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Abstract: This paper deals with the spatial distribution of heartwood in Scots pine stems (Pinus
sylvestris L.), determined on the basis of the absence of nuclei in parenchyma cells. Samples were
collected at several heights from two Scots pine stems growing in fresh coniferous stand as codominant
trees. Transverse and radial sections were cut from the samples and stained with acetocarmine
to detect the nuclei and with I2KI to show starch grains. Unstained sections were also observed
under ultraviolet (UV) light to reveal cell wall lignification. The shapes of the nuclei in ray and axial
parenchyma cells differed: the axial parenchyma cells had rounded nuclei, while the nuclei of the ray
parenchyma cells were elongated. The lifespan of the parenchyma cells was found to be 16–42 years;
the longest-lived were cells from the base of the stem, and the shortest-lived were from the base of
the crown. The largest number of growth rings comprising heartwood was observed at a height of
1.3–3.3 m, which signifies that the distribution of heartwood within the stem is uneven. Moreover,
the distance of the cells from the apical meristem and the cambium was seen to have an effect on the
presence of living parenchyma cells, i.e., those with stained nuclei.

Keywords: axial parenchyma; conifers; heartwood; lignification; nuclei; programmed cell death; ray
cells; secondary xylem; tracheids

1. Introduction

The presence of living parenchyma cells in wood is, in addition to the ability to conduct sap,
the generally accepted basic distinction between sapwood (SW) and heartwood (HW). According to
the International Association of Wood Anatomists (IAWA) definition, heartwood consists of “inner
layers of wood that have ceased to contain living cells in the growing tree, in which reserve materials
(e.g., starch) have been removed or transformed into a heartwood substance” [1]. These materials
provide natural durability—generally low in sapwood but much higher in heartwood—with some
species being very resistant to biodeterioration [2], which is of value to the forestry and timber industry.
However, heartwood formation is still not fully understood, despite its widespread presence in both
gymnosperm and angiosperm trees [3] and despite its value and the opportunities it offers for financial
optimisation, especially in the case of the most widely planted and distributed tree species.

In this context, Scots pine (Pinus sylvestris. L.), a long-lived coniferous tree, the most widely
distributed pine found throughout Eurasia and a model tree for studying the mechanism of wood
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differentiation in conifers [4], would appear to be a highly promising subject for further research. The
tree grows at altitudes ranging from sea level up to 2600 m in a variety of climatic conditions and
ecological habitats [5]. Due to its huge genetic diversity, several different subspecies are distinguished
throughout its distribution. The Scots pine thrives in poor soils, is resistant to drought and frost and,
as a pioneer species, is able to colonise nutrient-poor soils in disturbed areas. However, it does not
tolerate air pollution [6] or salt-laden winds and is usually out-competed by other trees on more fertile
soils. The great economic importance of this species, especially in northern Europe, is due to its strong
and easy-to-process wood, which makes it suitable for general construction, furniture production, and
the pulp and paper industry.

In terms of anatomical structure, Scots pine wood is, in common with the majority of conifers,
a relatively simple and homogeneous tissue consisting mainly of two types of cells: (i) tracheids
that both conduct sap and perform support roles and (ii) parenchyma cells that are involved in the
storage and radial transport of substances [7–9]. Tracheids die off at the end of their developmental
program to undertake their role [4], whereas parenchyma cells remain alive for at least a couple of
years. The formation of tracheid cells is much better studied and described and can be divided into five
consecutive phases: (i) the periclinal division of cambial cells, (ii) cambial derivative enlargement, (iii)
the deposition of a secondary cell wall, (iv) the impregnation of the cell walls with lignin and finally
(v) programmed cell death (PCD) [10,11]. This process of the differentiation of xylem cells is under
environmental and intracellular control [12]. Among the intracellular factors involved in this regulation
are hormones, particularly auxin, which has some morphogen-like characteristics [13]. It is worth
noting that Wolpert [14] proposed that the positional information formed by the gradient of morphogen
concentration is important for the regulation of developmental events in animal systems. It follows
that cells develop in relation to their position along the concentration gradient of a morphogen that
forms the morphogenetic field. This theory has also been adopted for plant systems as a mechanism
coordinating developmental events in plant cells. It stipulates that the gradient of auxin concentration
along the axis of the tree trunk creates a morphogenetic field within which auxin acts as a positional
signal for the developmental program of cambial derivatives [15–17].

The model of tracheid differentiation described above, in its most general outline, also applies to
parenchyma cells. The differences in their differentiation mainly relate to (i) molecular factors involved
in the process of parenchyma formation, (ii) the duration of individual phases of differentiation and
(iii) the shift in time of wall lignification and programmed cell death that occur not earlier than during
the formation of heartwood.

Heartwood occurs normally in living trees. It occupies the innermost part of the secondary
xylem and contains lifeless parenchyma cells whose reserve materials have been converted into
heartwood substances [1]. It can usually be distinguished from the surrounding sapwood by its
darker colour [18]. It can also be identified by its lower permeability [19] and increased resistance
to decay microorganisms [2,20]. The most critical change during the transition of SW into HW is
the programmed death of ray and axial parenchyma cells [21] and, in gymnosperms, the aspiration
of bordered pits [22,23]. The question arises whether parenchyma death is the result or the cause
of heartwood formation. In 1976, Bamber [24] suggested that parenchyma death was the result of
heartwood formation, an idea subsequently supported by the observations of Nobuchi et al. [25],
who found that heartwood extractives were formed before parenchyma death in Robinia pseudoacacia
L. Thus, the death of parenchyma cells would be the final step in heartwood formation, considered
as the process of secondary wood differentiation and an active program of wood senescence [21].
Various heartwood traits are under environmental [2] and genetic control [26,27]. The transformation
of sapwood into heartwood has been related to the regulation of the amount of sapwood relative to the
water and nutrient balance of the tree [28,29]. Stokes and Berthier [29] postulated that drought stress is
involved as the upper parts of the trunk suffer from accentuated depletion in water supply. In turn,
Climent et al. [30] stipulated that resin canals and adjacent sheet parenchyma are also important in the
formation of heartwood based on the observation of a higher proportion of heartwood in trees with
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a greater percentage of axial parenchyma. The formation of heartwood has also been described in
terms of its mechanical function in the tree. However, there is a lack of direct, general evidence for the
concept that heartwood has superior mechanical traits when compared to SW; the mechanical function
of heartwood in tree stems is, therefore, under debate [31].

Despite the fact that several studies have shown gene expression, various enzyme activities and the
involvement of other component processes in parenchyma cell death and the production of heartwood
substances [32,33], HW formation is still not fully understood, and the knowledge is incomplete.

Because it is visible to the naked eye, the change in the colour of the wood is often used as an
indicator of heartwood formation, even though other changes associated with heartwood formation
and essential by definition, such as parenchyma death, may not have occurred [25]. Our research aims
to describe, for the first time, the spatial distribution of heartwood expressed as a result of the absence
of nuclei in parenchyma cells in the stem of Scots pine.

2. Results and Discussion

In SW and HW, the tracheids of both the axial and radial systems of P. sylvestris stem wood were
dead as the absence of nuclei was observed in all annual growth rings stained by acetocarmine. This
proves that both axial and radial tracheids, although they differ in length, lost nuclei in the final stage
of their differentiation. Our results are in line with reports by Wodzicki [4] and Nakaba et al. [34], who
stated that tracheids are short-lived cells; they die in the year they are formed. The entire differentiation
process lasts an average of a month for earlywood tracheids and two months in the case of latewood [4].
Moreover, our findings concur with the presumed existence of a morphogenetic field in which cells are
able to recognise their relative position in the tissue. It has been hypothesised that such positional
information could be provided to cells in the form of a concentration gradient of a morphogen,
particularly auxin [35,36], which allows cells to complete the pattern of their developmental program.

Acetocarmine-stained nuclei were detected in ray cells and in the parenchyma sheath of axial resin
canals. The axial parenchyma sheath cells had rounded nuclei, while the nuclei of ray parenchyma
cells were elongated (Figure 1a,b). We observed that the width of the zone containing fewer living
parenchyma cells in each of the two systems (i.e., fewer cells with stained nuclei—transition zone, TZ)
was equal to about one annual ring, which is in line with the report by Lim et al. [33] stating that TZ
in Pinus sylvestris is usually 1–2 annual rings wide. Studies by these authors [33] on changes in the
pine transcriptome associated with heartwood formation also provide further and new evidence of the
involvement of auxin and PCD in this process. A group of auxin response and auxin-regulated or
auxin-induced transcripts were downregulated between TZ and SW. In turn, transcripts encoding two
nucleases involved in PCD were highly induced in the TZ, indicating that PCD was taking place in
the TZ.

Wood parenchyma cells were found to remain alive for 16–42 years depending on their location in
the stem; the longest-lived parenchyma cells were at the base of the stem, and those with the shortest
life span were at the base of the crown. This means that the occurrence of parenchyma cells with
stained nuclei depends not only on the distance from the cambium [9,37–39] but also on the distance
from the apical meristem (Table 1). Spicer and Holbrook [40] stated that wood parenchyma cells may
have long lives, and their age varies from 2 to 200 years with different life spans specific to a given
species, although this can also be influenced by the environment. For example, in Pinus strobus L.,
living parenchyma cells were found in roughly 20 annual growth rings of wood, compared with 48 in
Fraxinus americana L. [40]. The observation made by Climent et al. [41] suggests that the lifespan of
the parenchyma cell in Pinus canariensis C. Smith. stems measured at breast height exceeds 34.4 years.
According to research made on Cunninghamia lanceolata (Lamb.) Hook., ray parenchyma could survive
for at least 13 years [42].
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Figure 1. Details of the wood parenchyma in a Pinus sylvestris stem. (a) The ray parenchyma cells with 
elongated nuclei in sapwood (SW). (b) The parenchyma sheath cells of axial resin canals with rounded 
nuclei in SW. (c) Transverse section of SW and (d) heartwood (HW). (e) Radial view of the ray 
parenchyma cells under ultraviolet (UV) light in HW. (f–g) Starch grain distribution shown with I2KI 
staining in SW on radial and transverse sections, respectively. (h) HW stained with I2KI. All pictures 
are for breast height (BH) and for the 18th SW and the 41st HW annual ring counting from the 
cambium. The cambial side is the left border of the photographs. Abbreviations: r—parenchyma cells; 
rd—resin duct. Black arrowheads indicate the nuclei. Scale bars = 200 µm. 
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Figure 1. Details of the wood parenchyma in a Pinus sylvestris stem. (a) The ray parenchyma cells
with elongated nuclei in sapwood (SW). (b) The parenchyma sheath cells of axial resin canals with
rounded nuclei in SW. (c) Transverse section of SW and (d) heartwood (HW). (e) Radial view of the ray
parenchyma cells under ultraviolet (UV) light in HW. (f–g) Starch grain distribution shown with I2KI
staining in SW on radial and transverse sections, respectively. (h) HW stained with I2KI. All pictures
are for breast height (BH) and for the 18th SW and the 41st HW annual ring counting from the cambium.
The cambial side is the left border of the photographs. Abbreviations: r—parenchyma cells; rd—resin
duct. Black arrowheads indicate the nuclei. Scale bars = 200 µm.

Table 1. Spatial distribution of SW and HW rings in a Scots pine stem. Each column represents average
numbers of SW and HW starting from the base of the stem and proceeding towards breast height (1.3
m above ground level) and then every 1 m to the base of the crown.

Number of SW and HW Rings at Successive Stem Heights

Heights (m) 0 1.3 2.3 3.3 4.3 5.3 6.3 7.3 8.3 9.3 10.3 11.3 12.3 13.3 14.3

SW1 42 36 33 33 30 30 28 27 25 23 21 21 21 18 16
SW2 40 37 34 33 33 31 30 27 27 26 25 24 19 18 nd

Mean 41.0 36.5 33.5 33.0 31.5 30.3 29.0 27.0 26.0 24.5 23.0 22.5 20.0 18.0 16.0
HW1 8 11 11 11 11 9 9 8 8 7 7 4 4 3 2
HW2 10 12 12 12 8 8 7 6 5 5 3 2 2 0 nd
Mean 9.0 11.5 11.5 11.5 9.5 8.5 8.0 7.0 6.5 6.0 5.0 3.0 3.0 1.5 2.0

1, 2—pines 1 and 2, respectively; nd—no data.

The largest number of annual growth rings without nuclei in parenchyma cells (i.e., constituting
heartwood) was observed in wood located at a height of 1.3–3.33 m, and this number decreased
towards the crown and the base of the tree (Figure 2) unlike SW, where the number of SW rings
decreased acropetally. Our results therefore confirm that HW is not uniformly distributed along
the trunk [29,43]. It seems reasonable to assume, after Berthier et al. [44], that HW formation is a
developmental process, regulated internally within the tree as a consequence of changing biomechanical
and hydraulic requirements for the efficient and safe functioning of the tree. Climent et al. [43] presented
a mechanical–physiological hypothesis to explain the irregular pattern of HW variation along the stem,
a feature particularly prominent in trees with the crown located in the upper half (i.e., with higher ratio
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of crown height to total tree height) and proposed a model based on the heartwood radius at BH and
tree height explaining 90% of the HW radius variability along the stem. They postulated that a higher
proportion of heartwood between 4 and 8 m of the stem resulting from earlier or faster HW formation
is rather a nonadaptive response to mechanical stress due to an increase in ethylene levels caused
by tree sway as heartwood confers little advantage in facing mechanical demands in comparison to
sapwood [44,45].
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Figure 2. A schematic diagram showing the proportion of SW and HW along the stem axis of a 20 m
high (h) Pinus sylvestris tree. The proportion of SW and HW is based on the number of annual rings.
The axial distance between the cross sections shown is ca. 4 m. SW—light brown, HW—dark brown.

The location of the ray parenchyma cells also influenced their life expectancy, i.e., whether they
were in contact with short-lived ray tracheids (usually located at the edges of the wood ray) [34,40,46]).
The ray parenchyma cells that were in contact with ray tracheids died first. Prior to death, the
secondary layers were deposited on their thin primary walls, which underwent lignification, and the
starch disappeared (Figure 1c–h). The absence of nuclei is an essential indicator of the presence of
heartwood. This development process of parenchyma cells was observed in Pinus densiflora S. et Z.
or Pinus rigida Mill. by Nakaba et al. [34]. Murakami et al. [47] studied PCD of parenchyma cells
in Populus maximowiczii Henry wood. In the wood of this species, ray parenchyma cells appear as
isolation and contact cells. The contact cells form contiguity with vessels, whereas isolation cells do
not. The aforementioned authors found that the lifespan and death of contact cells was determined by
the proximity of vessels as the contact cells formed secondary walls at approximately the same time as
the adjoining vessel elements. The lignification of the cell walls of contact cells and vessel elements
began earlier than that of the fibres and isolation cells. Thus, the formation of the secondary wall of the
contact cells, including lignification, might occur at the same time as that of the vessel elements to
which they are directly connected.

As mentioned above, many papers have described the histochemical changes in parenchyma cells
during heartwood formation, which is usually identified by colour [48] and the literature cited there.
However, the colour of the wood may change, not because of the presence of heartwood extractives
but due, for example, to fungal pathogen activity. Therefore, the criterion for identifying heartwood
based on dead parenchyma cells would appear to be more precise and more dependable. Moreover,
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understanding the spatial distribution of heartwood in trees is pertinent for foresters as it may allow
them to guide this process by applying various silvicultural practices.

3. Materials and Methods

Two healthy Scots pines (Pinus sylvestris L.) growing in a fresh coniferous stand and belonging to
codominant trees in the canopy layer according to Kraft’s biosocial classification [49] were used in
this study. The stand was located in Kraśnik Forest District (51◦05′55.1”N, 21◦54′35.2”E). Samples
containing bark, cambium and wood were taken from various heights of the pine stems, i.e., from
the base, breast height (1.3 m above ground level) and then in 1 m increments up to the base of the
crown. The total height measured was 20.7 and 20.5 m for pines 1 and 2, respectively. The height of the
crown base was 14.9 m for pine 1 and 14 m for pine 2. The diameter of the trunks of both pines at
breast height (DBH) was 14.8 cm. These samples were taken during the dormant cambium season, i.e.,
during lasts days of April 2019.

For light microscopy observation, blocks with a width of approximately 1 cm were cut from the
collected samples along one radial direction from the pith to the bark, avoiding compression wood. All
block samples were fixed in an equal-part solution of formaldehyde (Alchem, Toruń, Poland), glacial
acetic acid (Alchem, Toruń, Poland) and 70% ethanol (Alchem, Toruń, Poland) for a few days at room
temperature [50]. Then, the samples were rinsed in 70% ethanol twice, and slices of transverse and
radial sections of approximately 25 µm thickness were cut on a Microm HM 440E sliding microtome
(GMI Imc, Ramseyy, MN, USA). The transverse sections were useful in counting the number of
annual growth rings formed by cambium at each stem height. The radial sections were stained with
acetocarmine to detect the nuclei and with I2KI to show the presence of starch grains [50]. Additionally,
fluorescence microscopy with UV excitation (Olympus, Tokyo, Japan) (λext. = 365 nm) was used to
observe sections to detect cell wall lignification [51–53]. The stained radial and unstained transverse
sections were observed under an OLYMPUS BX61 light microscope (Olympus, Tokyo, Japan) equipped
with a motorised table and Color View OLYMPUS digital microscope camera (Olympus Soft Imaging
System GmbH, Műnster, Germany) as well as OLYMPUS Cell P software (ver. 3.4, Olympus Soft
Imaging System GmbH, Műnster, Germany) for image acquisition and archiving.

4. Conclusions

In this study, conducted on two sample Scots pine trees, we found that assessment of the lifespan
of parenchyma cells based on the number of rings containing cells with nuclei amounted to 16–42
years; the longest-lived were cells from the base of the stem, and the shortest-lived were from the base
of the crown. The largest number of annual growth rings without nuclei in parenchyma cells (i.e.,
constituting heartwood) was observed in wood sampled at a height of 1.3–3.33 m. This was unlike
sapwood, where the number of rings steadily decreased acropetally. Therefore, the distance from
apical meristem and cambium, the two main sources of auxin, was recognised to have an impact on the
presence of living parenchyma cells, i.e., with stained nuclei. The death of parenchyma cells occurred
simultaneously in the rays and the sheath of the axial resin ducts and the width of the zone, with a
decreasing number of cells with stained nuclei, i.e., the transition zone was about one annual ring. To
our knowledge, this report is the first to describe the distribution of heartwood and sapwood along the
tree stem based on the absence or presence of nuclei in parenchyma cells, respectively. Determining
whether the revealed pattern of distribution is universal or it can be modified under the influence of
conditions and rate of tree growth and whether this shows species variability requires further research.
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