21 <0.05 b5VA3 0.25 0.20 <0.05

b2SEM5 8.05 5.49 <0.05 b2SEM5 1.07 4.56 <0.05

The fitting results of models 1–3 are summarized in Tables 6 and 7. For the different vegetation
types, the R2 and R2

adj of model 2 and model 3 were larger than those of model 1, and the RMSE
values were smaller than those of model 1. These results indicate that the performances of model 2
and model 3 were better than that of model 1. The R2

adj of model 2 and model 3 for pine forest had the
smallest increase compared with model 1; the value of R2

adj increased by 0.16, and the RMSE values
were smaller for model 2 and model 3 than for model 1. For the fir forest, model 2 and model 3 had the
largest R2

adj values, and compared with model 1, the values increased more than 0.39. For the mixed
forest and total vegetation, the R2

adj and RMSE values of model 2 and model 3 were better than those
of model 1. These results show that model 2 and model 3, which were considered the crown density
classes, had higher accuracies of AGB estimation than model 1.

Table 6. The model fitting results of model 1 for different vegetation types.

Vegetation Type R2 R2
adj RMSE Predict Mean

Pine 0.23 0.21 18.41 29.64
Fir 0.22 0.22 25.57 52.43

Mixed 0.21 0.19 27.28 63.67
Total vegetation 0.11 0.10 28.47 47.40
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Table 7. The model fitting results of model 2 (linear dummy variable model) and model 3 (linear
mixed-effects model) for different vegetation types.

Vegetation Type Model# R2 R2
adj RMSE Predict Mean

Pine
2 0.41 0.40 16.05 29.65
3 0.39 0.38 16.29 29.36

Fir
2 0.61 0.61 17.88 52.39
3 0.61 0.61 17.92 51.95

Mixed
2 0.46 0.44 22.56 63.64
3 0.43 0.42 23.12 62.41

Total vegetation 2 0.41 0.41 22.99 47.70
3 0.41 0.41 23.07 47.51

To further test whether model 2 and model 3 significantly improved the accuracy of model 1, the
F-test was used for determining the differences between model 1 and model 2 and between model 1
and model 3 (Table 8). The F-test results show that, except for model 3 of the mixed forest, there were
significant differences between model 2 and model 1 and between model 3 and model 1. This indicated
that the performances of model 2 and model 3 were significantly better than that of model 1. The
fitting results of the model 2 and model 3 had no significant differences.

Table 8. The comparisons of linear models (model 1), linear dummy variable models (model 2), and
linear mixed-effects models (model 3). p-Value is from the F-test used to compare the similarity of
models 1–3 against the null hypothesis of no significant difference.

Vegetation
Type Model#

Models 1–3 Model 2 and Model 3

F-Value p-Value F-Value p-Value

Pine
1
2 11.76 <0.01
3 4.12 <0.05 2.44 0.12

Fir
1
2 29.58 <0.01
3 17.31 <0.01 1.28 0.26

Mixed
1
2 9.37 <0.01
3 0.77 0.38 4.69 0.03

Total
vegetation

1
2 111.48 <0.01
3 66.03 <0.01 2.95 0.09

The performance of the predictions could be explained with the scatterplots showing the
relationships between the predicted AGB values and observed AGB values (Figure 3). It indicates that
the overestimation and underestimation problems were obvious for the linear model (model 1) for
each vegetation type. This situation, especially, became worse for all the vegetation types in thin and
dense plots. For model 2 and model 3, the overestimations and underestimations in thin and dense
crown density plots were alleviated for four vegetation types, and the estimates were more accurate
than model 1 (Figure 3). A single-sample t-test was used to compare the model residuals of models 1,
2, and 3 (Figure 4). In model 1, there were no significant differences between the residuals and 0 for
the total plots and medium crown density plots for each vegetation type (Figure 4). In the thin crown
density plots, the residual values of model 1 were significantly smaller than 0, and in the dense crown
density plots, the residual values of model 1 were significantly larger than 0 (Figure 4). These results
indicate that there were significant inaccuracies in the AGB estimations of the thin and dense plots of
model 1 (the former was overestimated and the latter was underestimated) (Figure 4). The residuals
of model 2 were significantly different from 0 only in the thin and medium crown density plots for
the fir forest, whereas the other three vegetation types exhibited no significant differences in each
crown density class. The residuals of model 3 were not significantly different from 0 for all vegetation
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types for the different crown density classes (Figure 4). The residual results indicate that model 2 and
model 3 had higher accuracies of AGB estimation than model 1 for the different crown density classes.
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In this study, the RMSE% and Bias% of the three models of the different crown density classes
were calculated for further comparison of the models (Figure 5). Generally, the RMSE% of model 2 and
model 3 were lower than those of model 1 in the total plots for all vegetation types, and the differences
in the RMSE% between model 1 and model 2 and between model 1 and model 3 were all significant.
For the thin crown density plots, the differences in the RMSE% exceeded 27%, and both values were
significantly different from the RMSE% of model 1. For the medium crown density plots, the RMSE%
of model 2 and model 3 were smaller than those of model 1, but the differences between them were
not significant. For the dense crown density plots, the differences in the RMSE% exceeded 5%, and the
differences between model 2 and model 1 and between model 3 and model 1 were significant for the
fir forest and total vegetation. In the thin and dense plots, the values of the Bias% for model 2 and
model 3 were nearer to 0 than those of model 1, and the differences between model 2 and model 1
and between model 3 and model 1 were significant, indicating that model 2 and model 3 were more
accurate than model 1 in these two crown density classes. In the medium crown density plots, the
trends of the Bias% between model 1 and model 2 and between model 1 and model 3 were not clear,
and significant decreases only existed in model 2 and model 3 of the pine forest. The total Bias% values
were not significantly different between the three models for the different vegetation types, indicating
that the overall estimated values obtained from models 1, 2, and 3 were not significantly different.
The differences between model 2 and model 3 for the different vegetation types were compared. The
overall RMSE% and Bias% values of model 2 and model 3 were not significantly different, and model 2
was slightly better than model 3, but the performances of model 2 and model 3 were different among
the thin, medium, and dense crown density classes.
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Figure 4. Residual boxplots of AGB of model 1, model 2, and model 3 for different vegetation types
among different crown density classes: (A–D) represents pine forest, fir forest, mixed forest, and total
vegetation, respectively (model 1—linear regression model; model 2—linear dummy variable model;
model 3—linear mixed-effects model; ** indicates that the residuals were significantly different from 0
at the 0.01 level; * indicates that the residuals were significantly different from 0 at the 0.05 level).

Forests 2019, 10, x FOR PEER  12 of 17 

 

significantly different, and model 2 was slightly better than model 3, but the performances of model 
2 and model 3 were different among the thin, medium, and dense crown density classes. 

 
Figure 5. Comparison of root mean square error percent (RMSE%) and Bias percent (Bias%) results at 
different crown density classes of model 1–3 for pine forest, fir forest, mixed forest, and total 
vegetation. The significant differences between model 1 and model 2, and model 1 and model 3 for 
RMSE% and Bias% are expressed in capital letters (AA), and the lowercase letter (a) represents 
significant differences between model 2 and model 3. 

4. Discussion 

The choice of the independent variables is important for remote-sensing-based AGB estimation 
models, and potential variables from the images, such as single bands, vegetation indices, 
transformed images, textural information were applied because of the correlation with forest 
biomass. The correlation analysis results of over 300 spectral variables and the AGB of different 
vegetation types indicated that only 30 spectral variables simultaneously had significant correlation 
with AGB. This indicated that a large amount of remote sensing information does not fully reflect the 
forest characteristics. During the modelling process, stepwise regression was used to select the 
independent variables that were closely related to AGB. Although this variable selection method 
depended on the degree of linear correlation, the variables with low correlation coefficients may have 
been selected and thus affected the accuracy of the model. 

Linear stepwise regression models have been widely used for AGB estimation using remote 
sensing [7,23]. In this study, the R2 of the linear model (model 1) for the four vegetation types ranged 
from 0.1 to 0.3, indicating that the model had low accuracy. In addition, model 1 exhibited 
overestimation in the low crown density class and underestimation in the high crown density class 
of all vegetation types. The overestimations and underestimations of AGB were also investigated by 
Zhao et al., who determined that they were caused by the “global model (stepwise regression)” [40]. 
In addition, overestimations and underestimations have been observed when AGB was estimated 
using nonparametric models such as random forest, decision tree, and K-nearest neighbor methods 
[41–43]. In this study, the significant overestimations and underestimations of the linear model 
occurred in the thin (crown density < 0.4) and dense (crown density ≥ 0.7) plots, respectively. There 
were no significant overestimations or underestimations for model 2 and model 3 in the thin and 
dense plots. In addition, there were no significant differences between the linear dummy variable 
model (model 2) and linear mixed-effects model (model 3) except for the mixed forests (Table 8). 
However, in comparison with the model 1, model 2 and model 3 performed significantly better, and 
the results of the F-test and residuals verified the significant differences. The AGB estimation results 
of the three models were evaluated in the crown density classes and the results showed that the 

Figure 5. Comparison of root mean square error percent (RMSE%) and Bias percent (Bias%) results at
different crown density classes of models 1–3 for pine forest, fir forest, mixed forest, and total vegetation.
The significant differences between model 1 and model 2, and model 1 and model 3 for RMSE% and
Bias% are expressed in capital letters (AA), and the lowercase letter (a) represents significant differences
between model 2 and model 3.
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4. Discussion

The choice of the independent variables is important for remote-sensing-based AGB estimation
models, and potential variables from the images, such as single bands, vegetation indices, transformed
images, textural information were applied because of the correlation with forest biomass. The
correlation analysis results of over 300 spectral variables and the AGB of different vegetation
types indicated that only 30 spectral variables simultaneously had significant correlation with AGB.
This indicated that a large amount of remote sensing information does not fully reflect the forest
characteristics. During the modelling process, stepwise regression was used to select the independent
variables that were closely related to AGB. Although this variable selection method depended on the
degree of linear correlation, the variables with low correlation coefficients may have been selected and
thus affected the accuracy of the model.

Linear stepwise regression models have been widely used for AGB estimation using remote
sensing [7,23]. In this study, the R2 of the linear model (model 1) for the four vegetation types
ranged from 0.1 to 0.3, indicating that the model had low accuracy. In addition, model 1 exhibited
overestimation in the low crown density class and underestimation in the high crown density class
of all vegetation types. The overestimations and underestimations of AGB were also investigated by
Zhao et al., who determined that they were caused by the “global model (stepwise regression)” [40].
In addition, overestimations and underestimations have been observed when AGB was estimated using
nonparametric models such as random forest, decision tree, and K-nearest neighbor methods [41–43].
In this study, the significant overestimations and underestimations of the linear model occurred in the
thin (crown density < 0.4) and dense (crown density≥ 0.7) plots, respectively. There were no significant
overestimations or underestimations for model 2 and model 3 in the thin and dense plots. In addition,
there were no significant differences between the linear dummy variable model (model 2) and linear
mixed-effects model (model 3) except for the mixed forests (Table 8). However, in comparison with
the model 1, model 2 and model 3 performed significantly better, and the results of the F-test and
residuals verified the significant differences. The AGB estimation results of the three models were
evaluated in the crown density classes and the results showed that the overestimation in the thin plots
and underestimation in the dense plots of model 1 were not observed in model 2 and model 3.

The average AGB estimates of the sample plots for the total vegetation in the “Greater Xiangxi”
varied from 47.4 Mg/ha to 47.7 Mg/ha, which were very close to the referenced value (47.7 Mg/ha) of
the plots measured, and the average AGB estimates of pine forest, fir forest, and mixed forest were
also very close to those of the referenced values. In Hunan province, the average AGB value of pine
forest in 2011 was 31.61 Mg/ha, and the average AGB value of fir forest in the forest average AGB
values obtained from the sample plots of the 4th and 8th national forest inventories in 1990 and 2009
were 31.76 Mg/ha [44] and 27.56 Mg/ha, respectively. This implied that the AGB values of forests in
the “Greater Xiangxi” were larger than those of the whole Hunan mainly because the study area was a
key forestry area and had various protected forests.

A comparison of the R2
adj and RMSE of the three models indicated that the performances of

model 2 and model 3 were better than that of model 1. The dummy variable model considered the
group differences as special fixed parameters. The purpose of using the dummy variable model in
this study was to introduce the parameter of crown density class into the intercept of the model so
that the degree of freedom of the error was increased and the variance of the error was decreased,
thereby improving the precision of the model [45]. The linear mixed-effects model considered the
group differences as two parts: One part was the difference caused by different groups, and the
other was the difference caused by random effects. Since the error and the random effect of the
variance-covariance structures was considered, the model had high precision. Some studies compared
dummy variable models with mixed-effects models for the estimation of large-scale forest growth
models and the determination of biomass allometric growth equations. The linear mixed-effects model
was a compromise between the dummy variable model and the linear model; in most cases, the
dummy variable model was slightly better than the mixed-effects model, but this often depended on
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the sample size [45,46]. In this study, the sample plots were divided into the three categories of thin,
medium, and dense crown density. The overall RMSE% and Bias% of model 2 were better than model 3,
which supported the aforementioned results. In the past, the application of dummy variable models
and mixed-effects models focused on the determination of allometric growth equations, whereas in
this study, we considered whether the partition of the crown density classes improved the estimation
accuracy of AGB using remote sensing data.

In statistics and biometrics, it is often debated whether the dummy variable model or mixed-effects
model should be selected [46]. The choice often depends on the number of groups (random
effects/dummy variables, crown density classes in this study) and the number of samples in each
group. For a small group size (less than 10), the dummy variable model is commonly preferred;
otherwise, the mixed-effects model is more appropriate [37,47]. Unlike in most other studies, we
not only compared the overall differences between the linear dummy variable model and linear
mixed-effects model but also the differences in model performance among different groups. Although
the overall RMSE% and Bias% were better in model 2 than in model 3, this trend was not always the
same for the different crown density classes. In the fir forest and the total vegetation, groups that had a
large number of samples, the RMSE% and Bias% were smaller for model 3 than model 2 for all crown
density classes. In pine and mixed forests, which had a small number of samples in each group, the
RMSE% and Bias% were smaller for model 2 than model 3 for all crown density classes. Therefore,
regardless of which of the models was chosen, we believe that if the overall differences between the
two models are not significant, the fitting effects of the groups should be compared and the model
with good performance in each group should be selected.

The climate of this region is a typical subtropical monsoon humid climate, and the typical forests
are evergreen broad leaf forests and evergreen coniferous forests. In this study, the mixed forests
were almost evergreen coniferous forests, and the seasonal variation of the vegetation types were not
obvious. Many studies analyzed the variation of different vegetation types (NDVI) in the subtropical
regions of China. They demonstrated that the NDVI of evergreen forests (evergreen broad leaf forest
and evergreen coniferous forest) had no obviously seasonal variation [48]. Besides, the seasonal
variations of leaf area index (LAI) and clumping index (CI) were very small because the canopy
structure of evergreen forests were stable through the year [49,50], and texture information which
referred the forest structure were relatively stable in the imagery. The spectral characteristics of remote
sensing images are influenced by the soil, topography, vegetation type, forest structure, and other
factors. It is important to choose appropriate spectral variables as independent variables in AGB
estimation using remote-sensing-based methods [5,51]. Many studies have shown that when only
spectral indices were used in AGB estimation, saturation occurred and caused inaccuracies of AGB
estimation. Texture information calculated from a small neighborhood of pixels [26] may have a
stronger correlation with AGB than spectral indices, and in some regions, AGB may only be closely
correlated with texture information rather than spectral information. Texture information has been
demonstrated to be an important factor in remote-sensing-based AGB estimation [52,53].

The independent variables of the linear model in this study illustrated that texture information
had considerable influences on the accuracy of the AGB estimation in our study area. The linear
models had low accuracy for the thin and dense crown density classes, and the linear dummy variable
models and linear mixed-effects models had higher accuracy because the crown density classes were
considered. The results indicate that the crown density class may be an important factor affecting the
accuracy of AGB estimation. The sensitivity to the stand information decreased with increasing crown
density in the dense stands; the spectral information may be affected by other non-forest characteristics
in thin stands with low AGB, causing the low accuracy of the AGB estimation model. Many studies
have demonstrated that a complex stand structure and high crown density caused saturation in remote
sensing images and low crown density and sparse trees increased the occurrence of soil/vegetation
mixed pixels [6,54,55]. The saturation and mixed pixels problems have attracted increased attention for
remote-sensing-based AGB estimation. In this study, we demonstrated that the crown density classes
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influenced the accuracy of AGB estimation; however, the underlying mechanisms and relationships
should be studied in more detail in the future.

In this study, the models for AGB estimation were explored combining sample plot data and
remote sensing, and the results illustrated that the crown density was a factor that influences model
accuracy. The crown density data incorporated in the linear dummy variable model and linear
mixed-effects model were the most accurate. The aim of this study was to demonstrate that the crown
density is an important factor that influences the accuracy of the models. A large amount of research
has explored the potential of using satellite imagery for exploring remote-sensing-based methods of
crown density, and there are more precise results [56]. This should be examined in future research for
mapping large-scale AGB using our models when the crown density data were not available.

5. Conclusions

Permanent sample plot data of AGB of evergreen forests and Landsat 8 OLI images in the
subtropical region of western Hunan province were used to develop remote-sensing-based AGB
estimation models. The linear model, linear dummy variable model, and linear mixed-effects model
were used to determine if the accuracy of the AGB linear estimation model could be improved by
considering crown density classes. The forest AGB in our study exhibited significant differences
between the thin, medium, and dense crown density classes for each vegetation type, and the AGB
increased with increasing crown density. The results of the models indicate that the performance
of the linear model was affected to a large extent by the crown density classes, resulting in the low
accuracy of the linear model. The model-fitting results of the linear dummy variable models and
linear mixed-effects models, which considered the crown density classes, were better than those of
the linear models. The accuracy of the AGB estimation was significantly higher for the linear dummy
variable models and linear mixed-effects models than the linear models, especially in the thin and
dense crown density classes. There were no significant differences in the overall estimation accuracy
between linear dummy models and linear mixed-effects models, but there were significant differences
in some crown density classes of different vegetation types. The choice between the linear dummy
variable model or linear mixed-effects model depended on the number of groups and sample size of
the groups; when the sample size was large enough, each of the models met the accuracy requirements
for AGB estimation.
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