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1. Supplementary methods 

 

Methods S1: Variance-covariance matrices for random terms defined under the linear mixed 

model 

 
Under the general linear mixed model defined in Equation (1), the joint distribution of the 

random terms was assumed to be multivariate normal, with means and (co)variances: 
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where 0 is a null matrix, G and R are (co)variance matrices corresponding to u and e, 

respectively. Different model terms in u were assumed to be mutually independent. 

Under a univariate model, G = 2
provpn σI  ⊕ 2

aσA , where 
pnI  is an identity matrix of 

dimension pn  x pn  ( pn  = number of provenances), A  is the matrix of additive genetic 

relationship coefficients among all individuals in the pedigree (i.e. base population parents 

and their progeny, which was tested in a common-garden trial), 2
provσ  is the variance of 

provenance effects, 2
aσ  is the variance of additive genetic effects within provenances, and ⊕ 

is the direct sum operation. The matrix A  was modified to take into account a selfing rate of 

10% for E. pauciflora [1] and a base-level population inbreeding of 0.067 [2]. The residual 

effects were defined by R = 2
enσI , where nI  is an identity matrix of dimension n x n (n = 

number of trees tested in a common-garden trial), and 2
eσ  is the residual variance. 

Under a bivariate model, the (co)variance matrices G and R were defined as: 
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where k and l refer to two traits; lk ,σ  denotes the covariance between the two traits for a 

given random term; and 2
provσ , 2

aσ , 2
eσ , A , I , pn , n  and  ⊕  are defined as before. 

 

Methods S2: Verification of model assumptions 

 
 (Co)variance components and genetic parameters 

 
For HT and LIGD, preliminary analyses based on a linear mixed model fitting the intercept 

and replicates as fixed effects (plus STMD used as a covariate in modelling LIGD), and 

provenances and families within provenances as random effects, provided residual 

distributions that approached normality well, as indicated by the visual inspection of the 

histogram and the quantile-quantile plot of conditional studentized residuals. However, the 

residual distribution from the linear mixed model was skewed for PET, although the observed 

asymmetry did not appear to be severe.  

To assess whether a Gaussian-based approximation of the residual distribution from the 

above-mentioned analysis of PET was inaccurate for hypothesis testing of model parameters, 

we also fitted a generalized linear mixed model (GLMM) in which PET was assumed to 

follow a Beta distribution. As indicated by Ferrari and Cribari-Neto [3], the flexibility of the 

Beta distribution makes it useful for modelling continuous variables such as proportions - that 

assume values in the open unit interval (0, 1) - enabling to naturally accommodate 
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heteroscedasticity and asymmetry in the data. The GLMM fitted the same predictor variables 

(i.e. fixed and random effects) as described before and, following [3], the Beta density was 

parameterized in terms of a location parameter µ (i.e. mean response) and a scale parameter φ  

(i.e. precision); the logit link was used as a link function for modelling µ (i.e. to relate the 

mean response to the predictor variables), while φ  was fitted as a nuisance parameter. Prior to 

analysis, the observed percentage values of PET were converted into proportions. The beta-

distributed model assumes that the response variable comprises observations from a 

continuous bounded scale within the open unit interval (0, 1): the proportions for PET were 

reasonably continuous in this interval, varying between 0.08 and 0.93. When comparing 

variance component estimates, the ratio of the provenance variance relative to the family 

variance (or vice-versa) obtained on the logit scale under the GLMM was similar to that 

obtained on the observed trait scale under a linear mixed model assuming normality. 

Concerning hypothesis tests, calculated likelihood-ratio test statistics were comparable 

between the two models, and provided the same conclusions regarding the statistical 

significance of the provenance and family variance estimates; the two models also provided 

the same conclusions with respect to Wald F-tests that were conducted to determine whether 

differences among replicate fixed effects were statistically significant. In conclusion, we 

found adequate to present the results obtained from a variance component analysis of PET 

assuming a normal distribution, due to: (i) their analogy with the outcomes from the GLMM 

assuming a (more flexible) Beta distribution; and (ii) the simplicity of interpreting genetic 

parameters (e.g. heritabilities and genetic correlations) derived from (co)variances estimated 

on the observed trait scale. 
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Selection analysis 
 

 
As an indicator to assess the degree of multicollinearity in the performed multiple-trait 

regression analysis, the condition number did not exceed 2.3, and thus was well below the 

value (i.e. 10) at which the presence of multicollinearity starts to be a concern for parameter 

estimation and testing [4]. Using studentized deleted residuals from either single- or multiple-

trait regression models, histograms and quantile-quantile plots indicated that the residual 

distributions approximated reasonably well the normal distribution, and evidence of 

heteroscedasticity was not identified by plots of residuals against fitted values [also 

corroborated by the White [5] statistical test, which did not detect significant departures from 

homoscedasticity]. Although five observations were found in general to be associated with 

large studentized deleted residuals (i.e. ranging between 2.5 and 3, in absolute value), they 

were not considered to be statistically significant outliers, as their absolute magnitude did not 

exceed a t-distribution critical value corresponding to a Bonferroni-adjusted alpha level (i.e. 

0.05/n) and n-p-1 degrees of freedom (n = number of observations; p = number of 

independent variables in the regression model). 

 

Methods S3: Notes on the interpretation of selection differentials and gradients 

 
Under a single-trait regression model using individual phenotypic values, an estimated 

standardized selection differential measures the total effects of selection that will modify the 

phenotypic trait distribution within the given generation, and thus is unable to distinguish 

between direct selection on the focal trait and selection acting indirectly through other 

(measured or unmeasured) traits, that also affect fitness and may be phenotypically correlated 

with the focal trait [6]. In this sense, a directional selection differential quantifies the 

magnitude of the total effects of linear selection favouring higher or lower trait mean values 
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[6, 7]. By enabling the estimation of partial regression coefficients, a multiple-trait regression 

model provides estimates of selection gradients that quantify the effects of selection acting 

directly on a trait or on a pairwise combination of traits, implying that the effects of indirect 

selection operating through the other modelled traits have been removed [6]. In this sense, a 

selection gradient estimates direct selection for a given trait, as the effects of the other 

measured traits included in the model are held constant. Nevertheless, the multiple-trait 

regression approach does not preclude the possibility that selection may occur for a measured 

trait via indirect selection acting on unmeasured characters, which may themselves be subject 

to selection and also be phenotypically correlated with the measured traits [6, 8].  

Using family means in place of individual phenotypic values enables to estimate selection 

differentials and/or gradients that are less likely to be affected by bias attributed to 

environmental covariances between fitness and traits, which may be introduced by the 

individual's microsite when applying a standard phenotypic selection analysis [9, 10, 11]. A 

requirement for pursuing this approach is that both fitness components and targeted traits are 

genetically variable, and thus heritable [9, 10]. When compared with the classical method 

evaluating selection on individual phenotypic variation (i.e. as referred above, and described 

by Lande and Arnold [6]), selection gradients estimated by using family mean values as 

observations are less likely to be biased by the omission of important unmeasured traits: to 

influence estimates of selection gradients, unmeasured traits covarying with fitness (and thus 

potentially subject to selection) must be both genetically variable and genetically correlated 

with the measured focal traits [9, 10].  

As mentioned in the Materials and Methods section, standardized linear and non-linear 

selection gradients were estimated separately from first- and second-order polynomial 

regression models. This separated estimation procedure follows the suggestion of Lande and 

Arnold [6] in the sense that, when a second-order polynomial model includes linear and 
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quadratic terms that are correlated, valid estimates of directional selection may be obtained 

only from a first-order polynomial model. Nevertheless, including linear regression terms in a 

second-order polynomial model will contribute to remove putative changes caused by 

directional selection when evaluating the effects of non-linear selection (e.g. influence on the 

(co)variances of the traits; Lande and Arnold [6]).  
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2. Supplementary figures 

 

 

 
Figure S1.  Focal trait turnover functions for the (a) maximum temperature of the warmest week (TMXWW) 

and (b) precipitation of the driest quarter (RDRYQ) gradients, derived from the gradient forests model fitted as a 

function of climate (see Table S1) and space/latent environmental variation (Moran’s eigenvector map variables; 

MEMs). The two focal traits (i.e. dependent variables) pertain to lignotuber diameter at the cotyledonary node 

(LIGD; red line) and percentage of nodes expanded at six months of age which had petiolate leaves (PET; blue 

line). The maximum curve value obtained along the y-axis for each trait indicates the cumulative importance of 

the ith independent variable whilst averaging the effect of all other independent variables. The cumulative 

importance is scaled by the weighted conditional importance (���
� ) for the trait and standardised by the density of 

observations along the gradient [12]. Steep changes in the curve reflect the location of important changes in trait 

values along the gradient. The common y-axis visually aids the identification of traits that are changing the most 

along the gradient [12]. In the present case, LIGD obtains the highest ������
� 	with strong change points occurring 

between 19°C and 24°C. 
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3. Supplementary tables 

Table S1. Bioclimatic variables used in a principal component (PC) analysis to summarise the variation in home-site contemporary climate for the 
provenances translocated to the studied trial site, as well as to derive the contemporary and growing period climates for this site. 
   

Code Variable 
Contemporary climate 

at the trial site 

Incremental change in the growing 
period climate relative to the 

contemporary climate at the trial site 

PC1 
(54%) 

PC2 
(18%) 

PC3 
(16%) 

PC4 
(7%) 

TANN Annual mean temperature (°C) 11.4 0.5 0.76 -0.60 -0.22 -0.02 

TMDR Mean diurnal temperature range (°C) 12.3 0.6 0.65 0.44 -0.54 -0.29 

TISO Isothermality (TMDR/TSPAN) 0.5 0.3 0.74 -0.10 -0.30 -0.48 

TCVAR Temperature seasonality (Coefficient of variation) 1.3 0.1 0.35 0.73 -0.55 -0.06 

TMXWW Max temperature of warmest week (°C) 24.5 1.1 0.85 -0.16 -0.47 -0.12 

TMNCW Min temperature of coldest week (°C) 0.8 -0.1 0.48 -0.87 0.05 0.08 

TSPAN Temperature annual range (°C) 23.7 1.1 0.55 0.57 -0.58 -0.20 

TWETQ Mean temperature of wettest quarter (°C) 7.5 -0.6 0.69 -0.34 0.28 -0.49 

TDRYQ Mean temperature of driest quarter (°C) 15.4 2.2 0.18 -0.21 -0.65 0.54 

TWMQ Mean temperature of warmest quarter (°C) 16.3 0.7 0.81 -0.48 -0.31 -0.02 

TCLQ Mean temperature of coldest quarter (°C) 6.6 -0.1 0.68 -0.71 -0.12 0.00 

RANN Annual precipitation (mm) 609 -56 -0.91 -0.23 -0.31 -0.15 

RWETW Precipitation of wettest week (mm) 16 1 -0.86 -0.24 -0.43 -0.04 

RDRYW Precipitation of driest week (mm) 7 0 -0.91 -0.16 -0.08 -0.31 

RCVAR Precipitation seasonality (Coefficient of variation) 19 0.3 -0.40 -0.12 -0.76 0.28 

RWETQ Precipitation of wettest quarter (mm) 190 -23 -0.87 -0.22 -0.41 -0.10 

RDRYQ Precipitation of driest quarter (mm) 118 -9 -0.92 -0.21 -0.08 -0.28 

RWMQ Precipitation of warmest quarter (mm) 122 -7 -0.90 -0.20 -0.05 -0.33 

RCLQ Precipitation of coldest quarter (mm) 179 -21 -0.87 -0.24 -0.42 -0.02 

        

Latitude Decimal degrees south of equator (˚)   -0.12 -0.18 -0.41 0.43 

Longitude Decimal degrees west of the standard meridian (˚)   0.52 -0.26 0.44 0.05 

Altitude Elevation above sea level (m)   -0.77 0.55 0.28 0.07 
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Tabulated are: (i) the code and description for each of the 19 bioclimatic variables; (ii) their mean contemporary (1976 - 2005) values for the trial site, and the incremental change (i.e. climate 
anomaly) during the growing period (2014 - 2018) at the trial site relative to the mean contemporary value; (iii) the Pearson’s correlation of the bioclimatic variables (i.e. the variable loadings) to 
the retained first four principal components (PC1 to PC4);  and (iv) the Pearson’s correlation of latitude, longitude and altitude with the first four PCs (bold correlations are significantly different 
from zero at P < 0.001). The percentage of variation accounted for by each PC is shown in parenthesis, with the first four PCs explaining 95% of the total variation in the climate data across the 
37 native provenances of Eucalyptus pauciflora in Tasmania, Australia. Red text indicates the variable within each class of climatic variables (temperature and precipitation) that had the highest 
correlation with a PC axis, and was relatively independent from other PC axes at the |r| < 0.7 level. Growing period bioclimatic variables were calculated by firstly downloading minimum and 
maximum daily temperature and daily precipitation values for the trial site obtained from the Australian Bureau of Meteorology (http://www.bom.gov.au/jsp/awap/, accessed on the 12 of 
August, 2018). Daily climate for the trial site was then used to calculate yearly bioclimatic variables in the AUSClim package in R (unpublished R package), and then the yearly bioclimatic 
variables were averaged over the growing period. The growing period climate mean was then subtracted from the contemporary climate mean for each bioclimatic variable to give the 
incremental change in climate at the trial site. Notable is the increased heat (positive TMXWW and TDRYQ increments) and decreased water availability (negative RANN increments) 
experienced during the growing period relative to the contemporary climate for the trial site. 
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Table S2. Summary statistics for the focal functional traits and fitness surrogate measured in E. pauciflora.  
 

 
 

Mean Phenotypic 
 standard deviation 

 Family-mean 
standard deviation 

 
Functional traits 

 
LIGD (mm) 

 

 
9.3 

 
2.55 

 
2.09 

 
PET (%) 

 
64.0 

 
14.68 

 
10.75 

 
Fitness surrogate 

 
HT (m) 

 

 
3.4 

 
1.22 

 
0.86 

 

LIGD = lignotuber diameter at the cotyledonary node; PET = percentage of nodes expanded at six months of age which had 
petiolate leaves; HT = total tree height at age 44 months.  
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