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Abstract: The diversity and function of surface soil bacterial community in farmland shelterbelts of
five forest types and one abandoned wilderness area were analyzed by collecting 36 soil samples at
depths of 0–10 cm (the upper soil layer) and 10–20 cm (the lower soil layer), extracting DNA from the
samples and amplifying and sequencing the bacterial 16S rDNA V3~V4 region. Dominant bacterial
phyla in forest soils included the Actinomycetes, Proteobacteria, Acidobacteria, Chlorobacteria,
and Bacillus. The number of unique bacterial OTUs (operational taxonomic units) was higher in
the upper versus lower soil layer and greater in the abandoned cropland than in the shelterbelts.
The number of total bacterial OTUs was highest in the mixed Pinus sylvestris var. mongholica Litv.
and Larix gmelinii (Rupr.) Kuzen. forest. At the phyla level, Actinomycetes showed the greatest
variation in abundance among forest types, while at the genus level, Actinoplanes varied most among
forest types in the upper soil layer and Krasilnikovia varied most in the lower soil layer. Soil bacteria
were more strongly correlated and more intense competition in the upper soil layer than in the
lower soil layer; Actinoplanes and Krasilnikovia were key genera in bacterial networks. Functional
predictions for bacterial community genes indicated that soil fertility potential was strong in the
mixed Fraxinus mandshurica Rupr. and Larix gmelinii (Rupr.) Kuzen. forest, weak in the mixed Pinus
sylvestris var. mongholica Litv. and Larix gmelinii (Rupr.) Kuzen. forest, and in the Populus×xiaohei
forest, and intermediate in the Larix gmelinii (Rupr.) Kuzen. and Pinus sylvestris var. mongholica Litv.
forests. This study provides a new theoretical basis for the sustainable management of soil fertility in
the agroforestry system.

Keywords: farmland shelterbelts; agroforestry system; 16S rDNA; high-throughput sequencing;
bacterial diversity; community function prediction

1. Introduction

Farmland shelterbelts, an important part of agroforestry systems, are key ecological barriers
against severe environmental conditions in northern China, which improve the microclimate of
farmland and ensure high and stable crop yields [1]. Meanwhile, soils in agroforestry systems provide
the necessary substrate for the survival and development of farmland shelterbelts. Forest surface
soils represent an important habitat for microorganisms, many of which are beneficial and act to
enhance nutrient absorption and retention [2,3]. Studies have shown that soil microorganisms can,
to some extent, influence plant communities: for example, affecting drought tolerance and hormone
levels [4,5], regulating biomass [6], altering reproductive phenology [7], and promoting lignin synthesis
and metabolism [8].

Forest root systems interact in complex ways with soil microbial communities [9]. For example,
the characteristics of the soil microbial community can respond to changes in soil ecological processes
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and vegetation cover [10]. In most cases, the Eubacteria dominate soil microbial communities [11,12].
Soil bacteria are so valued because these microbial groups have the highest abundance and widest
distribution in soils [13]. They play important roles in the decomposition of organic matter, the release of
mineral nutrients and in energy transfer processes. Their diversity and activity may regulate the health
and stability of soil ecosystems. Therefore, understanding and utilizing soil bacterial communities
is of great potential significance for maintaining ecosystem resilience and promoting sustainable
practices on cultivated lands [14]. Soil bacteria represent a key factor in biogeochemical cycles and
have become the focus of an increasing volume of researches. These in-depth studies have shed much
light on the interpretation of biogeochemical cycles. However, using traditional methods for these
researches, almost 99% of soil bacteria cannot be isolated and/or cultured [15]. This large proportion
of uncultured soil bacteria ‘dark matter’ [16] greatly limits our understanding of soil functions and
processes. In Northeast China, DGGE (denaturing gradient gel electrophoresis) fingerprinting and
other traditional biological identification methods have been used to assess microbial biogeographical
distributions in black soils [17]; however, these techniques provided ordinary resolution of the
communities. In the systematic classification of bacteria, 16S rDNA is the most useful and commonly
used molecular clock which is a moderate sized molecule that exists in all organisms, and with high
conservation in structure and function. However, the V3~V4 region of 16S rDNA is of high variability,
which is usually used for DNA amplification and identification of soil bacterial diversity [17].

In recent years, the rapid development of molecular biology has provided new avenues for
soil microbial research; in particular, the development of high-throughput sequencing techniques
for 16S rDNA has produced great advancements. These techniques have become widely used
in the study of soil microbial ecology and genetics due to their superior accuracy, efficiency,
and sensitivity [18–20], even being used to identify novel microbial species and comprehensively
survey microbial communities [21,22]. The Illumina MiSeq PE250 has become a mainstream sequencing
platform for bacterial 16S rDNA sequencing, due to the advantages of appropriate read length, short
sequencing cycles, and high throughput.

Farmland shelterbelts in mid-western Heilongjiang Province are important to ensure national
food security. Healthy, stable shelterbelts are critical for promoting stability in local ecosystems. Forest
soil microorganisms can also play an important role in maintaining and improving soil fertility and in
forest carbon and energy cycles [23,24]. However, the effect of long-term planting of farmland shelter
forests on soil fertility remains poorly characterized. Bezemer, et al. [25] undertook a comprehensive
review of mechanisms driving bacterial β diversity and phylogenetic β diversity in two temperate
forests. However, variation in the soil bacterial communities due to tree species identity was not
considered; furthermore, studying functional genes in bacterial communities should corroborate
drivers of community changes. In the black soil area of Northeast China, Liu, et al. [26] studied the
diversity and distribution of bacterial communities in farmland soils, finding that Acidobacteria was
the most common phylum; however, this study did not include shelterbelt soils. To date, few studies
exist on soil bacterial communities in shelterbelts using 16S rDNA high-throughput sequencing exist.
Therefore, this study used high-throughput sequencing to characterize soil bacterial communities
in different shelterbelt types and to predict soil fertility by the functional gene characteristics and
their relative abundance. This study could deepen the understanding of the mechanisms that drive
farmland shelterbelt soil fertility and provide a theoretical basis for the regulation of soil fertility and
quality in farmland shelterbelts.

2. Materials and Methods

2.1. Sample Plot Characteristics and Sample Collection

This study took place in Fengchan Town in Baiquan County, Heilongjiang Province
(47◦38′4”N–47◦39′23”N, 125◦18′638”E–125◦51′18”E). In this region, the annual frost-free period
lasts for 120 to 125 days, with a mean annual temperature of 1.3 ◦C and an annual effective accumulated
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temperature (≥10 ◦C) of 2454.5 ◦C; the mean number of hours of sunshine received annually is 2717.1 h.
The average annual precipitation totals 496.7 mm and its seasonal distribution is uneven, where located
in the semi-humid zone. In the growing season, the temperature averages 17 ◦C. The annual wind
speed averages 3.0 m/s and the wind direction is mostly from the southwest, averaging 202◦30′ degrees
azimuth. The main crops are corn, soybean, sorghum, and potato. The growing season is from April to
September, lasting for about five months. According to the Chinese Soil Classification System, there
are five soil types in the region: 67.9% of soils are black soils, 14.4% black calcium soils, 17.1% meadow
soils, 0.5% marsh soils and 0.2% salty soils [27], where belongs to high altitudes and cold and dry
agricultural areas. The overall soil pH in the study area varied from 6.22 to 8.62 [27].

In this study, the selected five types of farmland shelterbelts and one cropland abandoned for
20 years in this study were all located in the black soil area. The shelterbelts were all well preserved,
far from man-made structures (thus subject to little human interference), and their soil conditions
before establishing the farmland shelterbelt were basically the same. Each farmland shelterbelt was
composed of the following different tree species: “X” contained Populus×xiaohei, “L” contained Larix
gmelinii (Rupr.) Kuzen., “Z” contained Pinus sylvestris var. mongholica Litv., “SL” contained a mix of
Fraxinus mandshurica Rupr. and Larix gmelinii (Rupr.) Kuzen., “ZL” contained a mix of Pinus sylvestris
var. mongholica Litv. and Larix gmelinii (Rupr.) Kuzen., and abandoned cropland “CK” severed as
a control. All forests were roughly similar in age (20 years old). Three 20 m × 8 m sample plots were
established in each forest shelterbelt and in the abandoned cropland. Soil samples were collected at
five points within each plot, following an “S” shape, on 21 July 2018. After removing the litter layer at
each point, two 5 g soil samples were collected: one sample from 0 to 10 cm (the upper soil layer) and
another sample from 10 to 20 cm (the lower soil layer) below the surface. Visible impurities, such as
rocks and roots, were removed before each sample was passed through a sterile, 2 mm mesh sieve.
Samples from all five points in the same layer of a given plot were combined in equal quantities and
then stored in sterile centrifuge tubes. Thus, a total of 36 samples were collected and transported to the
laboratory on dry ice for later DNA extraction [26]. At the same time, some key survey factors about
forest and tree characteristics were also measured. Table 1 describes the basic characteristics of each
sample plot.

Table 1. Basic characteristics of the different types of sample plots.

Plot Types Height
/m

DBH
/cm

Spacing
/m Longitude and Latitude Altitude

/m

X 17.86 ± 1.77 16.64 ± 2.03 2 × 1.5 125◦51′12.4”E—125◦51′38.0”E,
47◦38′22.8”N—47◦38′26.2”N 241~241

L 9.44 ± 1.55 11.00 ± 2.51 2 × 1.5 125◦48′59.7”E—125◦49′03.5”E,
47◦38′38.2”N—47◦38′55.3”N 239~267

Z 8.18 ± 1.29 12.59 ± 1.67 2 × 1.5 125◦51′37.9”E—125◦51′41.4”E,
47◦38′11.9”N—47◦38′24.8”N 248~251

SL 9.76 ± 1.47 10.99 ± 2.69 2 × 3 125◦49′03.3”E—125◦49′06.4”E,
47◦38′23.6”N—47◦38′36.8”N 242~252

ZL 11.08 ± 1.40 13.96 ± 2.98 2 × 1.5 125◦47′15.5”E—125◦47′17.4”E,
47◦39′09.6”N—47◦39′30.5”N 249~256

CK —— —— —— 125◦48′28.1”E—125◦48′29.9”E,
47◦38′35.6”N—47◦38′36.4”N 221~222

Note: X, Populus×xiaohei farmland shelterbelt; L, Larix gmelinii (Rupr.) Kuzen. farmland shelterbelt; Z, Pinus
sylvestris var. mongholica Litv. farmland shelterbelt; SL, Fraxinus mandshurica Rupr. mixed with Larix gmelinii (Rupr.)
Kuzen. farmland shelterbelt; ZL, Pinus sylvestris var. mongholica Litv. mixed with Larix gmelinii (Rupr.) Kuzen.
farmland shelterbelt; and CK, abandoned cropland.

2.2. DNA Extraction and PCR Amplification

Total soil DNA was extracted from all 36 samples using an E.Z.N.A. ® DNA isolation kit (Omega
Bio-Tek Co., LTD, Norcross, GA, USA), according to the manufacturer’s instructions. A NanoDrop
ND-1000 ultraviolet spectrophotometer (Thermo Fisher Scientific, Wilmington, MA, USA) was used to
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quantify the extracted DNA. All samples were required to have a concentration of at least 20 ng·µL−1,
at least 500 ng of DNA, a volume of at least 25 µL and an A260/A280 ratio of between 1.8 and 2.0.
The DNA quality was assessed on a 0.8% agarose gel, and samples without obvious RNA bands
were retained. The DNA samples that met the above requirements were stored at −20 ◦C prior to
further analysis.

The total DNA from each soil sample was used as a template for PCR (polymerase chain reaction)
amplification of the highly variable V3~V4 region of the bacterial 16S rDNA. For DNA amplification,
the researchers used different primers to obtain different amplicons according to the research purpose,
but the primers of the V3~V4 region of bacterial 16S rDNA amplification usually used were standard
primers. The forward primer 338F (5′-barcode + ACTCCTACGGGAGGCAGCA-3′) and the reverse
primer 806R (5′-GGACTACHVGGGTWTCTAAT-3′) were used [28]; a 7-bp barcode was included
in the forward primer to distinguish among samples in the same library. A thermocycler was used
for PCR amplification (Gene Amp 9700, ABI, Foster, CA, USA), with each 25 µL reaction containing
0.25 µL of Q5 High-Fidelity DNA polymerase (5 U·µL−1), 5 µL of Q5 reaction buffer (5×), 5 µL of Q5
High-Fidelity GC Buffer (5×), 2 µL (2.5 mM) of dNTPs, 2µL of the DNA template, 1 µL (10 µM) of the
forward and the reverse primer, and 8.75 µL of ddH2O. Each PCR consisted of an initial denaturation
at 98 ◦C for 2 min, followed by 25 cycles of denaturation at 98 ◦C for 15 s, annealing at 55 ◦C for 30 s,
and extension at 72 ◦C for 30 s, with a final extension of 5 min at 72 ◦C. Each sample was amplified
in triplicate.

PCR amplicons from the same sample were run on a 2% agarose gel to separate fragments by size.
Then, target fragments were then cut from the gel and purified using the Axygen DNA gel kit (Axygen
Biosciences, Union City, CA, USA), before quantification with a Quant-iT PicoGreen dsDNA Assay Kit
(Invitrogen, Carlsbad, CA, USA) and microplate reader (BioTek, FLx800). Samples were combined
proportionally into libraries, in accordance with sequencing requirements.

2.3. Library Construction and Illumina Miseq Sequencing

The 250 bp paired-end, 250 bp sequencing libraries were prepared using the TruSeq Nano LT
DNA Library Prep Kit (Illumina, San Diego, CA, USA) , following the manufacturer’s instructions.
To check library quality, 1 µL of each library was analyzed on a 2100 Agilent Bioanalyzer instrument
using an Agilent High Sensitivity DNA Analysis Kit (Agilent, Santa Clara, CA, USA). Libraries were
confirmed to have a single peak with no breaks in the distribution. Libraries were quantified using
a Quant-iT PicoGreen dsDNA Assay Kit (Life Technologies, Carlsbad, CA, USA); for sequencing,
libraries were required to have a concentration of at least 2 nM. Libraries were sequenced on an Illumina
MiSeq PE250 instrument with the MiSeq Reagent Kit V3 (600 cycles). All raw sequences were deposited
in the NCBI Sequence Read Archive under accession number SRP187158.

2.4. Data Processing

First, the QIIME (quantitative insights into microbial ecology) pipeline (version 1.8.0,
http://qiime.org/) was used to conduct quality screening of FASTQ data using the sliding window
method. The window size was 10 bp and the step size 1 bp: the first window began at the first base of
the 5′ end of a sequence. The average base quality score in each window was at least 20 (the average
accuracy of base calls was 97%). Sequences were truncated to remove windows with an average quality
score lower than Q20; all truncated sequences were at least 150 bp in length, and no ambiguous bases or
suspicious sequences were included. Usearch (version 5.2.236, http://www.drive5.com/usearch/) was
used to search for and remove chimeric sequences [29]. Subsequently, the FLASH software package
(version 1.2.7, http://ccb.jhu.edu/software/FLASH) (Magoc and Salzberg, 2011) was used to merge
Read 1 and Read 2 in cases that passed preliminary screening. Reads were required to overlap by at
least 10 bp and have no mismatched bases. Merged sequences were then assigned to samples using
barcodes; in this way, all sequences were collated for each sample.

http://qiime.org/
http://www.drive5.com/usearch/
http://ccb.jhu.edu/software/FLASH
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Secondly, the UCLUST comparison tool of the QIIME [30] was implemented to assign validated
sequences into corresponding OTUs according to 97% sequence similarity [31]. The sequences with
the highest abundance for each OTU were selected as representative of that OTU. These representative
sequences were then BLASTed (basic local alignment search tool) [32] against the Silva database (release
115; http://www.arb-silva.de) to obtain taxonomic information; a similarity of 0.999 was considered
a match. In order to ensure accuracy, OTUs accounting for less than 0.001% of all sequences were
removed [33] and the modified OTU abundance matrix was calculated.

In order to control for effects of sequencing depth on observed OTU diversity, all samples were
randomly resampled at the lowest observed sequencing depth level of 90% [34]. QIIME was then
used to calculate the ACE (abundance-based coverage estimator), Chao1 richness estimator, Simpson
index and Shannon diversity index for each sample or group [26]. For each sample, a statistical
table of sample composition at each taxonomic level was created. Differences among samples in
species diversity indexes and among the various taxonomic levels were assessed using SPSS 24.0 (IBM,
Armonk, NY, USA).

Lastly, the Metastats algorithm [35] in the Mothur software package (http://metastats.cbcb.umd.
edu/) was used to compare the abundance of observed phyla and genera across study samples; these
data were visualized as violin plots. The top 50 genera, based on OTU abundance, were included in
cluster analysis and used to create heat maps in R. The distribution of β diversity differences among
samples was examined using unweighted NMDS (nonmetric multi-dimensional scaling) with UniFrac
distances. A network analysis of the Spearman rank correlations [36] among the 50 most abundant
genera was performed using Mothur. All test sequences were compared to the Greengenes 16S rDNA
full-length sequence database (http://greengenes.secondgenome.com/) using PICRUSt (phylogenetic
investigation of communities by reconstruction of unobserved states, developed by Curtis Huttendrums
research group of Harvard University, http://huttenhower.sph.harvard.edu/galaxy/tool_runner?tool_
id=PICRUSt_normalize) to find the nearest neighbors of the reference sequences; these were merged
for each OTU, using the reference sequence copy number to obtain a corrected OTU abundance
matrix. Finally, the bacterial community composition in the corrected matrix was mapped to the KEGG
metabolic pathway analysis database (http://www.genome.jp/kegg/pathway.html) to annotate and
predict metabolic and other potential gene functions in the communities from each sample plot [37].
This study focused on the annotation and prediction of the 12 common functional metabolisms at the
second level and the KO (KEGG orthologous groups) metabolic at the fourth level.

3. Results and Analysis

3.1. Sequencing Effectiveness and OTU Statistics for Study Samples

After quality control, a total of 1,418,914 valid sequences were obtained across all 36 samples,
with an average of 39,414 sequences per sample. Among these, 99.93% of the sequence reads ranged
from 400 bp to 450 bp. After grouping sequences into OTUs, a total of 121,164 OTUs were identified,
with 10,687 OTUs remaining after removing rare OTUs, and then 10,184 OTUs remaining after
controlling for sequencing depth. Figure 1 depicts the rarefaction curves for all samples. These curves
nearly achieve a plateau (beginning with 6000 sequences per sample) and L2–3 reached a stable state,
demonstrating that the sequencing depth was adequate to capture the microbial diversity of the
samples. The sampling therefore accurately reflected the bacterial communities surveyed and reliably
documented their structure.

http://www.arb-silva.de
http://metastats.cbcb.umd.edu/
http://metastats.cbcb.umd.edu/
http://greengenes.secondgenome.com/
http://huttenhower.sph.harvard.edu/galaxy/tool_runner?tool_id= PICRUSt_normalize
http://huttenhower.sph.harvard.edu/galaxy/tool_runner?tool_id= PICRUSt_normalize
http://www.genome.jp/kegg/pathway.html
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Figure 1. Rarefaction curves of each soil sample.

Table 2 outlines the OTU distribution for each type of shelterbelt and in each soil layer after
controlling for sequencing depth. Considering each type separately, the upper soil layer contained
more unique OTUs (i.e., the OTUs that only occur in a single plot type for a given soil layer) than the
lower layer; however, across plots, more shared OTUs (i.e., the OTUs that occur across sample types
in a given soil layer) were found in the lower versus upper soil layer. This suggests that the upper
soil layer supports greater microbial diversity. In both the upper and the lower soil layer, the most
unique OTUs were found in CK and the least in SL. Among sites, the coefficient of variation between
the upper and the lower soil layers was highest in SL (9.56%) and lowest in L (3.29%), suggesting
an especially marked difference between soil layers in SL.

Table 2. Unique OTUs and shared OTUs for each type of soil layer across study sites.

Layer
Unique OTUs

Shared OTUs
X L Z SL ZL CK

Upper 2519 2374 2368 2299 2455 3410 420
Lower 2268 2266 2093 2008 2268 3234 432
CV (%) 7.72 3.29 8.72 9.56 5.60 3.75 1.99

Note: Unique OTUs only occur in a single plot type for a given soil layer, shared OTUs occur across sample types in
the given soil layer.

Table 3 depicts the distribution of OTUs across the six type of study sites, providing both the
number of unique and shared OTUs for the upper and the lower soil layers (Here, unique OTUs are
those that occur only in a single soil layer of a given sample, whereas shared OTUs are those that occur
in both layers). In both X and L, the number of unique OTUs was higher in the lower versus upper soil
layer, while the opposite pattern occurred at the other sample sites. A comparing of the upper and the
lower soil layer showed that the highest coefficient of variation was seen in SL (25.96%) and the lowest
in Z (1.96%). Thus, the vertical distribution of soil microbial diversity varied with forest type, differing
most in SL and least in Z. The highest number of shared OTUs was found in ZL and the lowest in X,
while the total number of OTUs was greatest in ZL and smallest in CK. Forest soils contained more
OTUs than CK soils, with ZL having the highest overall bacterial OTU diversity.
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Table 3. Unique OTUs and shared OTUs for upper and lower soil layers across all types of study sites.

Sample X L Z SL ZL CK

Unique OTUs Upper 1493 1430 1462 1696 1586 977
Lower 1597 1941 1422 1170 1403 696

Shared OTUs 1847 1893 2016 1887 2342 2282
Total 4937 5264 4900 4753 5331 3955

CV (%) 4.76 21.44 1.96 25.96 8.66 23.75

Note: Unique OTUs occur only in a single soil layer of a given sample, shared OTUs occur in both layers of
a given sample.

3.2. Bacterial OTU Alpha Diversity

The Simpson, Chao1, ACE and Shannon alpha diversity indexes are presented in Table 4 for the
upper and the lower soil layers of each sample type. In both soil layers, each of the four α diversity
indices generally did not differ among sites (p > 0.05, i.e., the threshold value set for significance
throughout this study, unless otherwise specified), with the exception of the ACE index in the lower
soil layer, which differed between CK2 and ZL2 (p < 0.05).

Table 4. Diversity indices of soil bacterial communities across all six types of study sites.

Sample Simpson Chao1 ACE Shannon

X1 1.00 ± 0.00a 2415.56 ± 313.95a 2628.13 ± 394.88a 9.62 ± 0.18a
L1 1.00 ± 0.00a 2583.06 ± 264.11a 2814.98 ± 320.18a 9.80 ± 0.28a
Z1 1.00 ± 0.00a 2395.76 ± 190.76a 2573.73 ± 234.52a 9.86 ± 0.19a
SL1 1.00 ± 0.00a 2525.06 ± 433.90a 2741.37 ± 518.70a 9.84 ± 0.23a
ZL1 1.00 ± 0.00a 2884.11 ± 138.48a 3097.92 ± 248.01a 10.02 ± 0.10a
CK1 1.00 ± 0.00a 2495.38 ± 266.87a 2633.57 ± 289.19a 10.06 ± 0.07a

p-value 0.22 0.38 0.50 0.13

X2 1.00 ± 0.00a 2300.21 ± 278.30a 2497.11 ± 306.65ab 9.74 ± 0.16a
L2 1.00 ± 0.00a 2280.97 ± 268.93a 2472.52 ± 310.77ab 9.59 ± 0.28a
Z2 1.00 ± 0.00a 2483.66 ± 168.47a 2702.35 ± 195.05ab 9.75 ± 0.17a
SL2 1.00 ± 0.00a 2382.02 ± 427.27a 2486.05 ± 342.33ab 9.67 ± 0.17a
ZL2 1.00 ± 0.00a 2673.35 ± 518.46a 2947.23 ± 620.24a 9.94 ± 0.21a
CK2 1.00 ± 0.00a 2074.42 ± 297.47a 2187.47 ± 395.47b 9.84 ± 0.07a

p-value 0.51 0.44 0.320 0.31

Note: Different lowercase letters indicate significant differences in pairwise comparisons (p < 0.05), the number
following each type sample plot ID indicates the soil layer (“1” upper and “2” lower), the values in the table are
mean ± S.D., the same as below.

3.3. Bacterial Community Composition

3.3.1. Composition of Soil Bacterial Communities at Each Taxonomic Level

In this study, the total number of phyla, classes, orders, families, genera, and species identified
were 27, 86, 97, 189, 303 and 88, respectively. Table 5 shows the classification for each type of study
shelterbelt and soil layer. Overall, the mean number of phyla, families, genera, and species did not
vary among sites in either the upper or the lower soil layer; however, there were significant differences
at the class and order levels. By implementing planned LSD (least significance difference method)
(α = 0.05) multiple comparisons, differences among sites were identified at most taxonomic levels, with
the exception for at the phylum level in the lower soil layer and at the genus level in both soil layers.
At the class and order levels, both CK1 and CK2 differed from all other samples within their respective
soil layers. At the family level, ZL2 differed from X2. However, there were no statistically significant
differences among different forest types at the phyla, genus and species level.
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Table 5. Composition of soil bacterial communities at each type of study site by taxonomic level.

Sample Phylum Class Order Family Genus Species

X1 18.33 ± 0.58ab 54.67 ± 2.89c 71.00 ± 6.08b 134.00 ± 6.93b 180.67 ± 13.65 82.67 ± 8.02ab
L1 16.00 ± 2.00b 57.00 ± 2.00bc 76.00 ± 4.36b 145.33 ± 6.35ab 192.33 ± 8.02 90.33 ± 8.08a
Z1 17.33 ± 1.15ab 57.67 ± 4.51bc 73.33 ± 3.21b 142.00 ± 7.00ab 193.33 ± 11.59 86.67 ± 8.33ab
SL1 18.67 ± 2.08ab 60.00 ± 1.73b 73.67 ± 0.58b 142.33 ± 8.51ab 196.33 ± 13.05 83.33 ± 9.07ab
ZL1 17.67 ± 2.08ab 60.33 ± 2.08b 78.67 ± 3.21b 149.33 ± 7.09a 195.33 ± 4.93 89.33 ± 2.52ab
CK1 20.00 ± 1.73a 68.67 ± 2.31a 90.67 ± 4.51a 150.33 ± 5.51a 196.00 ± 5.57 76.33 ± 3.51b

p-value 0.17 0.01 0.01 0.12 0.44 0.23

X2 18.00 ± 1.73 57.00 ± 3.61b 68.33 ± 6.81b 129.00 ± 4.36c 159.33 ± 4.93 76.67 ± 6.51ab
L2 17.33 ± 2.52 58.00 ± 2.00b 69.67 ± 1.53b 130.67 ± 11.15bc 160.33 ± 18.90 72.67 ± 6.66ab
Z2 16.33 ± 0.58 58.00 ± 6.08b 71.67 ± 5.03b 140.67 ± 6.03abc 183.67 ± 18.58 81.00 ± 9.17a
SL2 17.33 ± 1.53 61.67 ± 2.89b 69.67 ± 5.03b 129.67 ± 4.04bc 162.00 ± 10.54 75.33 ± 6.43ab
ZL2 16.67 ± 1.15 62.00 ± 2.00b 74.33 ± 4.73b 145.33 ± 2.89a 179.67 ± 5.51 77.33 ± 6.51ab
CK2 18.67 ± 1.15 68.00 ± 1.73a 87.67 ± 4.73a 143.67 ± 11.37ab 165.67 ± 8.74 65.33 ± 4.62b

p-value 0.51 0.02 0.00 0.05 0.13 0.18

Figure 2 illustrates the relative abundance of observed phyla in the soil bacterial community
for each forest type. A total of 22 phyla were identified in the upper soil layer and 18 in the lower.
In the upper soil layer (Figure 2A), the five phyla with the highest abundance were the Actinobacteria,
Proteobacteria, Acidobacteria, Chloroflexi, and Gemmatimonadetes; here, these dominant phyla
accounted for 92.07%, 92.61%, 92.83%, 89.84%, 91.63%, and 91.16% of the total OTU abundance in X1,
L1, Z1, SL1, ZL1, and CK1, respectively. Actinobacteria were more abundant in forest soils (minimum
relative abundance of 30.99% in ZL1, maximum relative abundance of 43.25% in X1) than in CK (where
relative abundance was 20.66%), while the Acidobacteria and Gemmatimonadetes were more abundant
in CK (relative abundance of 20.82%, 8.48%, respectively) than in the forest soils (the maximum relative
abundance recorded was 14.74% and 6.82%, respectively). In the lower soil layer (Figure 2B), the four
most abundant phyla were the Actinobacteria, Proteobacteria, Acidobacteria, and Chloroflexi; these
phyla accounted for 84.78%, 80.33%, 84.59%, 76.79%, 80.66%, and 79.72% of the total in X2, L2, Z2, SL2,
ZL2, and CK2, respectively. Again, the Actinobacteria were more abundant in the forest (minimum
relative abundance was 32.05% in ZL2, maximum relative abundance of 45.01% in X2) versus CK
(20.43%) soils, while the other three dominant phyla were more common in CK (relative abundance of
22.38%, 21.05%, and 8.50%, respectively) than in the shelterbelts (the maximum relative abundance
was 21.27%, 16.19%, and 6.23%, respectively).
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Heat maps comparing the six different types of study areas according to their generic composition
are presented in Figure 3, with separate maps for the two soil layers. The maps were created using data
for the 50 most abundant genera. Horizontally, sites are clustered according to their compositional
similarity, while vertically, genera are clustered according to similarities in their abundance distributions
across the six types of sites. In Figure 3, red indicates that a genus has a relatively high abundance in
the corresponding type of shelterbelt, while green indicates low abundance.
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In the upper soil layer (Figure 3A), SL1, L1, Z1, and ZL1 were similar in terms of their microbial
composition. In X1, species of Asanoa, Dactylosporangium, Luedemannella, and Micromonospora were
highly abundant (1.84%, 2.26%, 0.89%, and 1.09%, respectively), while in L1, Solirubrobacter and
Streptomyces were most common (0.74%, and 1.81%, respectively). In Z1, the most abundant genera
were Acidothermus, Blastococcus, Nocardioides, and Nordella (0.39%, 0.56%, 0.36%, and 0.46%, respectively),
while in SL1, highly abundant genera included 11−24, Lapillicoccus and Ochrobactrum (0.37%, 0.44%,
and 0.61%, respectively); and in ZL1, the most common genera included CL500−29 marine group,
Pseudolabrys and Sphingomonas (0.81%, 0.35%, and 3.80%, respectively). Finally, in CK1 the most
common genera were Bryobacter and Ilumatobacter (0.88%, and 0.88%, respectively). In the lower
soil layer (Figure 3B), X2 was similar to Z2 in terms of microbial composition, while L2 was similar
to SL2 and ZL2. The most common genus in X2 was Roseiflexus (relative abundance of 1.63%).
In L2, Acidothermus, Candidatus Xiphinematobacter and Nocardioides were most common (2.55%, 0.74%,
and 0.78%, respectively), while Blastococcus, Mesorhizobium, Ochrobactrum, Sediminibacterium and
Variibacter were most common in Z2 (0.22%, 0.47%, 1.41%, 0.38%, and 1.44%, respectively). Meanwhile,
RB41 dominated in SL2 (4.41%), while Kribbella and Phenylobacterium were abundant in ZL2 (0.80%,
and 0.23%, respectively). Finally, in CK2, the most abundant genera were Asanoa, Haliangium, Iamia,
and Ilumatobacter (1.66%, 1.62%, 0.43%, and 0.53%, respectively). There were more dominant genera
in the upper soil layer than in the lower soil layer. Genera that were highly abundant in both layers
included Acidothermus, Nocardioides, Blastococcus, Ochrobactrum, Asanoa, and Ilumatobacter. In both soil
layers, these genera were most common in Z.

3.3.2. Differences in Taxonomic Composition Among Study Sites

Figure 4 provides boxplots of the abundance (in terms of OTUs) of both in the upper soil
layer (Figure 4A) and in the lower soil layer (Figure 4B) across the six types of study sites at the
phyla level; these phyla showed the greatest variation among sites were selected according to
pairwise comparison tests (p < 0.05). As can be seen from Figure 4A, there were 12 phyla that
varied significantly in abundance among the study sites, and these accounted for 44.44% of all
phyla. Among these phyla, those with the highest abundance were the Acidobacteria, Actinobacteria,
Chloroflexi, Gemmatimonadetes, and Verrucomicrobia. Acidobacteria, Armatimonadetes, Chloroflexi,
Gemmatimonadetes, Latescibacteria, Nitrospirae, and Planctomycetes were more abundant in CK1 than
in the forest samples. In Figure 4B, there were 13 phyla that varied significantly in abundance among
the study sites; these phyla accounted for 48.12% of the total phyla, Among these phyla, those with
the highest abundance were the Acidobacteria, Actinobacteria, Gemmatimonadetes, Nitrospirae,
Proteobacteria, and Verrucomicrobia. Acidobacteria, Armatimonadetes, Gemmatimonadetes,
Latescibacteria, Nitrospirae, Planctomycetes, and Proteobacteria were more abundant in CK2 than
in the forest samples. A comparison of data in Figure 4A,B shows that the Chlorobi, Chloroflexi,
and Euryarchaeota all varied significantly among study sites in the upper soil layer, but not in the lower
soil layer. Meanwhile, Bacteroidetes and Cyanobacteria showed the reverse pattern. A comparison of
the different forest types indicates that the Actinobacteria showed the greatest differences in abundance.



Forests 2019, 10, 1115 11 of 28Forests 2019, 10, 1115 11 of 28 

 

 

 

Figure 4. Boxplots of abundance for phyla and genera with significant differences at the phyla level. 

(A) denotes the upper soil layer, (B) denotes the lower soil layer. 

Figure 5 provides boxplots of the abundance (in terms of OTUs) of both in the upper soil layer 

(Figure 5A) and in the lower soil layer (Figure 5B) across the six types of study sites at the genus level; 

these genera showed the greatest variation among sites and were selected according to pairwise 

comparison tests (p < 0.05). As can be seen from Figure 5A, there were 20 genera that varied 

significantly among sites. Among these genera, those with the highest abundance were Actinoplanes, 

Asanoa, Dactylosporangium, Haliangium, and Jatrophihabitans, and these differences were driven by 

Figure 4. Boxplots of abundance for phyla and genera with significant differences at the phyla level.

Figure 5 provides boxplots of the abundance (in terms of OTUs) of both in the upper soil
layer (Figure 5A) and in the lower soil layer (Figure 5B) across the six types of study sites at the
genus level; these genera showed the greatest variation among sites and were selected according to
pairwise comparison tests (p < 0.05). As can be seen from Figure 5A, there were 20 genera that varied
significantly among sites. Among these genera, those with the highest abundance were Actinoplanes,
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Asanoa, Dactylosporangium, Haliangium, and Jatrophihabitans, and these differences were driven by
relatively high abundance in CK1 or X1. Similarly, as shown in Figure 5B, there were also 20 genera
that varied significantly among the study sites, Among these genera, those with the highest abundance
were Candidatus Solibacter, Krasilnikovia, Microlunatus, and Nitrobacter, which all had high abundance in
forest samples. A comparison of Figure 5A,B shows that Novosphingobium and Planosporangium varied
significantly across the study sites in both soil layers. A comparison of the different forest types shows
that Actinoplanes differed most in the upper soil layer and Krasilnikovia in the lower soil layer.
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3.4. Bacterial OTU Beta Diversity

Beta diversity reflects similarities in community structure among different groups of samples.
UniFrac is a distance metric that reflects phylogenetic relationships among unique OTUs in a community,
thus more comprehensively revealing similarities among community samples. Figure 6 shows the
first two axes of an NMDS based on unweighted UniFrac distances (Figure 6A,B indicates the upper
soil layer and the lower soil layer, respectively). The community structure of the CK samples differed
significantly from that of the forest samples, and there was also a large difference among the L samples.
However, the community structure of L1 was similar to Z1, SL1, and ZL1, while SL2 was similar to Z2
and ZL2.
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3.5. Network Analysis of Associations Among Genera

To investigate interactions among genera within communities, Spearman’s rank-order correlation
coefficients were calculated among the 50 most abundant genera and a correlation network diagram
was constructed for all such dominant genera with |rho| > 0.6 and p < 0.01 (Figure 7).
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The association network for the 30 dominant genera in the upper soil layer is found in
Figure 7A. Relationships among genera can be divided into the following three categories: lone
pair correlations, chain correlations, and network correlations. The relationships between Lapillicoccu
and Variibacter, Pseudonocardia and Jatrophihabitans, and Rhizomicrobium and Mycobacterium represent
positive, lone-pair correlations. Considering chain correlations, Phenylobacterium was positively
correlated with Streptomyces but negatively related to Ilumatobacter. Considering network correlations,
Iamia was negatively correlated with Krasilnikovia, Actinoplanes, Micromonospora, Hamadaea, Spirilliplane,
and Singulisphaera; whereas Nitrospira was negatively correlated with Catellatospora, Nitrobacter,
and Reyranella; and Sorangium was negatively correlated with Rubrobacter, Rhodoplanes, Solirubrobacter,
and Gaiella. Actinoplanes, Krasilnikovia, and Singulisphaera all had the largest number of nodes and
were positively correlated with each other; these three genera were also all positively correlated with
Catellatospora, Dactylosporangium, Hamadaea, Micromonospora, Reyranella, and Spirilliplanes.

The association network for the 28 genera found in the lower soil layer is shown in Figure 7B.
The relationships between Microlunatus and Rubrobacter, Mycobacterium and Mesorhizobium represent
positive lone-pair correlations, while those between Nocardioides and Haliangium as well as Iamia and
Nakamurella represent negative lone-pair correlations. The genera Sediminibacterium, Ochrobactrum,
Rhodoplanes, and Variibacter formed a positive chain correlation. Considering network correlations,
Actinoplanes, Dactylosporangium, Krasilnikovia, Quadrisphaera, Reyranella, and Solirubrobacter were
all positively correlated, multi-associated genera with six nodes each. Amycolatopsis, Hamadaea,
Jatrophihabitans, and Roseiflexus all had positive pair-wise correlations.

Comparing the upper and the lower soil layers, Actinoplanes and Krasilnikovia were the two genera
with the highest number of associations, suggesting that they play important roles in the construction
of microbial communities. Nitrospira, Iamia, and Sorangium were negatively correlated with other
genera in the upper soil layer, but not in the lower soil layer. Bacterial networks of competition and
cooperation were more complex among genera in the upper than in the lower soil layer.

3.6. Microbial Community Function

3.6.1. Microbial Metabolism

Figure 8 presents the metabolic predictions by PICRUSt for the bacterial communities from each
type of study site created using the KEGG database at level 2. The abundance of the 12 metabolites
was basically the same in the upper (Figure 8A) and lower soil layers (Figure 8B). Amino acid and
carbohydrate metabolism functions were highly represented, suggesting these play a dominant role
in total community metabolism. In contrast, the biosynthesis of other secondary metabolites was
relatively weak, suggesting it play a weaker role in total metabolism.

The functional categories of nucleotide metabolism, metabolism of cofactors and vitamins, glycan
biosynthesis and metabolism, energy metabolism and enzyme families each accounted for a higher
percentage of the total in CK than in the forest samples. However, the carbohydrate metabolism,
lipid metabolism, metabolism of other amino acids, and metabolism of terpenoids and polyketides
categories showed the reverse pattern. A sizeable proportion of unclassified metabolites (about 3.00%)
was also found. Comparing shelterbelt types, there was no difference in the proportions of functional
genes involved in amino acid or carbohydrate metabolism in the upper soil layer. In the lower soil
layer, energy metabolism and lipid metabolism genes were equally represented. Functional genes
involved in amino acid metabolism were less abundant in the upper soil layer of SL versus the other
forest types.
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3.6.2. Functional Potential of Bacterial Homologous Gene Clusters

The potential metabolic functional capabilities of each sample were predicted based on KO
(KEGG orthology) IDs retrieved from the database, as well as the relative abundance of enzymes
involved in nutrient cycling according to the KEGG metabolic pathway database (at the 4th hierarchy
level). The gene relative abundances referred to carbon, nitrogen, sulfur, and phosphorus cycles
were measured.

The results for carbon cycle enzymes are presented in Figure 9, which divides the enzymes into
four categories. Seven functional gene clusters were identified from the samples as follows: two type of
carbon fixation enzymes, 1, 5-bisphosphate ribulose carboxylase /oxygenase (rbcL, EC:4.1.1.39, K 01601
and rbcS, EC:4.1.1.39, K01602); two type of cellulolytic enzymes, endoglucanase (EC:3.2.1.4, K01179)
and β- glucuronic acid glycosidase (uidA, EC: 3.2.1.31, K01195); two type of xylanolytic enzymes,
endo-1,4-β-xylanase (xynA, E3.2.1.8, K01181) and xylan 1,4-β-xylosidase (xynB, EC:3.2.1.37, K01198);
and a type of lignin decomposing enzyme, catechol 1, 2-dioxygenase (catA, EC:1.13.11.1, K03381).
In the upper soil layer (Figure 9A), the relative abundance of the carbon fixation enzyme K01601 varied
among shelterbelt types, while K01602 did not. The relative abundance of the cellulolytic enzyme
K01179 was significantly higher in CK (0.1113%) than in the shelterbelts. The relative abundance of
the xylanolytic enzymes K01181 and K01198 did not vary among shelterbelts. The highest relative
abundance of lignin lyases occurred in L (0.0136%). In the lower soil layer (Figure 9B), the carbon
fixation enzyme K01601 had the highest relative abundance in SL (0.0084%). The cellulolytic enzyme
K01179 and xylanolytic enzyme K01181 were most common in SL (0.1024%, 0.0664%) and least common
in ZL (0.0027%, 0.0283%). The lignin decomposing enzyme K03381 was the least relative abundant in
ZL (0.0063%). Both carbon fixation enzymes and lignin decomposing enzymes were more common
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in the upper than in the lower soil layer. The cellulose decomposition enzyme K01179 and xylanase
K01181 accounted for the largest proportion of the total enzyme pool across samples. The relative
abundance of cellulose decomposition enzymes and xylanolytic enzymes was higher in the lower
versus upper soil layer. Hence, the carbon fixation capacity of the upper soil layer was stronger than
that of the lower soil layer. Also, the potential for organic matter decomposition was greatest in SL,
weakest in ZL, and intermediate in L, X, and Z (which did not differ from one another).
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The results for nitrogen cycle enzymes, which were divided into three functional categories, are
presented in Figure 10. Identified enzymes included a nitrogenase iron protein (NifH, EC:1.18.6.1,
K02588), a copper-containing nitrite reductase involved in denitrification (nirK, EC:1.7.2.1, K00368)
and a nitrite reductase containing a cytochrome C-552 subunit (nrfA, EC:1.7.2.2, K03385) involved in
dissimilatory nitrate reduction to ammonium (DNRA). In the upper soil layer (Figure 10A), the relative
abundance of the nitrogenase K02588 was highest in CK (where it was significantly higher than in
forest soils) and lowest in ZL (0.0126%). A comparison of shelterbelts shows that the nitrite reductase
K00368 was most abundant in SL (0.0128%) and least abundant in X (0.0061%), while the relative
abundance of the nitrate dissimilation reductase K03385 did not vary with forest type. In the lower
soil layer (Figure 10B), the relative abundance of the nitrogenase K02588 was highest in CK (0.0231%)
and SL (0.0195%) (not significantly different from each other) and lowest in ZL (0.0101%). The relative
abundance of the nitrite reductase K00368 was also highest in SL (0.0189%), but the lowest in CK
(0.0055%). Lastly, the relative abundance of the nitrate dissimilation reductase K03385 was significantly
higher in SL (0.0131%) than in the other types. A comparison of the upper and the lower soil layers
shows that the nitrate dissimilation reductase K03385 was at higher levels in the lower soil layer.
The relative abundance of nitrate reductase K00368 was significantly higher in SL than in other
shelterbelts. Thus, CK soils had a greater capacity for nitrogen fixation than the forest soils; nitrite and
nitrate reduction potential was highest in SL and weakest in X.
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Five functional gene clusters, grouped into the following two categories, were identified for
phosphorus cycling (Figure 11): Category one, three type of acidic phosphatases, acidic phosphatase
4-phytase (appA, EC:3.1.3.26, K01093), acid phosphatase-A (phoN, EC:3.1.3.2, K09474) and PHO (pho,
EC:3.1.3.2, K01078) and category two, two type of alkaline phosphatases, alkaline phosphatase
(EC:3.1.3.1, K01077) and alkaline phosphatase-D (phoD, EC:3.1.4.1, K01113). In the upper soil layer
(Figure 11A), the relative abundance of the acidic phosphatase K09474 was lower in the forest versus
CK soils (0.0076%), while the acidic phosphatase K01078 was most relative abundant in SL (0.0325%).
The relative abundance of the alkaline phosphatase K01077 was lowest in X (0.0111%), while the
alkaline phosphatase-D K01113 was most common in CK (0.0674%) and SL (0.0608%) (not different from
one another). In the lower soil layer (Figure 11B), the relative abundance of the acidic phosphatases,
K01093 and K01078, was highest in SL (0.0124%, 0.0325%), while the relative abundance of K09474 was
highest in CK (0.0080%). The relative abundance of the alkaline phosphatase K01077 was significantly
higher in SL (0.0334%) than in the other forest types but did not differ from CK (0.0220%). The relative
abundance of the alkaline phosphatase-D K01113 was lowest in ZL (0.0315%). A comparison of the
upper and the lower soil layers shows that K01093 and K01113 were present at higher proportions in
the upper soil layer. In general, phosphatase relative abundance was advantageous in CK and SL, but
inhibitory in X and ZL. Alkaline phosphatase activity was higher than that of the acidic phosphatases
in all samples.Forests 2019, 10, 1115 19 of 28 

 

 

Figure 11. Relative abundance distribution histogram of enzymes reflecting the phosphorus cycle. (A) 

denotes the upper soil layer, (B) denotes the lower soil layer. 

Enzyme relative abundances involved in the sulfur cycle were illustrated in Figure 12. Identified 

enzymes included two type of sulfate assimilation reductases, phosphoadenosine phosphosulfate 

reductase (cysH, EC:1.8.4.8, K00390) and adenylylsulfate kinase (cysC, EC:2.7.1.25, K00860), and two 

type of sulfate dissimilating reductases, adenylylsulfate reductase subunit A (aprA, EC:1.8.99.2, 

K00394) and adenylylsulfate reductase subunit B (aprB, EC:1.8.99.2, K00395). In the upper soil layer 

(Figure 12A), the relative abundance of the sulfate assimilation reductase K00390 was highest in SL 

(0.0599%). Furthermore, the relative abundance of the sulfate assimilation reductase K00860 in Z 

(0.0266%) differed from the other study sites, while both K00394 and K00395 were higher in CK 

(0.0127%, 0.0047%, respectively) than in forest soils. In the lower soil layer (Figure 12B), sulfate 

assimilating reductase K00390 was least abundant in ZL (0.0323%), while sulfate assimilating 

reductase K00860 was most abundant in SL (0.0522%). The relative abundance of the sulfate 

dissimilating reductase K00394 did not vary with forest type but was lower in forest soils than in CK 

soil samples. Finally, the sulfate dissimilating reductase K00395 was most abundant in SL (0.0070%). 

A comparison of the upper and the lower soil layers shows that the sulfate dissimilating reductases 

were relatively more abundant in the lower soil layer. In general, the sulfate assimilating reductases 

were more abundant than the sulfate dissimilating reductases. Assimilating reductases were most 

dominant in SL and least in ZL, while dissimilating reductases were more dominant in CK and least 

in X. 

 

Figure 12. Relative abundance distribution histogram of enzymes reflecting the sulfur cycle. (A) 

denotes the upper soil layer, (B) denotes the lower soil layer. 

Figure 11. Relative abundance distribution histogram of enzymes reflecting the phosphorus cycle.



Forests 2019, 10, 1115 19 of 28

Enzyme relative abundances involved in the sulfur cycle were illustrated in Figure 12. Identified
enzymes included two type of sulfate assimilation reductases, phosphoadenosine phosphosulfate
reductase (cysH, EC:1.8.4.8, K00390) and adenylylsulfate kinase (cysC, EC:2.7.1.25, K00860), and two type
of sulfate dissimilating reductases, adenylylsulfate reductase subunit A (aprA, EC:1.8.99.2, K00394) and
adenylylsulfate reductase subunit B (aprB, EC:1.8.99.2, K00395). In the upper soil layer (Figure 12A),
the relative abundance of the sulfate assimilation reductase K00390 was highest in SL (0.0599%).
Furthermore, the relative abundance of the sulfate assimilation reductase K00860 in Z (0.0266%)
differed from the other study sites, while both K00394 and K00395 were higher in CK (0.0127%, 0.0047%,
respectively) than in forest soils. In the lower soil layer (Figure 12B), sulfate assimilating reductase
K00390 was least abundant in ZL (0.0323%), while sulfate assimilating reductase K00860 was most
abundant in SL (0.0522%). The relative abundance of the sulfate dissimilating reductase K00394 did
not vary with forest type but was lower in forest soils than in CK soil samples. Finally, the sulfate
dissimilating reductase K00395 was most abundant in SL (0.0070%). A comparison of the upper and
the lower soil layers shows that the sulfate dissimilating reductases were relatively more abundant
in the lower soil layer. In general, the sulfate assimilating reductases were more abundant than the
sulfate dissimilating reductases. Assimilating reductases were most dominant in SL and least in ZL,
while dissimilating reductases were more dominant in CK and least in X.
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4. Discussion

4.1. Diversity of Soil Bacterial Communities in Shelterbelts of Different Forest Types

This study is the first to use high-throughput sequencing technology to characterize soil bacterial
communities in shelterbelt forests in midwestern Heilongjiang Province, China. Previous studies [38–40]
have shown that the distribution of microorganisms can be influenced by environmental heterogeneity
and dispersal limitation, but these effects vary with the microbial domain, habitat type, spatial scale,
and taxonomic level [41]. The microbial diversity of woodland soils may be directly related to the
vegetation cover, soil and land use type [42]. In this study, the average number of sequences obtained per
shelterbelt sample (39,414) was much higher than that reported for arable land (13,685) [43]; indicating
greater soil bacterial community diversity in farmland shelterbelts versus arable lands in Chinese black
soils. With increasing sequencing depth, the number of OTUs should continue to increase, so black soil
microbial communities have more OTUs than other soil types. A comparison of the bacterial diversity
among forests composed of different tree species shows that the number of unique OTUs was highest in
CK. However, a comparison of the upper soil layer with the lower soil layer shows that the number of
unique and total OTUs was lowest in CK and the number of total OTUs was highest in ZL. Thus, there
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were more shared OTUs among the forest types. This finding of variation in the number of unique
OTUs among forest types was consistent with that of Yang, et al. [44] and Niu, et al. [45]. However,
Carnovale, et al. [46] considered that shelterbelt systems which contain a mixture of different plant
genera have the potential to exhibit greater microbial community heterogeneity than single-species
plantations. These differences may be due to different vegetation above the soil. The ACE diversity
index was higher in ZL than CK in the lower soil layer; thus, the lower soil layers in ZL were more
supportive of bacterial diversity than those of CK. A comparison with the research results of [28] shows
that the changes of bacterial diversity index of X and Z in our research results were different, which
may be related to the different forest types and specific tree species: our plots were belt forest, while
theirs were sheet forest; the poplar we selected for the test is Populus × xiaohei, while theirs was Populus
× canadensis Moench.

Liu, et al. [43] documented that Acidobacteria is widespread and common in the soil. However,
Actinobacteria were the most dominant phylum in the soils of the five forest types tested here, consistent
with the findings of Niu, et al. [45], but different from those of Li, et al. [47] and Deng, et al. [28], who
found that the Acidobacteria were most common. This inconsistency may be related to soil pH, as
the Larix gmelinii forest soils in Li, et al. [47] were acidic, while the soils in this study were neutral
or slightly alkaline. Preem, et al. [48] also considered soil pH as a key factor in shaping bacterial
community structures. However, the abundance of Acidobacteria was higher in Z than that in X,
which was consistent with Lauber, et al. [49] who found the relative abundance of Acidobacteria was
relatively higher in the coniferous forest than those of broadleaf forest. A study of soil bacteria in
cherry forests [50] found the Proteobacteria to be dominant, also inconsistent with this study, perhaps
due to differences in litter content. Finally, another study also failed to find a high abundance of
Actinobacteria [51], perhaps due to varying humidity levels. As the previous findings [52,53] had
established that both tree species and afforestation time dramatically influenced soil characteristics, then
the changes in soil properties alter habitats, resulting in different microbial communities. The dominant
phyla found here (e.g., Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, Gemmatimonadetes,
Planctomycetes, and Bacteroidetes) were the same as those found by Liu, et al. [26], and were also
consistent with descriptions of microbial communities from 88 soils collected in North and South
America [54] and 29 soils collected in the Arctic [38]; however, the order of dominant phyla (in terms
of abundance) differed among studies, perhaps due to the different PCR primers used and different
vegetation composition among sites. Navarrete, et al. [55] found that the relative abundance of
Acidobacteria decreased significantly with the transformation of Amazon forest soils to agricultural
soils, which were consistent with the results in our study (soil Acidobacteria were more common in the
abandoned agricultural land than in shelterbelts). The abundance of Proteobacteria in X was higher
than that in Z, which was inconsistent with Deng, et al. [28]. The reason may be the forest ages of X and
Z were inconsistent in Deng’s study. Gemmatimonadetes were another dominant bacterial community
in our research, similar to a study by DeBruyn, et al. [56] study, who found Gemmatimonadetes in arid
soils, such as grassland, prairie, pasture, pine trees soil, were higher abundance. Thus, in this study,
we believed that the differences in soil dominant bacterial genera among forest shelterbelts were due
to variation in habitat.

A recent β diversity analysis revealed differences in the soil microbial flora among forest types [57].
In this study, comparing study sites, the composition of microbial communities at the genus level
in forest samples differed from CK; however, SL, ZL, and L had similar soil bacterial communities,
perhaps as all three shelterbelts contained Larix gmelinii. These findings were consistent with the
findings of Ren, et al. [58] and Gunina, et al. [59], and also verify the hypothesis of Deng, et al. [28]
about the influence of tree species on soil bacterial communities. Meanwhile, this study confirms
the hypothesis of Bezemer, et al. [25] that soil bacteria would show strong intraspecific aggregation,
according to different environmental factors. However, some studies have found that plant species
identity had no significant effect on bacterial beta diversity or phylogeny-based β diversity [25,60,61];
this could be due to differences in study variables, such as the PCR primers used, sequencing method,
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the variable region amplified, and how the diversity metrics were calculated. For example, the primers
used by Bezemer, et al. [25] were 27F and 534R, and the V1~V3 region of the 16S rDNA was amplified.
Many researchers have argued that the identity of plant species within a community, as well as factors
such as community composition, can distinctly affect microorganism diversity and drive variation in
soil nutrients [60,62].

A network analysis of the most abundant genera in the study samples revealed that Actinoplanes
and Krasilnikovia had the most connections to other genera. In all the sample plots, the abundance
of these two genera varied the most, and their abundance was generally high, indicating a key role
for these genera in the soil bacterial communities of the shelterbelts. In this study, Actinoplanes was
the dominant genus in the soil bacterial communities of the farmland shelterbelts. Li, et al. [63] also
found that Actinoplanes was one of the six dominant genera in soil bacterial communities in Sichuan
Province. The three genera Iamia, Nitrospira, and Sorangium outcompeted other genera in surface soils,
but not in the lower layer soil, suggesting that these genera were represented by aerobic bacteria that
performed better closer to the surface. According to the previous studies, Nitrospira can oxidize nitrites
into nitrates, and this nitrification process is aerobic [64,65], confirming the current analysis of the
characteristics of Nitrospira.

Soil microbial metabolism is a complicated and changeable process. Among the twelve categories
of metabolic processes identified here, most differed among study sites, and these differences were
more complex in the upper soil layer. This phenomenon may be related to large differences observed in
the surface soil quality across study sites. Surface soils in SL had less litter, more roots, and more loose
soil, resulting in faster organic matter decomposition, while surface soils in Z, ZL, and L had more
litter cover, harder soils, and fewer roots. Regarding metabolic diversity, the categories of nucleotide
metabolism, the metabolism of cofactors and vitamins, glycan biosynthesis and metabolism, energy
metabolism, and enzyme families were more abundant in CK than the shelterbelts. However, Castaneda
and Barbosa [66] found that the metabolism of amino acids, fatty acids, and nucleotides, as well as
genes involved in secondary metabolism, were enriched in forest soils. Thus, habitat characteristics can
affect the metabolic function of microbial communities, in contravention of the microbial distribution
hypothesis of “random placement” [67]. Among the twelve metabolic categories studied here, amino
acid and carbohydrate degradation/metabolism accounted for the greatest proportion [68]. The category
of amino acid metabolism was underrepresented in SL, perhaps due to the strong capacity for nitrogen
fixation and efficient nitrogen utilization at this site. It also shows that the composition of the dominant
forest community in the restored agricultural landscape can change the plant-soil interaction, thus
changing the ecological function. This finding is consistent with Carnovale, et al. [46], who studied the
relationship between different tree species (Acacia, Eucalyptus) and soil microbial community structure
of the shelterbelts in southeast Australia. The prediction of bacterial metabolic functions is typically
limited to the most abundant metabolic pathways and there is also limited information in the KEGG
database for bacteria involved in metabolism. In fact, many metabolic functions remain unknown and
undocumented in the KEGG database. In addition, there are some metabolites with low abundance
but play an important role in micro-ecosystems. All these metabolic functions require further study.

4.2. Function Potential of Soil Bacterial Community in Shelterbelts of Different Forest Types

Gelaw, et al. [69] found that different land use in the semi-arid watershed have obvious effects on
soil carbon and nitrogen contents. Carnovale, et al. [46] considered that tree species may alter the rate of
fundamental soil processes, such as nutrient cycling and carbon dynamics, through differences in plant
microbial associations, amount and quality of leaf and root litter, and root exudates. Gunina, et al. [59]
also considered that forest soil properties were altered by the processes of tree establishment, growth,
and mortality. Afforestation could improve soil quality, but this effect varied with tree age and
species [52]. In this study, the functional potential of soil bacterial communities in different forest
shelterbelt was predicted according to the functional gene abundance of soil bacteria involving carbon,
nitrogen, phosphorus, and sulfur.
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The soil carbon pool is the largest carbon pool in terrestrial ecosystems, including both organic
and inorganic carbon. Yan, et al. [70] noted that agricultural soils have a large potential for carbon
sequestration. Since inorganic carbon mainly exists in the form of carbonate and has little exchange
capacity in the carbon cycle, research on carbon inputs and utilization has mainly focused on carbon
fixation enzymes, and the decomposition and new synthesis of organic carbon. Carbon fixation
enzymes [71], cellulose decomposing enzymes, polysaccharide decomposing enzymes, and lignin
decomposing enzymes [72] are often used as indicators of soil carbon conversion [73]. In this study,
the carbon fixation capacity of the upper soil layer was stronger than that of the lower layer, likely
a consequence of enhanced microbial activity in the upper layer along with the accumulation of dead
branches and leaves. A positive correlation between the carbon sequestration potential of carbon
fixation enzymes and soil carbon components has been reported [71,74], also explaining this pattern.
The high abundance of lignin decomposing enzymes in the upper soil layer of L may be due to copious
amounts of surface litter at this site. The capacity for organic matter decomposition and soil carbon
utilization differed among forest types, being highest in SL, followed by the single-species forests and
lastly ZL. The coniferous and broad-leaved mixed forest was the most suitable for the survival of
bacteria with carbon fixation genes or decomposition genes, both conducive to soil carbon fixation
and recycling. This was also found by Lu, et al. [75], who reported differences in soil organic matter
content beneath different tree species.

Nitrogen, inorganic nitrogen compounds, and organic nitrogen compounds are the three forms
of nitrogen that can be taken up nature. Ninety-five percent of nitrogen in the soil exists as organic
nitrogen, which must be first transformed into inorganic nitrogen by microorganisms before it is
available to plants [76]. Soil nitrogen fixation, nitrification, denitrification, and ammonification are
mainly mediated by soil bacteria [77]. To some extent, the denitrifying community of bacteria plays
a vital role in the soil nitrogen cycle, and the relative abundances of specific OTUs are more valuable in
predicting community function [78]. In this study, the nitrogenase abundance was higher in CK versus
forest soils, and the lowest overall in ZL, a site with loose soils. This could be related to the presence of
many leguminous herbs in CK. Nitrogen inputs for forest growth are mainly in the form of nitrate or
ammonium salts [79]. DNRA is also an important part of the nitrogen cycle, but it is different from the
denitrification of nitrate (denitrification has long been considered a major mechanism of N loss) [80].
The abundance of NifHs, Cu-NiRs, and cd1NiRs were highest in SL, followed by L and Z, and lastly ZL
and X; this indicates that SL soils had a good nitrogen supply while X soils had a nitrogen shortage.
This result was similar to those of Ma, et al. [81] who studied nitrogen deficiencies in continuously
planted poplar forests. This was also consistent with Lu, et al. [75] who found that the total nitrogen
content was the highest in Fraxinus mandshurica forests, followed by Larix gmelinii and Pinus sylvestris
forests, and lastly poplar forests.

Phosphorus is an indispensable nutrient for biological growth and development. It plays
an essential role in energy transmission, signal transmission, macromolecular synthesis, plant
photosynthesis, and respiration, among other functions. However, only 20% of the phosphorus available
in soils can be directly absorbed and utilized by plants [82]. Phosphate solubilizing microorganisms
(PSMs) in the soil can decompose organic phosphorus into inorganic phosphorus which can be absorbed
and utilized by plants, and this process depends on the activity of phosphatase [83]. Phosphatases are
important enzymes that stimulate activity in soil phosphorus pools. In this study, alkaline phosphatases
were more abundant than acidic phosphatases, likely as a result of the pH neutral or alkaline soils
in the study area. The abundance of phosphatase genes was higher in SL than the other forest types,
suggesting that SL soils were conducive to the activation of soil phosphorus, while ZL soils were
mostly unfavorable for phosphorus activation. Phosphorus activation did not differ between the
three single-species forests, X, L, and Z, consistent with Lu, et al. [75]. However, in other studies
of poplar forests, soil phosphorus content did vary among forest types [81,84]. As the poplar forest
soils were low in organic phosphorus, perhaps phosphatase activity was not stimulated, explaining
the difference. Wu, et al. [85] linked a decrease in soil phosphorus content in poplar shelterbelts in
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black soil area to change in annual mean temperature. However, Ma, et al. [81] hypothesized that
differences in phosphatase activity under different tree species could be linked to the phenolic acid
content of root secretions; the abundance of phosphatase genes was negatively correlated with the
phenolic acid content.

Sulfur is another essential element for plant growth and development, involved in photosynthesis,
respiration, nitrogen fixation, protein, and lipid synthesis and other important physiological and
biochemical processes. It can enhance tolerance to environmental stress, transport toxic and harmful
substances to vacuoles, and protect cells directly from toxicity [86]. Sulfates can synthesize cysteine
under the action of assimilating reductases (cysC and cysH) that convert inorganic sulfur to organic
sulfur [87]. In this study, the abundance of sulfate assimilating reductases (cysC and cysH) was much
higher than that of sulfate dissimilating reductases, especially in forest soils, indicating that forest soils
had a strong sulfur assimilation effect. Meanwhile, the abundance of sulfate dissimilating reductases
(aprA and aprB) was higher in CK than in forest soils, again suggesting that forest soils were more
conducive to sulfur assimilation. The reason for this difference could be poorer soil aeration in CK,
meaning that lower soil layers experienced anaerobic conditions and hence were prone to dissimilating
reduction reactions [88], consistent with previous research results [86]. The abundance of sulfate
assimilating reductases in the different forest types mirrored the abundance of carbon, cellulose,
and lignin decomposing enzymes (highest in SL and lowest in ZL), suggesting synergism between the
soil carbon and sulfur cycles.

On the basis of the above analysis, we believe that shelterbelt systems containing coniferous
broad-leaved mixed tree species could have a greater potential of microbial community function
versus coniferous mixed forest or single-species plantations [46]. In terms of soil bacterial function,
the abundances of functional genes related to C, N, P, and S in broad-leaved forests were different than
that in coniferous forests, which were consistent with the finding of Nair and Ngouajio [89]. Different
plantation tree species could distinctly affect the community compositions of decomposers [90], different
plantation forests affected soil characteristics [91], thereby causing the change in the soil microbial
diversity and functional diversity [28].

4.3. Suggestions for Future Research

In general, there are many factors that influence the microbial diversity of shelterbelt soils,
including the distance between sampling points and trees, the sampling, and so on. In this study, sites
contained different tree species, but planting density and pre-planting site conditions were similar;
also, the fertility potential of forest soils was inferred by the corresponding functional genes. Further
studies should focus on other factors, and consider interactions among tree growth, soil physical and
chemical properties, and soil microbial communities.

5. Conclusions

(1) The soil bacterial communities varied among forest types. The dominant phyla were
Actinomycetes, Proteobacteria, Acidobacteria, Chlorobacteria, and Blastomycetes. The dominant
genera were most abundant in Z. The number of unique bacterial OTUs in the upper soil layer was
higher than in the lower soil layer and higher in CK than in the shelterbelts. The total number of OTUs
was greatest in ZL.

(2) On the basis of a comparison of the shelterbelt forest types, at the phylum level, Actinomycetes
showed the greatest variation in abundance among sites. At the genus level, the greatest variation
in abundance occurred in the Actinoplanes in the upper soil layer, and in Krasilnikovia in the lower
soil layer.

(3) Relationships among genera were more complex in the upper soil layer and the competition
was more intense here than in the lower soil layer. Actinoplanes and Krasilnikovia were key bacterial
genera forming community networks.



Forests 2019, 10, 1115 24 of 28

(4) In terms of functions such as carbon fixation, organic matter decomposition and assimilation,
nitrogen fixation and assimilation, phosphorus solubility, and sulfate assimilation and dissimilation
capability, variability was seen among forest types. The soil fertility potential was strongest in SL,
followed by Z and L, and lastly ZL and X.
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