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Abstract: Research Highlights: Extraradical mycorrhizal fungal mycelium (MFM) plays critical roles
in nutrient absorption and carbon cycling in forest ecosystems. However, it is often ignored or
treated as a root uptake apparatus in existing biogeochemical models. Methods: We conducted
a meta-analysis to reveal how MFM responds to various, coinciding environmental factors and
their interactions. Results: Nitrogen (N) addition and N-phosphorus (P)-potassium (K) combination
significantly decreased MFM. However, elevated CO2, organic matter addition, P addition, and CO2-N
combination significantly increased MFM. In contrast, warming, K addition, N-P combination, and P-K
combination did not affect MFM. Mycorrhizal fungal levels (individual vs. community), mycorrhizal
type (ectomycorrhizal fungi vs. arbuscular mycorrhizal fungi), treatment time (<1 year vs. >1 year),
and mycelium estimation/sampling method (biomarker vs. non-biomarker; ingrowth mesh bag vs.
soil core) significantly affected the responses of MFM to elevated CO2 and N addition. The effect sizes
of N addition significantly increased with mean annual precipitation, but decreased with soil pH and
host tree age. The effect sizes of P addition significantly increased with N concentration in host plant
leaves. Conclusions: The differential responses revealed emphasize the importance of incorporating
MFM in existing biogeochemical models to precisely assess and predict the impacts of global changes
on forest ecosystem functions.

Keywords: carbon allocation; global change; mycorrhizal fungal community; mycorrhizal fungal
mycelium; nitrogen addition

1. Introduction

Globally, mycorrhizal symbioses are common and extensive in terrestrial vegetation [1], and play
a key role in biogeochemical cycles of forest ecosystems [2–4]. Mycorrhizal fungi transfer nutrients
directly to their host plants in exchange for photosynthetically derived carbon [5]. Extraradical
mycorrhizal fungal mycelium (MFM), which had been traditionally ignored in field assessments,
constitutes the vast majority (about 60%–95% for ectomycorrhizas, EM) of the total mycorrhizal
fungal biomass, while the Hartig net, mantle, and sporocarps constitute 5%–40% only [6]. In terms
of root foraging, MFM of EM may permit a more thorough exploitation of soil mineral and organic
nutrients [1,7]. In terms of absorptive efficiency, MFM of EM and arbuscular mycorrhizas (AM) is
clearly more effective for obtaining greater absorption area per unit of carbon allocated to the mycelium
than to the root [8]. Therefore, mycorrhizal fungi can greatly enhance the nutrient absorption capacity
of the plant root system [9]. For instance, some EM fungi are known to colonize organic matter,
wood ash, and leaf litter by forming a dense mycelium [5,7], and to acquire nutrients from organic
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matter in the soil [10]. MFM of EM and AM accounts for 10%–50% of the belowground allocated
carbon [11,12]. Furthermore, about 50%–62% of the soil organic carbon pool may be a result of fungal
residues remaining in the soil after the death of the mycelium of EM [13]. This probably exceeds the
input via aboveground leaf litter and belowground fine root turnover [14,15]. Overall, MFM plays an
important role in the mobilization and acquisition of nutrients from the soil, and is intimately involved
in the sequestration and partitioning of carbon into the soil [16,17].

Multiple important aspects of the global environment greatly influence functioning of mycorrhizal
plants and their fungal associates with potential implications for forest ecosystem carbon cycling [18,19].
The atmospheric concentration of CO2 is predicted to reach 550 ppm by 2100, and is likely to be
accompanied by an increase in global average annual temperature of as much as 4.4 ± 0.5 ◦C for
the period 2070–2099 [20]. More carbon is likely to be allocated to tree root systems under future
elevated CO2 scenarios, leading to increased belowground forest productivity [21]. An eventual
consequence may be increased carbon availability to fungi for the development of the mycorrhizal
mycelium [8]. Moreover, temperature is a key factor that regulates the growth and metabolic activity
of mycorrhizal fungi [22]. For example, AM colonization intensity is tightly related to the temperature
on the global scale, with peak colonization under warm temperature during growing season [22].
In a climate-changing world, changes in both atmospheric CO2 concentration and temperature will
influence mycorrhizal fungi and their host plant at various scales [23]. Yet, we have no information
about whether relationships of MFM with temperature at the global scale are the same as those at
smaller scales. As a result of greenhouse gas-induced global warming, wildfires may deeply influence
soil organic carbon dynamics through heating and wildfire-deposited charcoal [24], leading to dramatic
changes in soil physicochemical properties and microbial activity [25]. On the other hand, the addition
of organic matter or wood ash is a common forest management practice to improve soil nutrient
availability and soil structure [26]. In both laboratory and field experiments, the application of organic
matter or wood ash stimulates the growth of certain EM fungi [27,28]. Colonization of mycorrhizal
mycelium can enhance opportunities to acquire nutrients from the organic matter and wood ash [29].
However, we know little about mechanisms underlying the colonization of organic matter or wood
ash by some mycorrhizal fungi [7].

There is an increasing interest in mycorrhizal fungal behavior to elevated atmospheric nitrogen
(N) deposition, another major driver of global change. It is reported that N fertilization may negatively
impact the respiration of MFM, leading to a reduced flux of plant-derived carbon back to the atmosphere
via mycorrhizal fungi [30]. N addition, on the one hand, may decrease MFM amount, and may also
lead to changes in the growth of MFM and the composition of the fungus community [31]. On the
other hand, any extrinsic factors (e.g., N fertilization) that influence host plant’s carbon production,
belowground carbon allocation, and thus the carbon availability will affect the MFM, since mycorrhizal
fungi are fed by carbon from their host plants [21]. The host plants allocate less carbon to mycorrhizal
symbionts and thus limit the mycorrhizal growth in the case of insufficient nutrient supply [32].
The two most common groups of mycorrhizas, EM and AM fungi, employ different nutrient acquisition
and carbon utilization strategies [33,34], thus, factors influencing the intrinsic properties of mycorrhizal
fungal carbon utilization can also bring about large variations of MFM [18,35]. Hence, one of the
significant challenges to ecologists is to realize how mycorrhizal fungi respond to the various, coinciding
environmental factors and their interactions. In addition, phosphorus (P) is known to accumulate in
the fungal mantle of mycorrhizal roots when supplied in excess amounts, but this P resource stored
will rapidly be transferred to the host under conditions of low P availability [36]. However, we still
lack the information about the impact of altered P availability on the growth of MFM, especially during
the early stages of fungal development, in most forest ecosystems [37,38].

The external mycorrhizal mycelium, as the most dynamic component of the mycorrhizal
symbiosis, is likely to be the fastest indicator of how mycorrhizal fungi react to the wide variation in
environments [39,40]. A number of methods have been developed to collect (e.g., ingrowth mesh bag,
soil core, etc.) and quantify (e.g., biomarker, visual method, etc.) the production and standing biomass
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of MFM (Table 1). However, the strengths and weaknesses of the currently applied methods also
potentially influence the accuracy of estimation of MFM [17]. At present, we know that MFM is critical
in precisely assessing and predicting the responses of forest ecosystem carbon flow and nutrient cycle
dynamics to global climate change. However, the majority of previous meta-analyses mainly focus on
the responses of mycorrhizal abundance, root colonization, mycorrhizal composition, and mycorrhizal
activity to global change [18,41]. Consequently, we still lack a thorough understanding in the direction
and size of MFM responses to multiple environmental factors. Here, we present a meta-analysis on the
effects and effect range of multiple environmental factors on the MFM. Separate meta-analyses were
conducted for elevated CO2, N addition, P addition, K addition, organic matter addition, warming,
CO2-N combination, N-P combination, P-K combination, and N-P-K combination. Our hypothesis
is that MFM positively responds to CO2, organic matter, and warming, but it negatively responds
to N, P, and K availability. We aimed to answer the questions of (a) how MFM responds to multiple
environmental factors and their combination, and (b) how mycorrhizal hierarchical and experimental
aspects affect the responses of MFM to different environmental factors.

Table 1. Mycorrhizal fungal mycelium (MFM) estimation methods and experimental treatment settings
in this meta-analysis.

Mycorrhizal Fungal Mycelium Estimation Methods and Treatment Settings

Estimation methods Measurement index

Biomarker Chitin; ergosterol; glomalin; PLFA 16: 1ω5c; PLFA 18: 2ω6, 9 Fungal mycelium biomass

Non-biomarker Agar film; fan-like manner; gridline intersection;
membrane-filter Fungal mycelium length

Experimental treatment settings

Organic matter addition Compost; litter; organic fertilizer; wood ash

Elevated CO2
Experimental soil plant atmosphere system; free air CO2

enrichment (FACE); microcosm; open top chamber (OTC)

Nitrogen (N) addition Ammonium nitrate; ammonium sulfate; sodium nitrate; urea

Phosphorus (P) addition Apatitle; sodium dihydrogen phosphate; superphosphate;
triple superphosphate

Potassium (K) addition Biotite; Osmocote

Warming Greenhouse; heating cable; infrared heating

PLFA, phospholipid fatty acid.

2. Materials and Methods

2.1. Data Collection

We searched published peer-reviewed papers using Web of Science, Google Scholar,
China National Knowledge Infrastructure and VIP Information Network (the list of the data
sources shown in Appendix A). The key words used were mycorrhizal fungal mycelium,
extrametrical/external mycelium/hyphae, fungal mycelia, mycorrhizal fungi, mycorrhizal fungal
growth, belowground responses, elevated CO2/atmospheric carbon dioxide, atmospheric CO2

enrichment, nitrogen/phosphorus/potassium addition/deposition/fertilization/amendment/availability,
warming, temperature manipulation, wood ash/organic matter/compost addition, woody
plant/tree/shrub (Table 1). Different combinations of these words connected with AND or OR
were repeatedly used to find publications. Only published woody (trees, shrubs) plant-related
studies satisfying all the following criteria were selected for the present meta-analysis: (a) studies
with control and treatment under the same abiotic and biotic conditions; (b) the means, standard
errors/standard deviations, and sample sizes were reported; (c) both field manipulation studies and
laboratory incubation studies were selected; (d) MFM was estimated by biomarker (such as ergosterol,
phospholipid fatty acid, etc. for measuring the biomass of MFM) and non-biomarker (such as gridline
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intersection, agar film, etc. for measuring the length of MFM) analysis from ingrowth mesh bag
and soil core methods (Table 1). If a particular study reported data from several mycorrhizal fungal
species or host plant species, they were considered as independent data points. When parameters
were measured several times in a study, only the last sampling date was used for our meta-analysis.
We identified a total of 53 studies (the list of the data sources can be found in the Appendix A), which
yielded 46 observations for elevated CO2, 11 for K addition, 37 for N addition, 23 for organic matter
addition, 30 for P addition, 12 for warming, six for CO2-N combination, 18 for N-P combination, eight
for P-K combination, and 14 for N-P-K combination.

Data collection consisted of obtaining the means of the experimental and control group with their
standard deviations (SD) and replicate numbers (N). Standard errors (SE) were transformed to SD
according to the equation of SD = SE × sqrt (N). As the calculated response ratio is dimensionless,
the units of parameters were not considered. When graphical data was presented in a paper, values
were extracted from figures using GetData Graph Digitizer 2.24 (http://getdata-graph-digitizer.com).
We also recorded data on experimental settings (such as field site location, experiment date, sampling
method, experimental levels, and treatment duration), biotic factors (such as tree age, leaf nutrient
content, and mycorrhizal type), climatic factors (such as mean annual temperature, mean annual
precipitation) and edaphic factors (such as soil carbon/nitrogen ratio and pH).

2.2. Meta-Analysis

We selected the natural log-transformed response ratio (LRR) to calculate the “effect size” of
different global change factors on MFM [42]. We defined LRR as the ratio of the value of a parameter
in the treatment group to that in the control group. Confidence intervals (CI) of the effect size were
generated using bootstrapping [43]. The treatment effects of global change factors were considered to
be significant if the 95% confidence interval of LRR did not overlap with zero [43]. We implemented
hierarchical mixed effects meta-analyses using the rma.mv function in the package metaphor 2.10, which
allows the specification of nesting groups [44]. Hierarchical mixed effects meta-analyses include fixed
and random effects to account for differences across studies [45]. The mixed effects model was used to
analyze the effects of elevated CO2 on MFM, with mycorrhizal fungal level (individual vs. community),
mycorrhizal type (EM vs. AM), duration time of elevated CO2 treatment (<1 year vs. >1 year), and
MFM estimation method (biomarkers vs. non-biomarker) as main fixed factors. The mixed effects
model was used to detect the effects of N addition on MFM, with sampling method (ingrowth vs.
soil core), mycorrhizal type (EM vs. AM), incubation time of ingrowth method (<1 year vs. >1 year),
and MFM estimation method (biomarkers vs. non-biomarker) as main fixed factors. For all mixed
effects, we included study identity as a random effect to account for multiple cases coming from the
same study. Host phylogeny strongly affects the plant-mycorrhizal fungus systems, it explains 75%
and 20% of the variations in fungal species richness and community composition, respectively [46].
Thus, host plant phylogeny was conducted as a correlation matrix derived from the phylomatic
tree (http://phylodiversity.net/phylomatic/pmws) to control for similarities [47]. We transformed
phylomatic tree to the correlation matrix using the vcv function in the package ape 5.0 [48], except for
studies or data in relation to K addition and P-K combination treatments due to few host plant species
studied. In the Results section, we report the total heterogeneity in effect sizes (Qt) among studies and
the difference among group cumulative effect sizes (Qm).

3. Results

3.1. Effects of Elevated CO2 on Mycorrhizal Fungal Mycelium

The hierarchical mixed effects meta-analyses showed that woody plants’ MFM significantly
increased under elevated CO2 (Qt = 441.26, p < 0.001) (Figure 1). We found that the positive responses
of MFM to elevated CO2 were significantly affected by mycorrhizal fungal level (individual vs.
community), mycorrhizal type (EM vs. AM), duration time of elevated CO2 (<1 year vs. >1 year),

http://getdata-graph-digitizer.com
http://phylodiversity.net/phylomatic/pmws


Forests 2019, 10, 973 5 of 18

and mycelium estimation method (biomarker vs. non-biomarker) (Figure 2). Specifically, MFM at the
individual level, EM fungal mycelium, MFM from experiments of <1 year, and MFM derived from
non-biomarker method significantly increased under elevated CO2 (Figure 2). By contrast, MFM at the
community level, AM fungal mycelium, MFM from experiments of >1 year, and MFM estimated from
biomarker were not altered by elevated CO2 (Figure 2).

3.2. Effects of N Addition on Mycorrhizal Fungal Mycelium

Our meta-analysis showed that N addition (Qt = 146.20, p < 0.001) significantly decreased MFM.
However, we found that CO2-N combination significantly increased MFM (Qt = 10.72, p = 0.06)
(Figure 1). The negative responses of MFM to N addition were significantly affected by sampling
method (ingrowth mesh bag vs. soil core), mycorrhizal type (EM vs. AM), incubation time of ingrowth
mesh bag (<1 year vs. >1 year), and mycelium estimation method (biomarker vs. non-biomarker)
(Figure 3). Specifically, MFM from ingrowth mesh bag, EM fungal mycelium, MFM from incubation
time of ingrowth mesh bag <1 year, and MFM estimated from biomarkers significantly decreased under
N addition (Figure 3). In comparison, MFM from soil core, AM fungal mycelium, MFM from incubation
time of ingrowth mesh bag >1 year, and MFM estimated from non-biomarker were unchanged under
N addition (Figure 3). Furthermore, we found that the effect sizes of N addition on MFM increased
with mean annual precipitation (Qm = 8.98, p < 0.01) but it decreased with soil pH (Qm = 3.85, p < 0.05)
and host plant age (Qm = 5.09, p < 0.05; Figure 4a–c). The effect size of N addition on MFM was not
correlated with latitude of experimental site location (Qm = 2.40, p = 0.12), mean annual temperature
(Qm = 3.72, p = 0.05), soil carbon/nitrogen ratio (Qm = 0.23, p = 0.63), N addition level (Qm = 3.84,
p = 0.05), and sampling depth (Qm = 0.00, p = 0.96).

3.3. Effects of P Addition on Mycorrhizal Fungal Mycelium

The mixed effects meta-analyses showed that MFM significantly increased in the P addition
condition (Qt = 118.70, p < 0.001) (Figure 1). The N-P combination (Qt = 157.79, p < 0.001), and the P-K
combination (Qt = 5.07, p = 0.65) had no effects on MFM (Figure 1), but the effect sizes of P addition
on MFM significantly increased with N content in host plant leaves (Qm = 4.73, p < 0.05; Figure 4d).
Moreover, the N-P-K combination (Qt = 182.89, p < 0.001) significantly decreased MFM (Figure 1).
Mycorrhizal type (Qm = 27.25, p < 0.001) significantly affected the positive responses of MFM to P
addition, with increases for EM fungal mycelium (RR: 0.43; 95% CI: 0.17–0.68) and for AM fungal
mycelium (RR = 0.35; 95% CI: 0.14–0.55). Moreover, the response of MFM to P addition was not
influenced by host plant age (Qm = 1.02, p = 0.31), latitude of experimental site location (Qm = 23.26,
p = 0.06), sampling depth (Qm = 0.07, p = 0.79), sampling method (Qm = 0.23, p = 0.63), mean annual
precipitation (Qm = 0.20, p = 0.66), mean annual temperature (Qm = 0.25, p = 0.62), P concentration in
host plant leaves (Qm = 0.32, p = 0.57), soil carbon/nitrogen ratio (Qm = 0.00, p = 0.96), and soil pH
(Qm = 0.23, p = 0.64).

3.4. Effects of Other Environmental Factors on Mycorrhizal Fungal Mycelium

The results from the hierarchical mixed effects meta-analyses showed that MFM significantly
increased under organic matter addition (Qt = 1140.49, p < 0.001). In contrast, warming (Qt = 118.94,
p < 0.001) and K addition (Qt = 16.61, p = 0.08) had no effect on MFM (Figure 1). Unfortunately,
however, there was not sufficient information available to determine the factors that influence the
responses of MFM to organic matter addition, warming, and K addition (Figure 1).
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into different groups according to mycorrhizal fungal level (individual vs. community), mycorrhizal
type (ecomycorrhizal fungi, EM vs. arbuscular mycorrhizal fungi, AM), duration time of elevated
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Numbers given on the top represent the numbers of cases (above) and studies (below).
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4. Discussion

Our present hierarchical mixed effects meta-analyses showed that MFM significantly increased
under elevated CO2, organic matter addition, P addition, and CO2-N combination. However, N
addition and the N-P-K combination significantly decreased MFM. In contrast, warming, K addition,
the N-P combination, and the P-K combination had no effects on MFM. Mycorrhizal types (AM vs. EM),
treatment time (<1 year vs. >1 year), and sampling/estimation method (ingrowth mesh bag vs. soil
core/biomarker vs. non-biomarker) significantly influenced the responses of MFM to elevated CO2

and N addition. The effect size of N addition was significantly positively correlated with mean annual
precipitation, but negatively with soil pH and host tree age. The effect size of P addition significantly
increased with N content in host plant leaves.

4.1. The Responses of MFM to Elevated CO2

We observed an increase in MFM under elevated CO2, which is in agreement with our hypothesis
that CO2 had a significantly positive impact on the growth of mycorrhizal fungi. It is widely reported
that elevated CO2 proportionally increases carbon allocation to tree roots [21,34,49], and a great deal of
which will be ultimately transferred to the mycorrhizal fungi to form mycelium [8,21]. However, this
positive effect appeared at the individual level of mycorrhizal fungi, but disappeared at the community
level. This difference may result from intrinsic properties of the two mycorrhizal fungal levels such as
differences in growth rate and types of mycelia and complex interactions among different mycorrhizal
fungi [16]. The constantly luxurious supply of carbon delivered by the host plant under elevated CO2

causes a shift in mycorrhizal fungus species composition towards those with high metabolic activities
and copious mycelium [50,51]. These shifts of mycorrhizal community structure and contrasting
responses of different mycorrhizal fungal species will likely affect responses of MFM at community
level to elevated CO2 [52], because some mycorrhizal fungal species are not sensitive to elevated
CO2 [16,40,51]. Moreover, the positive responses of MFM to elevated CO2 found during the first
treatment year was not observed in the treatment duration group of >1 year, suggesting that the
effect reduced with the prolonged experimental duration. It is considered that long-term exposure
to elevated CO2 generally reduce the initial stimulation of photosynthesis in many plant species and
even frequently suppresses photosynthesis [35]. Previous studies suggest that long-term elevated CO2

exposure leads to nutrient limitation such as N limitation [53]. Therefore, the positive growth response
of MFM to elevated CO2 may be truncated by soil nitrogen limitations.

Our meta-analysis highlights that different mycorrhizal types (AM vs. EM) exhibited the
contrasting responses of MFM to elevated CO2 and N addition. There is good evidence for greatly
fundamental discrepancies between EM and AM symbioses in nutrient acquisition strategies and
carbon storage properties [2]. It has been also observed that the growth patterns of EM symbioses
differed from those of AM symbioses under elevated CO2 [35]. Moreover, EM plants can allocate more
carbon to their fungal partner than AM plants [54,55]. Accordingly, EM symbioses contribute more to
mycorrhizal fungal growth, while AM symbioses are more favorable to plant growth under elevated
CO2 [35]. EM fungi are generally considered to be more sensitive to environmental factors than AM
fungi [56,57], which is proven by our results of the significantly positive effects of elevated CO2 and
negative effects of N addition on MFM of EM. Here, we provide additional evidence that the relative
dominance of EM or AM trees in a forest may partly determine the response pathways of carbon and
N cycling to various global change factors. In contrast, we found the consistently positive effects of P
addition on MFM of EM and AM. These results perhaps suggest the similar P utilization model, but
contrasting N utilization models, between EM and AM fungi. However, our interpretation of these
results is inevitably constrained by the fact that there are very few studies on AM fungi. Our analysis
only included four and six studies on MFM of AM associated with woody plants under elevated CO2

and N addition, respectively. Clearly, more studies on responses of AM fungal mycelium to global
change are required to illuminate whether this difference is caused by research bias or does reflect
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some underlying fundamental variations in either the biology of the mycorrhizal fungi or the host
plants or the combination of both.

4.2. The Responses of MFM to N Addition

The significant reduction of MFM after N addition observed may be attributed to a greater carbon
demand for aboveground plant growth, leading to relatively less carbon being allocated belowground
to support nutrient assimilation [30,31]. A meta-analysis covering 31 studies notes that mycorrhizal
fungal colonization of fine root tips decreases by 15% under N fertilization [41]. Plants adapt to elevated
N input by weakening the associations with mycorrhizal fungi, suggesting that a higher proportion of
N is taken up directly by plant roots [18]. Moreover, more carbon allocated to mycorrhizal fungi will be
used for energy purposes and as carbon skeletons for amino acid assimilation in elevated N availability,
consequently, less carbon will be available for mycorrhizal fungal growth [58]. It is well documented
that a significant decline in ectomycorrhizal sporocarp production happens in forests subjected to
elevated N deposition [6,7]. Additionally, the acidifying effect of N addition has also been found to
inhibit mycorrhizal fungal activity, and thus negatively affecting mycelia growth [59]. Meanwhile, we
observed significantly negative relationship between the effect size of N addition on MFM and soil pH,
indicating greater suppression of mycorrhizal fungi growth in lower pH soils. Acidity stress is likely
to favor mycorrhizal fungus species with slow mycelia growth [60]. In addition to soil characteristics,
climate has been considered as an important driver of the intimacy of the plant-fungi relationship at
global scale [22]. Our results showed that the effect size of N addition on MFM was associated with
mean annual precipitation. Perhaps enhanced N leaching/export induced by higher precipitation can
relieve the inhibiting effects of N addition on the MFM [61]. Moreover, it is found that the greater
precipitation has a positive effect on EM fungal production [6], while drought will prevent the growth
of MFM [62]. The strong and contrasting influences of N and water availabilities on mycorrhizal fungi
have crucial implications for carbon and nutrient cycling dynamics in forest ecosystems [6]. Hence, the
influences of changes in precipitation on the responses of mycorrhizal fungi to increasing N deposition
warrants further research.

We found opposite effects of elevated CO2 and N addition on MFM. This indicates that elevated
CO2 and increased N input have opposite effects on the relative carbon allocation of plants to
belowground parts. Thus, mycorrhizas in forest ecosystems are exposed to a paradoxical situation
under multiple factor changes. Indeed, global change is not a single-factor phenomenon, so the strong
and contrasting effects of multiple global change factors (i.e., elevated CO2, N deposition and changed
precipitation) on MFM have important implications for carbon flow and nutrient cycling dynamics in
forest ecosystems [34]. For instance, multiple soil nutrients combine to regulate fine roots and thus the
association with mycorrhizal fungi [63].

Tree-age-related variation in belowground carbon allocation is vital for comprehensive
understanding of complex carbon cycling during stand development [4,64]. It is evident that
effect size of N addition on MFM is negatively correlated with the host plant age. Higher rates of
mycorrhizal mycelia production are found in the younger stands along an age gradient of Pinus
sylvestris stands [3]. Presumably, forest stands with different ages have different nutrient and water
requirements, correspondingly, mycorrhizal fungi will vary with the age of the forest stands [65]. Stand
productivity of forest ecosystems decreases at mature ages, consequently resulting in reduction of the
demand for nutrient and water supply from fine roots and their associated mycorrhizal fungi [66].
Mycelia carbon use efficiency deceases significantly with increasing forest age by about 65% [4]. Thus,
biomass allocation to belowground parts decreases with increasing stand age [67]. In mature forest
ecosystems, elevated N input plays an additional effect on the lower carbon supply for mycorrhizal
fungus growth.

Our results suggest that the incubation time of ingrowth mesh bag is an important aspect
influencing the response of MFM to N addition. It is noted that a lag time, indeed, existed before
mycorrhizal fungi entered ingrowth mesh bags following the insertion of bags [17]. Short-term
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experiments with ingrowth mesh bags favor fast-growers and early colonizers, which first colonize
the mesh bags by many fast-growing mycelia [68], while some mycorrhizal fungi specialized on
nutrient utilizing may need more time to colonize the mesh bags [69]. Additionally, priority effects
favor persistence of early colonizers successfully, and prevent establishment of other mycorrhizal
fungus species [70]. Thus, the length of the incubation duration largely influences the composition of
mycorrhizal fungi colonized into the mesh bags. Moreover, turnover rate also influences the estimates
of MFM in the ingrowth mesh bags [3,71]. Therefore, mycorrhizal fungal community colonizing
ingrowth mesh bags is likely to be very different from that in natural soils using soil core methods.
Therefore, these differing responses of MFM to N addition from ingrowth mesh bag method vs. soil
core method may be due to that some species or clades are overrepresented and some others are
underrepresented or even missing in the mesh bags [17]. In addition, each of the biomarkers will
bring different information about the mycorrhizal fungi. For instance, chitin and ergosterol reflect
the total and the living fungal biomass in ectomycorrhizas, respectively [17,72]. Other estimation
methods of MFM (e.g., agar film) cannot determine the saprotroph hyphae [40]. Accordingly, a main
issue raised is how to quantify mycorrhizal hyphae. Thus, methodological effects on responses of
mycorrhizal fungal mycelium to global change factors are related with mycorrhizal fungal community
assemblages [73]. Given the sets of limitations of the applied methods and techniques, the combination
of several techniques in the same study is a feasible way to overcome some of the limitations [17].

4.3. The Responses of MFM to P Addition, Organic Matter Addition, and Warming

We observed that P addition significantly increased the production of MFM, suggesting a further
extension of the finest part of the fine root system [74]. The positive effects of P addition found
in this analysis seem to be quite surprising, which were not expected by our hypotheses. Several
mechanisms have been proposed to elucidate the P effects on mycorrhizal fungi. The increased
soil carbon availability through increased leaf litterfall and fine root biomass caused by relieved
P constraints is considered to be one reason for the positive effects of P addition on MFM [75,76].
The high P input improves soil pH and osmotic potential, which may also promote the mycorrhizal
fungal growth [38]. Furthermore, plants use mycorrhizal fungi for nutrient acquisition, and improved
nutrient status in the host plant is also considered as a primary factor influencing carbon allocation
to MFM production [77]. Here, we found the positive effects of P addition significantly increased
with increasing N content in host plant leaves. This result indicates the P gradually becomes a
limiting factor for the growth of MFM with increasing N availability (higher N content in tree leaves).
P addition alleviates this limitation and increases carbon input to the mycorrhizal fungi [75]. Given
the tremendous discrepancy in climate, vegetation, soil types, and also P availability from tropical to
boreal forest biomes in our analysis, more studies at the global scale are needed to conclude the effects
of P on mycorrhizal fungi and their mycelium production. The enhanced MFM by organic matter
addition is attributed to the beneficial effects of increased organic matter on water status, soil structure,
CO2 pressure, and synergistic microbial activity in the soil [78]. The higher organic matter content
can improve the water-holding capacity of forest soils, leading to an increase in the mycelium growth
of mycorrhizal fungi [29]. The higher organic matter content can improve soil physical properties,
with increasing soil aeration and decreasing mechanical resistance to the growth of MFM [10,26].
Mineralization of organic matter results in higher concentrations of CO2 [10], and as discussed above,
elevated CO2 concentrations can enhance mycelium growth of mycorrhizal fungi. Increased microbial
enzyme activities after organic matter addition indicate a specialization of the microbial communities
in favor of mycorrhizal fungi [79]. The EM fungi, in turn, invest large amounts of carbon to produce
a range of hydrolytic and oxidative enzymes that break down carbon-containing compounds and
mobilize nutrients from soil organic matter [80].

Unexpectedly, we failed to detect a warming effect on MFM, which does not support our hypothesis
that MFM responds positively to increased temperature. This result challenges the conventional
view that climate warming will advance in the spring and delay in the autumn (and thus longer
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growing season length), which will have beneficial effects on mycorrhizal fungi [23,39,81]. In fact, both
positive and negative effects of warming on the growth of mycorrhizal fungi have been reported [23,82].
The decrease in soil moisture with soil warming can probably limit mycorrhizal fungus activity,
specifically in the dry season and dry areas [82]. Besides, mycorrhizal fungal community composition
exhibits highly variable responses to elevated temperatures [83]. Consequently, we still have little
information on the mechanisms of these different responses of MFM to climate warming, suggesting that
much more attention should be paid to temperature effects on the mycorrhizal fungi in future studies.

5. Conclusions

Our meta-analysis demonstrates that the responses of MFM to different environmental factors
depend on mycorrhizal type, mycorrhizal organization level, and experimental setting, such as duration
time of treatment and sampling method. This suggests that forest nutrient and carbon cycling models
should take MFM responses into account. In this meta-analysis, we also found that many other biotic
and abiotic variables were not associated with effect size of environmental factors on MFM. The lack
of statistically significant result does not definitely indicate that these factors do not have effects on
mycorrhizal fungi, given the small number of observations or studies. Therefore, further research
about the complex carbon allocation patterns between host plants and their associated mycorrhizal
fungi, and a changed assemblage of mycorrhizal fungal taxa in the conditions of various global change
factors covariation are urgently needed.
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