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Abstract: Woodland caribou (Rangifer tarandus caribou) are reliant on Cladonia spp. ground lichens as
a major component of their diet and lichen abundance could be an important indicator of habitat
quality, particularly in winter. The boreal forest is typified by large, stand-replacing forest fires that
consume ground lichens, which take decades to recover. The large spatial extent of caribou ranges
and the mosaic of lichen availability created by fires make it challenging to track the abundance
of ground lichens. Researchers have developed various techniques to map lichens across northern
boreal and tundra landscapes, but it remains unclear which techniques are best suited for use in the
continuous boreal forest, where many of the conflicts amongst caribou and human activities are most
acute. In this study, we propose a two-stage regression modelling approach to map the abundance
(biomass, kg/ha) of Cladonia spp. ground lichens in the boreal forest. Our study was conducted in
Woodland Caribou Provincial Park, a wilderness-class protected area in northwestern Ontario, Canada.
We used field sampling to characterize lichen abundance in 109 upland forest stands across the local
time-since-fire continuum (2–119 years-since-fire). We then used generalized linear models to relate
lichen presence and lichen abundance to forest structure, topographic and remote sensing attributes.
Model selection indicated ground lichens were best predicted by ecosite, time-since-fire, and canopy
closure. Lichen abundance was very low (<1000 kg/ha) across the time-since-fire continuum in
upland forest stands with dense tree cover. Conversely, lichen abundance increased steadily across
the time-since-fire continuum in upland forest stands with sparse tree cover, exceeding 3000 kg/ha
in mature stands. We interpolated the best lichen presence and lichen abundance models to create
spatial layers and combined them to generate a map that provides a reasonable estimation of lichen
biomass (R2 = 0.39) for our study area. We encourage researchers and managers to use our method as
a basic framework to map the abundance of ground lichens across fire-prone, boreal caribou ranges.
Mapping lichens will aid in the identification of suitable habitat and can be used in planning to
ensure habitat is maintained in adequate supply in areas with multiple land-use objectives. We also
encourage the use of lichen abundance maps to investigate questions that improve our understanding
of caribou ecology.
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1. Introduction

The boreal ecotype of woodland caribou (Rangifer tarandus caribou) have evolved to occupy a niche
unexploited by other northern ungulates [1]. Caribou tend to select low-productivity forests where
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ground lichens are a dominant understory component and have evolved physiological adaptations to
consume these lichens as a major component of their diet, particularly in winter [2–4]. By frequenting
lichen-rich landscapes, caribou can acquire forage and distance themselves from more productive
forests which support higher densities of ungulates (e.g., moose (Alces alces)) and thus predators (e.g.,
wolves (Canis lupus) [1]. However, stand-replacing forest fires are a common occurrence in woodland
caribou habitat and because ground lichens are highly flammable, large quantities of lichen are lost in
these disturbances [5]. Since lichens are slow-growing, they take several decades to recover following
fire [6,7]. Fires therefore create a constantly shifting mosaic of lichen availability across the landscape,
which can influence the distribution and habitat selection of woodland caribou [5,8].

Given the importance of ground lichens in caribou ecology, it may be useful to map the abundance
of ground lichens across caribou ranges for research and/or management purposes. Ground lichens are
typically found in mature conifer stands with sparse canopy closure and nitrogen-poor, acidic substrate
conditions [9–11]. Proxies for the growing conditions preferred by ground lichens can be found in forest
inventory layers, which often contain attributes for stand age, soil type, tree species composition and
forest structure (e.g., canopy closure). Most forest inventories utilize ecological classification systems to
divide the landscape into discrete vegetation communities called ‘ecosites’. Each ecosite is characterized
by consistent physical features (soil type, soil depth, nutrient availability) and the resulting vegetation
community (trees, shrubs and herbaceous plants) [12]. Several researchers have used forest inventory
layers to predict the occurrence and abundance of ground lichens [13–15]. A disadvantage of forest
inventory layers is they are generally unavailable for boreal caribou ranges beyond the range of active
forest management. In addition, forest inventory layers are typically updated on long time horizons
(e.g., 10–20 years) as part of a forest management planning process, which can make it difficult to
update lichen abundance maps to reflect changes to ecosite conditions [13].

Remote sensing has become an essential tool in landscape ecology [16], particularly due to the
availability of Landsat satellite imagery [17]. Landsat satellites capture images of the Earth’s surface
approximately bi-weekly, allowing researchers to update spatial layers as conditions change [17].
Landsat imagery is composed of several spectral bands that capture different portions of the
electromagnetic spectrum. The ground lichens caribou eat contain usnic acid, which produces a unique
spectral signature in the blue and short-wave infrared wavelengths [18]. Being pale in colour, lichens can
also be distinguished from green vegetation using the normalized difference vegetation index [9],
which uses the red and near-infrared wavelengths to quantify vegetation greenness (Appendix C) [19].
The unique spectral properties of usnic lichens in the near- and short-wave infrared wavelengths led to
the incorporation of the normalized difference moisture index (NDMI; Appendix C) [20] in several
lichen remote sensing studies [21,22]. Studies have proven that Landsat spectral properties can be used
to obtain reasonable estimates of lichen abundance in northern boreal and tundra systems [18,21,22].
The unique spectral signature of ground lichens can be captured by the moderate spatial resolution
of Landsat imagery (30 m pixels) in northern boreal and tundra ecosystems because tree cover is
sparse or non-existent [14]. In the continuous boreal forest, which is characterized by relatively dense
tree cover, the unique spectral signature of ground lichens may be masked by the tree canopy [14].
Higher resolution satellite imagery such as SPOT 6 (6 m pixels) and QuickBird (2.5 m pixels) may be
able to capture the unique spectral signature of ground lichens in densely treed areas [9], but these
platforms do not capture the short-wave infrared portion of the electromagnetic spectrum, which has
proven useful in modelling lichens in previous studies [18,21].

Landscape nutrition models often integrate remote sensing and Geographic Information System
(GIS) data (e.g., topography, disturbances, forest structure) to generate spatial predictions of forage
abundance from field observations. Such models have been generated for multiple, wide-ranging
mammal species, including grizzly bears [23,24], elk [25] and woodland caribou [26]. Landscape
nutrition models can include multiple food types, including seasonally available plant species and
prey biomass [24]. Quantifying forage abundance across the landscape can allow researchers to study
the influence of nutrition on survival and fecundity [25]. Forage layers can also be used to identify



Forests 2019, 10, 962 3 of 23

potential high-quality habitats to target for protection or areas of overlap between humans and wildlife
that present a high risk of conflict [23]. In conjunction with spatial predictions of predation risk,
forage layers can be used to study the tradeoffs between nutrition and predator avoidance experienced
by prey species [26,27].

In this study, we create a predictive model of lichen abundance in the boreal forest of Woodland
Caribou Provincial Park, in Ontario, Canada and interpolate this model to create a spatial prediction
(map) of lichen biomass. We use a regression modelling approach, first conducting field sampling
within the study area to parameterize relationships between lichen abundance and environmental
conditions (forest type, time-since-fire, canopy closure). We then relate lichen presence and lichen
abundance to remote sensing and GIS data and use an a priori model selection procedure to identify the
best explanatory variables. We interpolate the top lichen presence and abundance models across the
study area and combine them to generate a map predicting lichen biomass (kg/ha). We show that our
approach is straightforward and could be applied in other boreal caribou ranges with site-specific field
data. Lichen maps could help managers develop more effective conservation strategies for woodland
caribou. Managers could use lichen maps to track the availability of this important food resource
over time and ensure a constant supply of lichen-rich habitat through resource or fire management
planning. Paired with GPS collar locations, lichen maps could be used to identify the quantity of lichen
in stands selected by caribou, aiding in the delineation of suitable habitat patches based on available
forage resources.

2. Materials and Methods

2.1. Study Area

Our study area encompasses Woodland Caribou Provincial Park, a 5000 km2 wilderness-class
protected area in northwestern Ontario, Canada (Figure 1) [28]. The park is a part of Pimachiowin
Aki, a World Heritage Site that has received international recognition for its intact boreal forest and
Indigenous cultural heritage [29]. The region is characteristic of the continuous boreal forest and is
characterized by rolling terrain of bedrock outcroppings and numerous small lakes. Elevation varies
from 309 m to 430 m above sea level and the park is situated on a plateau slightly elevated above the
surrounding area, causing sparse conifer and dense conifer ecosites to compose a large proportion of
the study area [30]. Sparse conifer (ecosite B012) occurs primarily on bedrock outcroppings where
soils are very shallow (<15 cm) and moisture, nutrient availability, and plant diversity are low [12].
The overstory is dominated by jack pine (Pinus banksiana Lamb.) and the understory plant community
consists primarily of Cladonia spp. ground lichens and velvet-leaf blueberry (Vaccinium myrtilloides
Michx.). Dense conifer (ecosite B049) dominates upland sites with deeper, rocky soils (>15 cm)
and nutrient and moisture conditions are more favourable for plant growth compared to sparse
conifer [12]. A mixed overstory of black spruce (Picea mariana (Mill.) BSP) and jack pine characterizes
dense conifer ecosites and the understory plant community consists primarily of feathermosses
(e.g., Pleurozium schreberi (Brid.) Mitt.) and herbaceous plants (e.g., bunchberry, Cornus canadensis
L.)). Small peatlands supporting black spruce and tamarack (Larix laricina (Du Roi) K. Koch) form
in bedrock depressions and support an understory plant community dominated by Sphagnum spp.
mosses and ericaceous shrubs (e.g., Labrador tea (Ledum groenlandicum Oeder)) [28].
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Figure 1. Location of the study area in northwestern Ontario, Canada. Sampling locations, indicated 
by red dots, are concentrated in and around Woodland Caribou Provincial Park, west of the town of 
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Caribou Provincial Park. Development is limited to portage trails, campsites and several fly-in fishing 
camps. Large, frequent forest fires persist as an integral component of the local ecosystem due to a 
dry, continental climate [28]. The average annual area burned in the park over the last 30 years (1985–
2015) is 0.6%, above the average for northern protected areas in Canada [31]. The study area is home 
to woodland caribou belonging to the Owl-Flinstone and Atikaki-Berens ranges in Manitoba and the 
Sydney and Berens ranges in Ontario [32]. 

2.2. Methods Overview 

We combined field sampling with spatial environmental covariates to generate a map of lichen 
biomass for our study area (Figure 2). First, we conducted vegetation surveys to quantify lichen cover 
and canopy closure in sparse conifer and dense conifer ecosites. We used conversion factors to 
estimate the stand-level lichen biomass (kg/ha) of each sampling location. Second, we derived nine 
environmental covariates from remote sensing and GIS data. Third, we assigned our field 
observations and environmental covariates to the GPS waypoint of each sampling location. We then 
used generalized linear models to predict lichen presence and lichen biomass as a function of a priori 
hypotheses built from our environmental covariates. We used model selection to identify the best 
candidate model and interpolated each top model to generate lichen presence and lichen biomass 
maps, which we combined to generate a final lichen biomass map for the study area.  
  

Figure 1. Location of the study area in northwestern Ontario, Canada. Sampling locations, indicated
by red dots, are concentrated in and around Woodland Caribou Provincial Park, west of the town of
Red Lake.

There are no roads or resource development activities, historic or current, within Woodland
Caribou Provincial Park. Development is limited to portage trails, campsites and several fly-in fishing
camps. Large, frequent forest fires persist as an integral component of the local ecosystem due to a dry,
continental climate [28]. The average annual area burned in the park over the last 30 years (1985–2015)
is 0.6%, above the average for northern protected areas in Canada [31]. The study area is home to
woodland caribou belonging to the Owl-Flinstone and Atikaki-Berens ranges in Manitoba and the
Sydney and Berens ranges in Ontario [32].

2.2. Methods Overview

We combined field sampling with spatial environmental covariates to generate a map of lichen
biomass for our study area (Figure 2). First, we conducted vegetation surveys to quantify lichen
cover and canopy closure in sparse conifer and dense conifer ecosites. We used conversion factors to
estimate the stand-level lichen biomass (kg/ha) of each sampling location. Second, we derived nine
environmental covariates from remote sensing and GIS data. Third, we assigned our field observations
and environmental covariates to the GPS waypoint of each sampling location. We then used generalized
linear models to predict lichen presence and lichen biomass as a function of a priori hypotheses built
from our environmental covariates. We used model selection to identify the best candidate model and
interpolated each top model to generate lichen presence and lichen biomass maps, which we combined
to generate a final lichen biomass map for the study area.
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years post-fire). We confirmed time-since-fire at sampling locations using an increment bore. Due to 
access constraints and the dominance of upland conifer in the study area, we constrained sampling 
to dense conifer and sparse conifer ecosites. Within each time-since-fire class we selected an equal 
number of sampling locations in each ecosite using a forest inventory map.  

 
Figure 3. Distribution of sampling locations used to quantify lichen abundance across the local time-
since-fire continuum in Woodland Caribou Provincial Park, Ontario, Canada (n = 109). 

 

Figure 2. Framework used to generate a lichen biomass map for Woodland Caribou Provincial Park,
Ontario, Canada.

2.3. Field Sampling

To quantify lichen abundance, we conducted vegetation surveys at 109 sampling locations within
and adjacent to Woodland Caribou Provincial Park from June-August 2018. We selected sampling
locations based on time-since fire, stratified into decadal classes (Figure 3; range = 2–119 years post-fire).
We confirmed time-since-fire at sampling locations using an increment bore. Due to access constraints
and the dominance of upland conifer in the study area, we constrained sampling to dense conifer and
sparse conifer ecosites. Within each time-since-fire class we selected an equal number of sampling
locations in each ecosite using a forest inventory map.

Forests 2019, 10, x FOR PEER REVIEW 5 of 22 

 

 
Figure 2. Framework used to generate a lichen biomass map for Woodland Caribou Provincial Park, 
Ontario, Canada. 

2.3. Field Sampling 

To quantify lichen abundance, we conducted vegetation surveys at 109 sampling locations 
within and adjacent to Woodland Caribou Provincial Park from June-August 2018. We selected 
sampling locations based on time-since fire, stratified into decadal classes (Figure 3; range = 2–119 
years post-fire). We confirmed time-since-fire at sampling locations using an increment bore. Due to 
access constraints and the dominance of upland conifer in the study area, we constrained sampling 
to dense conifer and sparse conifer ecosites. Within each time-since-fire class we selected an equal 
number of sampling locations in each ecosite using a forest inventory map.  

 
Figure 3. Distribution of sampling locations used to quantify lichen abundance across the local time-
since-fire continuum in Woodland Caribou Provincial Park, Ontario, Canada (n = 109). 

 

Figure 3. Distribution of sampling locations used to quantify lichen abundance across the local
time-since-fire continuum in Woodland Caribou Provincial Park, Ontario, Canada (n = 109).



Forests 2019, 10, 962 6 of 23

We accessed sampling locations by canoe and portage within the park and by truck in adjacent
areas. At each sampling location, we established a start point 25 m from the edge of the mapped ecosite
boundary and used a fiberglass tape to establish a 50 m transect oriented in a primary or secondary
compass direction (Figure 4). We placed a 1 m2 quadrat at the 5 m, 15 m, 25 m, 35 m and 45 m marks of
the transect to conduct five vegetation surveys per sampling location. We recorded the xy coordinates
of each sampling location at the 25 m mark of the transect with a handheld GPS unit (accuracy ± 5 m).
We spaced sampling locations a minimum of 100 m apart to reduce spatial autocorrelation.
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Figure 4. Field sampling protocol used to conduct vegetation surveys in a 12-year-old burn in Woodland
Caribou Provincial Park, Ontario, Canada. Sampling was limited to dense conifer (dark green) and
sparse conifer (light green) ecosites. Unsampled ecosites are coloured brown, lakes are coloured
blue. Sampling locations (red dots) were marked by a GPS waypoint at the 25 m mark of the transect.
The 50 m transect is represented by a black line and 1 m2 quadrats are represented by open circles
(right panel).

For each 1 m2 quadrat, a single observer visually estimated the percent cover of each of the six most
common Cladonia spp. ground lichens in the region (Table 1) and used a concave spherical densiometer
to estimate the canopy closure above the quadrat. We recorded lichen cover for the sampling location
by taking the average of the total lichen cover of each quadrat. Similarly, we recorded a single canopy
closure value for each sampling location as the average value from the five quadrats. To derive estimates
of lichen biomass, we multiplied the cm2 area of the quadrat covered by each lichen species by its
corresponding cover-to-biomass conversion factor (developed by McMullin et al. (2011); Table 1) [33].
We validated the conversion factors for use in our study area using destructive sampling (Appendix A).
We estimated stand-level lichen biomass (kg/ha) for each sampling location by adding the biomass
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estimates for each quadrat, converting from g to kg and multiplying by 2000 (see Appendix B for
example calculation). We assigned the stand-level estimates of lichen cover, canopy closure and lichen
biomass to the GPS waypoint of each sampling location for use in spatial modelling.

Table 1. Cover-to-biomass (g/cm2) conversion factors for the six most common Cladonia spp. ground
lichens found in northwestern Ontario, Canada. Species classification and conversion factors are from
McMullin et al. (2011) [33].

Lichen Species Cover-to-Biomass Conversion Factor (g/cm2)

Cladonia rangiferina (L.) Nyl. 0.10500
Cladonia arbuscula (Wallr.) Flotow 0.08593
Cladonia uncialis (L.) F.H. Wigg. 0.10263

Cladonia gracilis (L.) Willd. ssp. turbinata (Ach.) Ahti 0.14895
Cladonia stellaris (Opiz) Brodo 0.11618

Cladonia stygia (Fr.) Ahti 0.15145

2.4. Environmental Covariates

We selected nine environmental covariates (Table 2) supported by the literature to generate spatial
models of lichen presence and lichen biomass [9,15,18,21,34,35]. The details of how the covariate
layers were created are found in Appendix C. Note that the canopy closure layer was generated
using a generalized linear model with forest inventory data, field measurements, time-since-fire and
normalized difference vegetation index (NDVI; Appendix C). We converted all polygon datasets to
rasters with 30 m pixels in ArcGIS 10.5 [36]. We resampled all covariate layers to have matching
30 m pixels and subsequently assigned values of each of covariate to the GPS waypoint of each
sampling location using the mask() and extract() functions in the raster package in R version 3.6.0 [37,38].
This enabled us to subsequently relate lichen presence and biomass to forest structure, topographic
and remote sensing attributes.

Table 2. Description of covariates used to model lichen presence and abundance as a function of forest
structure, topographic and remote sensing attributes. Additional descriptions of each covariate layer
are provided in Appendix C.

Covariate Source Data Acquisition Original Resolution

Ecosite [39] 2009–2015 polygons at 1:8000

Canopy closure [39–43] 2009–2018 polygons at 1:8000; polygons
of fires ≥ 40 ha; 30 m

Time-since-fire [40,41] 1929–2013 polygons of fires ≥ 40 ha
Elevation [44] 2019 30 m

Slope [44] 2019 30 m
Blue reflectance [42,43] 2014 30 m

Short-wave infrared
(SWIR2) reflectance [42,43] 2014 30 m

Normalized difference
vegetation index (NDVI) [42,43] 2014 30 m

Normalized difference
moisture index (NDMI) [42,43] 2014 30 m

2.5. Spatial Modelling

We used our environmental covariates to generate a set of seven candidate models (Table 3) based
on a priori hypotheses. Our base model includes ecosite, canopy closure and time-since-fire, which we
anticipated would be the strongest predictors of lichen abundance. Each additional candidate model
built on the base model by adding a topographic or remote sensing covariate. Covariates in the
same candidate model have a Pearson’s correlation coefficient < |0.6| to reduce collinearity within
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candidate models. We included a statistical null model (intercept) to assess the robustness of our
candidate models.

Table 3. Name and structure of candidate models used to predict lichen presence (0,1) and lichen
abundance (biomass, kg/ha) as a function of forest structure, topographic and remote sensing attributes.
Covariates within the same model have a Pearson’s correlation coefficient < |0.6|. TSF = time-since-fire,
Canopy = canopy closure, NDVI = normalized difference vegetation index, NDMI = normalized
difference moisture index, SWIR2 = short-wave infrared reflectance (details in Appendix C).

Model Name Model Structure

Base Lichen ~ TSF + Ecosite + Canopy
Elevation Lichen ~ TSF + Ecosite + Canopy + Elevation

All Topography Lichen ~ TSF + Ecosite + Canopy + Elevation + Slope
NDVI Lichen ~ TSF + Ecosite + Canopy + NDVI
NDMI Lichen ~ TSF + Ecosite + Canopy + NDMI

Blue Reflectance Lichen ~ TSF + Ecosite + Canopy + Blue
SWIR2 Reflectance Lichen ~ TSF + Ecosite + Canopy + SWIR2

To generate a raster with cell values representing lichen biomass (kg/ha), we used our candidate
models to conduct a two-stage modelling approach [24]: (1) lichen presence, (2) lichen abundance.
We first used generalized linear models (family = binomial, link = logit) to identify the candidate
model best explaining lichen presence (0 = absent, 1 = present). Lichen was considered present at
sampling locations with >1% lichen cover (n = 87). We ranked competing models using Akaike’s
Information Criterion corrected for a small sample size (AICc [45]) and considered the model with the
lowest AICc score as the top model. We interpolated this top model across the study area to create
a raster with cell values representing probability of occurrence (0–1) for ground lichens. We used
model-based interpolation as defined by Elith and Leathwick (2009) [46], implemented using the
predict() function in the raster package of R version 3.6.0 [37,38]. We then created a binary layer where
lichen is predicted to be absent (0) or present (1) in each pixel. We used the point on the receiver operator
criterion (ROC) curve closest to the top left corner of the graph (0.71) as our presence threshold [47].
Lichen was classified as present (1) in cells with a probability of occurrence > 0.71 and absent (0) in cells
with a probability of occurrence ≤0.71. We conducted k-fold cross-validation (k = 100; 60% training,
40% testing) to assess the accuracy of the lichen presence raster based on the mean area under the
curve (AUC) statistic [48].

Once we generated the lichen presence raster, we used generalized linear models (family = Gamma,
link = log) to identify the candidate model best explaining lichen biomass (kg/ha). We identified the top
model as the candidate model with the lowest AICc score and interpolated it across the study area to
create a raster with pixel values representing lichen biomass (kg/ha). We multiplied this new layer by
the lichen presence raster to create a layer that only predicts biomass in pixels where lichen is predicted
to be present. We assessed the accuracy of this final lichen abundance raster by running a simple linear
regression (R2) between observed and predicted lichen biomass at each sampling location.

3. Results

3.1. Lichen Biomass

Preliminary analysis of the field data revealed that post-fire lichen recovery differed markedly
between sparse conifer and dense conifer ecosites (Figure 5). Ground lichens were essentially absent
from burns 0–19 years old in both ecosites and dense conifer supported low lichen abundance across
the time sequence. Twenty years after fire, lichen biomass began to increase quickly in sparse conifer,
reaching a median of 2648 kg/ha 40–49 years post-fire and leveling off thereafter. Mature sparse conifer
ecosites supported approximately 2000–3700 kg/ha of ground lichens.
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Park, Ontario, Canada. The thick black line is the median.

3.2. Spatial Modelling

The top candidate model for predicting lichen presence included ecosite, time-since-fire and
canopy closure (Table 4). The average AUC score from the k-fold cross-validation (k = 100) for the
lichen presence model was 0.80, indicating ‘good’ model fit [48].

Table 4. Ranking of candidate models used to predict lichen presence as a function of forest structure,
topographic and remote sensing attributes (Table 3). Models with a lower Akaike Information Criterion
score (AICc) better describe the data. k = number of fixed effects (+1 for intercept) and wi = Akaike
weight. SWIR2 = short-wave infrared reflectance, NDVI = normalized difference vegetation index,
NDMI = normalized difference moisture index (Appendix C).

Model Name k log. lik. AICc ∆AICc wi

Base 4 −43.74 95.87 0.00 0.27
SWIR2 Reflectance 5 −42.97 96.52 0.66 0.20

Elevation 5 −43.31 97.20 1.33 0.14
Blue Reflectance 5 −43.42 97.42 1.55 0.13

NDVI 5 −43.58 97.74 1.87 0.11
NDMI 5 −43.62 97.82 1.95 0.10

All Topography 6 −43.28 99.37 3.51 0.05
Null 1 −56.17 114.37 18.50 <0.01

Beta coefficients from the model describe the direction and magnitude of the effect of a covariate
on the response variable. For example, in the top lichen presence model, probability of occurrence
is positively associated with time-since-fire, increasing ~1.6% per year since fire (Table 5). In the top
model, lichen presence is negatively associated with dense conifer ecosites and there is a weak positive
association between lichen presence and canopy closure (Table 5).
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Table 5. Summary table for the top lichen presence model. TSF = time-since-fire, Canopy = canopy
closure. The beta coefficient for ecosite represents probability of occurrence for lichen in dense conifer
with sparse conifer as the reference (Appendix C). SE = standard error.

Covariate Coefficient SE z-value p-value

Intercept 2.33 1.21 1.92 0.05
TSF 0.02 0.01 1.20 0.23

Ecosite −2.63 0.72 −3.63 2.79 × 10−4

Canopy 3.94 × 10−4 0.04 0.01 0.99

The top candidate model for predicting lichen abundance was the same as lichen presence,
including ecosite, time-since-fire and canopy closure (Table 6).

Table 6. Ranking of candidate models used to predict lichen abundance (biomass; kg/ha) as a function
of forest structure, topographic and remote sensing attributes (Table 3). Models with a lower Akaike
Information Criterion score (AICc) better describe the data. k = number of fixed effects (+ 1 for intercept)
and wi = Akaike weight. SWIR2 = short-wave infrared reflectance, NDVI = normalized difference
vegetation index, NDMI = normalized difference moisture index (Appendix C).

Model Name k log. lik. AICc ∆AICc wi

Base 4 −852.14 1714.86 0.00 0.28
Elevation 5 −851.33 1715.48 0.61 0.21

Blue Reflectance 5 −851.75 1716.32 1.45 0.14
NDMI 5 −851.85 1716.52 1.66 0.12
NDVI 5 −852.10 1717.03 2.16 0.09

SWIR2 Reflectance 5 −852.13 1717.09 2.22 0.09
All Topography 6 −851.27 1717.64 2.78 0.07

Null 1 −875.01 1754.14 39.28 0.00

The top lichen abundance model indicates lichen biomass is positively associated with
time-since-fire, increasing 1.3% per year since fire (Table 7). Lichen biomass is negatively associated
with dense conifer ecosites. There is a weak negative association between lichen biomass and canopy
closure, with biomass decreasing by 0.4% per unit increase in canopy closure (Table 7).

Table 7. Summary table for the top lichen abundance model. TSF = time-since-fire, Canopy = canopy
closure. The beta coefficient for ecosite represents lichen biomass in dense conifer with sparse conifer
as the reference (Appendix C). SE = standard error.

Covariate Coefficient SE z-value p-value

Intercept 7.10 0.194 36.49 < 2.00 × 10−16

TSF 0.01 0.003 3.96 1.38 × 10−4

Ecosite −1.54 0.153 −10.07 < 2.00 × 10−16

Canopy −4.00 × 10−3
−4.00 × 10−3 −0.91 0.36

Figure 6 displays the post-fire recovery of lichen biomass in sparse conifer and dense conifer
ecosites as predicted by the top lichen abundance model. Note the shallow slope of the curve for
dense conifer- lichen biomass is never predicted to exceed ~1000 kg/ha. By comparison, lichen biomass
increases quite steadily in sparse conifer ecosites, reaching ~2000 kg/ha 50 years post-fire and exceeding
3000 kg/ha in stands 80–100 years post-fire (Figure 6).
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The final lichen biomass map is displayed in Figure 7. Simple linear regression between observed
and predicted lichen biomass at sampling locations (R2 = 0.39) indicates our model performs to a
similar standard as previous studies that created forage abundance layers for ungulates [18,25,26].
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Figure 7. The lichen biomass raster generated for Woodland Caribou Provincial Park, Ontario, Canada.
The left panel of the figure shows the entire extent, the right panel shows a close-up of the area around
Mexican Hat Lake in the southeast corner of Woodland Caribou Provincial Park. Pixel values represent
lichen biomass (kg/ha) from low (blue) to high (red) in dense conifer and sparse conifer ecosites.
Lakes appear in light blue. Unsampled ecosites (NoData; Appendix C) are coloured black.
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4. Discussion

We mapped lichen biomass across Woodland Caribou Provincial Park using a spatial modelling
approach that can provide a framework to generate lichen biomass maps for resource management
and ecological research in Canada’s boreal forest. By relating our field observations of lichen
abundance to forest structure, topographic and remote sensing attributes, we were able to identify
environmental features useful in predicting ground lichens. We found that time-since-fire and ecosite
were important predictors of ground lichens. Probability of occurrence and biomass of ground lichens
was negatively associated with dense conifer ecosites (Table 5, Table 7) and such stands demonstrated
low lichen abundance (<1000 kg/ha) across the local time-since-fire continuum (Figure 6). Conversely,
sparse conifer ecosites supported very low lichen abundance in the first 20 years after fire, but lichen
biomass increased steadily from 20–50 years post-fire (Figure 5). Mature sparse conifer (≥ 70 years
old) supported approximately three times more lichen biomass than dense conifer of the same age
(Figure 6).

The lichen abundance model appears to overestimate lichen biomass in young sparse conifer
stands (0−19 years post-fire; Figure 6) relative to what was observed in the field (Figure 5). Similarly,
the model appears to exaggerate the accumulation of lichen biomass in older stands (≥ 50 years old).
These discrepancies could be due to the unbalanced sampling design we employed, as we focused
most of our sampling effort on middle-aged stands due to a secondary objective to test post-fire
lichen recovery. This resulted in few observations at the young (0−19 years post-fire, n = 12) and
older (50−119 years post-fire, n = 20) portions of the local post-fire continuum (Figure 3). In addition,
our field observations suggest lichen biomass may follow a non-linear pattern with time-since-fire
in sparse conifer ecosites (Figure 5). We were unable to fully capture this trend in our analysis
because generalized linear models assume a linear relationship between the response variable and the
predictor variables. Other model types such as generalized additive models can improve predictions of
non-linear trends [46]. Species distribution models [46] such as those developed through MaxEnt [49],
provide a highly flexible workflow for mapping the distribution of plants, and have been used to map
the presence of lichens [50]. Future research could incorporate these approaches to generate lichen
maps for caribou conservation.

In our study, lichen presence was positively associated with canopy closure (Table 5). Conversely,
lichen biomass was negatively associated with canopy closure (Table 7). Lichen growth is typically
maximized at intermediate levels of canopy closure (~40%) [51], beyond which the growth of mosses is
promoted at the expense of lichens [6]. Thus, lichens may require a minimum amount canopy closure to
be present at a site but experience reduced growth at high levels of canopy closure, perhaps explaining
the opposing responses of lichen presence and biomass observed here. In the oldest stands we sampled
(70−119 years old), high mortality of mature trees created large gaps in the canopy and increased
sun exposure at ground level. This promoted the growth of juniper shrubs (Juniperus communis L.),
which often covered the ground lichens, possibly reducing access to foraging caribou. We had limited
observations in overmature conifer stands (n = 14) and suggest future work should measure lichen
biomass and caribou habitat selection in mature (50−70 years old) and overmature stands (≥70 years
old) to estimate the optimal renewal period for caribou habitat. This information is essential to develop
effective fire response and resource management plans that consider caribou conservation.

Most previous studies quantifying lichen over large areas only used remote sensing [9,18,21,22] or
environmental [13,14] data. We anticipated that combining forest structure and topographic attributes
with remote sensing attributes would provide the best results. Contrary to our expectations, models
with only forest structure and/or topographic attributes were just as predictive as models including
remote sensing attributes. The candidate models for both lichen presence and lichen abundance
had small differences between AICc scores (∆AICC < 2) (Table 4; Table 6), which would typically
indicate support for multiple candidate models [52]. However, the best candidate model for lichen
presence and lichen abundance was the base model, the most parsimonious of the candidate set,
only containing ecosite (i.e., dense conifer vs. sparse conifer), time-since-fire and canopy closure as
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covariates. The penalty weight assigned by AICc to more complex models [52] indicates that the
additional topographic and remote sensing covariates did not improve explanatory power over the
base model.

The lack of support for candidate models with remote sensing covariates could arise from multiple
sources. First, environmental and remote sensing covariates are often correlated. We controlled for
collinearity within models but, because we were interested in predicting lichen abundance rather
than inferring ecological relationships, we did not account for correlation amongst models. Second,
the coarse spatial resolution of Landsat imagery can cause trees to mask the spectral signature of
ground lichens [14]. Keim et al. (2017) [9] report an R2 = 0.74 for a lichen map generated using
QuickBird satellite imagery (2.5 m pixels) and LiDAR data (1 m pixels). They found that QuickBird
imagery predicted lichens better than SPOT (6 m pixels) and Landsat (30 m pixels) imagery in their
study area in the continuous boreal forest of northeastern Alberta [9]. We suggest that the continued
incorporation of finer resolution satellite [9] or UAV imagery [53] may help improve the accuracy of
lichen mapping in years to come.

The lichen abundance map we generated in this study (Figure 7) highlights the patchy distribution
of lichens on the landscape, which is driven primarily by the prevalence of fire in the study area.
Lichen-rich forest is relatively restricted on the landscape, only occurring in mature, sparse conifer
ecosites (≥50 years post-fire), where biomass often exceeds 3000 kg/ha (Figure 5). Historically,
many researchers used habitat type as a proxy for lichen abundance [54–56]. However, some studies
have explicitly measured lichen availability and suggest caribou preferentially select stands with
≥3000 kg/ha of ground lichens as winter habitat [8,57,58]. Given that animal nutrition is necessarily
related to the amount of available food, ecologists and land managers should strive to understand
caribou’s use of lichen biomass across time and space. In particular, identifying the use of lichen
biomass during different seasons could be used to delineate nutritionally important habitat patches.

The relatively low accuracy of our map (R2 = 0.39) is unsurprising given we used relatively coarse
spatial covariates (30 m pixels) to model the presence and abundance of lichens, which are responding
to environmental conditions at a very small scale (i.e., microsite). However, we feel that our lichen map
provides a reasonable estimation of lichen biomass across our study area and suggest our modelling
approach provides a useful framework for researchers to apply and improve in future lichen mapping
projects. Most previous research mapped lichen cover [9,13,18], but we suggest lichen biomass is
more biologically relevant than lichen cover as biomass is more closely related to animal energetics
and fitness [26]. We stress the importance of validating biomass conversion factors and landscape
covariates for new study areas, as growing conditions for lichen may vary. For example, in northern
Alberta, peatlands are a dominant landscape feature. Previous studies indicate peatlands support
much lower lichen abundance than upland sites [35], however raised ‘islands’ of drier peat within bogs
can provide better conditions for lichen growth and support locally abundant ground lichens [9,11].
In other parts of the boreal forest, sandy areas dominated by jack pine support thick mats of ground
lichens [33]. Integrating abiotic information, such as substrate type, groundwater depth and terrain
ruggedness into spatial models may improve lichen predictive mapping, especially when the study
area spans multiple biophysical regions. We incorporated data from numerous sources, data types
and spatial resolutions to map the abundance of lichens in our study (Table 2). Researchers must be
cognizant of the vintage of the source data in each layer they incorporate in their modelling framework
to ensure temporal consistency. We suggest future research should focus on incorporating multiple
sources of information, including time-since-fire and attributes derived from high resolution satellite
imagery (e.g., spectral values, landcover type, forest structure [59]). This will improve spatio-temporal
consistency and repeatability. We also encourage researchers to ensure they are selecting the most
appropriate model for predicting the distribution of lichens and suggest utilizing generalized additive
models [48] may be of particular utility to address some of the deficiencies of this study. Once a lichen
abundance map has been generated, we encourage researchers to conduct independent validation
using additional field sampling to improve certainty in their spatial predictions.
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5. Conclusions

In this study, we propose a modelling framework for predicting the abundance of ground lichens
in the boreal forest. We show that ecosite, time-since-fire and canopy closure are important drivers
of lichen presence and abundance. We encourage researchers to use and improve our modelling
framework to generate spatial predictions of lichen across caribou ranges. There is an increasing
emphasis in wildlife ecology on including more biologically relevant variables in habitat selection
analyses [60]. Quantifying nutritional landscapes can help researchers and managers measure how
food availability changes with succession and varies by habitat type. Explicitly measuring selection
for forage abundance can aid in the identification of high-quality habitat and to ensure continuous
availability through resource planning and fire response. Mapping forage resources can also be
used to test hypotheses, such as the effect of forage abundance on fitness or the tradeoff between
nutrition and predator avoidance. Lichen abundance maps should be applied by researchers to help
improve our understanding of caribou foraging ecology and support better conservation and resource
management decisions.
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Appendix A

To validate the cover-to-biomass conversion factors [33] for our study area, we collected a
subsample of the lichen material in one 1 m2 quadrat at 34 randomly selected sampling locations.
Within each selected quadrat, we placed a 25 cm × 25 cm subplot and recorded the percent cover of all
six lichen species. We then collected all thallus material of each Cladonia spp. ground lichen in the
subplot, placing each species in a separate, labelled paper bag.

We air-dried our lichen samples after returning from the field to prevent mold and decomposition.
We later cleaned the lichens of debris (moss, needles, etc.) and dried each sample in a biomass oven at
60 ◦C for 24 h. We weighed the dried samples using a digital scientific balance (measured in grams to
two decimal places) and recorded a g/cm2 value for each sample by dividing the weight of the dried
sample (g) by the area it covered in the subplot (cm2). We derived a cover-to-biomass conversion factor
(g/cm2) for each lichen species by taking the average g/cm2 for all samples of each species.

We compared our conversion factors to McMullin’s using two-tailed T-tests. We considered
conversion factors not statistically different at an α-level = 0.05. The validation procedures could not
be performed for C. stellaris or C. stygia because their rarity precluded them from being present in
the destructive samples. There was considerable overlap in the conversion factors for each lichen
species (Figure A1). In the two-tailed T-test for each lichen species, the p-values (all ≥ 0.43) exceeded
the α-level = 0.05, indicating the conversion factors developed by McMullin do not differ significantly
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from those recorded in this study. We therefore concluded that McMullin’s conversion factors were
appropriate for our study area and applied them to our subsequent analyses.
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Figure A1. Mean biomass (g/cm2) recorded for each Cladonia spp. ground lichen destructively sampled
by McMullin [33] and Silva (this study). Error bars represent ±1 SE.

Appendix B

To estimate lichen biomass in each 1 m2 quadrat, we visually estimated the percent cover of each
lichen species and converted to proportions (Table A1). We multiplied each proportion by 10,000
(10,000 cm2 = 1 m2) to determine the square centimetre area covered by each lichen species in the
quadrat. We multiplied the square centimetre area covered by each lichen species by its conversion
factor to derive a biomass estimate (g/m2). We added the biomass of all species present in the quadrat
to determine a biomass estimate for the quadrat (Table A1).

Table A1. Example calculation to estimate the biomass of Cladonia spp. ground lichens in a 1 m2

quadrat. Species classification and conversion factors are adapted from McMullin et al. (2011) [33].

Lichen Species Quadrat 1

Cover cm2 Biomass

C. rangiferina 0.10 0.10 × 10,000 = 1000 cm2 1000 cm2
× 0.10500 g/cm2 = 105.00 g

C. arbuscula 0.15 0.15 × 10,000 = 1500 cm2 1500 cm2
× 0.08593 g/cm2 = 128.90 g

C. uncialis 0.25 0.25 × 10,000 = 2500 cm2 2500 cm2
× 0.10263 g/cm2 = 256.58 g

C. gracilis 0.00 0 cm2 0 g
C. stellaris 0.20 0.20 × 10,000 = 2000 cm2 2000 cm2

× 0.11618 g/cm2 = 232.36 g
C. stygia 0.05 0.05 × 10,000 = 500 cm2 500 cm2

× 0.15145 g/cm2 = 75.72 g

Quadrat Biomass 105.00 + 128.90 + 256.58 + 0 + 232.36 + 75.72 = 798.56 g

We repeat this procedure (Table A2) for all five 1 m2 quadrats along the transect, resulting in five
estimates of lichen biomass per sampling location (Table A2). To determine the stand-level lichen
biomass for the sampling location (kg/ha), we add the biomass estimates for the five quadrats (g/5 m2).
We then divide by 1000 (1000 g = 1 kg) to convert to kilograms and multiply the result by 2000 (5 m2

×

2000 = 10,000 m2 = 1 ha), resulting in a stand-level biomass estimate (Table A2; kg/ha).



Forests 2019, 10, 962 16 of 23

Table A2. Example calculation to derive a stand-level estimate of lichen biomass (kg/ha) for a sampling location using the protocol described in this paper. Species
classification and conversion factors are adapted from McMullin et al. (2011) [33].

Quadrat 1 Quadrat 2 Quadrat 3 Quadrat 4 Quadrat 5

Lichen Species Cover cm2 Biomass Cover cm2 Biomass Cover cm2 Biomass Cover cm2 Biomass Cover cm2 Biomass

C. rangiferina 0.10 1000 105.00 0.05 500 52.50 0.20 2000 210.00 0.10 1000 105.00 0.00 0 0.00
C. arbuscula 0.15 1500 128.90 0.15 1500 128.90 0.00 0 0.00 0.15 1500 128.90 0.00 0 0.00
C. uncialis 0.25 2500 256.58 0.05 500 51.32 0.00 0 0.00 0.07 700 71.84 0.00 0 0.00
C. gracilis 0.00 0 0.00 0.00 0 0.00 0.01 100 14.90 0.00 0 0.00 0.00 0 0.00
C. stellaris 0.20 2000 232.36 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00
C. stygia 0.05 500 75.73 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00

Sum 798.56 Sum 232.71 Sum 224.90 Sum 305.74 Sum 0.00

Quadrat Biomass 798.56 + 232.71 + 224.90 + 305.74 + 0 = 1561.91 g

Stand-level Biomass 1561.91 g ÷ 1000 g/kg = 1.56 kg
1.56 kg × 2000 = 3120 kg/ha
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Appendix C

We used nine environmental covariates to construct a set of candidate models for predicting
lichen presence and lichen abundance: ecosite, canopy closure, time-since-fire, elevation, slope,
blue reflectance, short-wave infrared (SWIR2) reflectance, normalized difference vegetation index
(NDVI) and normalized difference moisture index (NDMI). The pre-processing details for these datasets
are described in the following sections.

C.1.1. Ecosite

We created an ecosite layer from the primary ecosite attribute (PRI_ECO) [61] for each polygon
in the Forest Resource Inventory datasets for Woodland Caribou Provincial Park (2009) and the
surrounding Forest Management Units: Kenora (2015), Red Lake (2013) and Whiskey Jack (2015) [39].
We grouped the 68 ecosites present in our study area into eleven broad categories: sparse conifer,
dense conifer, anthropogenic, bog, fen, hardwood swamp, mixedwood, rock, shrubland and upland
mixed conifer (Table A3). We assigned the simplified forest classification to each inventory dataset,
merged them together, clipped them to the study area and created an ecosite raster in ArcGIS 10.5 [36].
We only sampled sparse conifer (ecosite B012) and dense conifer (ecosite B049) in our study, so the
ecosite variable used for modelling was a factor with two levels: 1 = sparse conifer, 2 = dense conifer.
The beta coefficient for ecosite in the lichen presence and lichen abundance models indicates the effect
of dense conifer relative to sparse conifer. Unsampled ecosites were assigned ‘NoData’ in the lichen
presence and abundance rasters.

Table A3. Categorization of boreal ecosites of Ontario [12] into eleven categories used to model lichen
presence and lichen abundance for the study area.

Ecosite Number Ecosite Name Landcover Category

12 Very shallow, dry to fresh: pine–black spruce conifer Sparse conifer

49 Dry to fresh, coarse: jack pine–black spruce
dominated Dense conifer

189 Constructed vertical surface Anthropogenic
195 Active fine clean fill Anthropogenic
197 Pavement/concrete Anthropogenic
198 Compact gravelled surface Anthropogenic
997 Anthropogenic Anthropogenic
999 Anthropogenic Anthropogenic

126 Treed bog Bog
127 Organic poor conifer swamp Bog
128 Organic intermediate conifer swamp Bog
129 Organic rich conifer swamp Bog
137 Sparse treed bog Bog
138 Open bog Bog
222 Mineral poor conifer swamp Bog
223 Mineral intermediate conifer swamp Bog

136 Sparse treed fen Fen
139 Poor fen Fen
140 Open moderately rich fen Fen
141 Open extremely rich fen Fen
146 Open shore fen Fen
147 Shrub shore fen Fen

130 Intolerant hardwood swamp Hardwood swamp
133 Hardwood swamp Hardwood swamp

14 Very shallow, dry to fresh: conifer Mixedwood
16 Very shallow, dry to fresh: aspen–birch hardwood Mixedwood
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Table A3. Cont.

37 Dry, sandy: spruce–fir conifer Mixedwood
40 Dry, sandy: aspen–birch hardwood Mixedwood
52 Dry to fresh, coarse: spruce–fir conifer Mixedwood
55 Dry to fresh, coarse: aspen–birch hardwood Mixedwood
67 Moist, coarse: spruce–fir conifer Mixedwood
70 Moist, coarse: aspen–birch hardwood Mixedwood
71 Moist, coarse: elm–ash hardwood Mixedwood
88 Fresh, clayey: aspen–birch hardwood Mixedwood

101 Fresh, silty to fine loamy: spruce–fir conifer Mixedwood
104 Fresh, silty to fine loamy: aspen–birch hardwood Mixedwood
119 Moist, fine: aspen–birch hardwood Mixedwood

7 Active Mineral Barren Rock
158 Cliff Rock
159 Open cliff Rock
161 Bedrock shoreline Rock
162 Open bedrock shoreline Rock
164 Rock barren Rock

62 Moist, coarse: sparse shrub Shrubland
63 Moist, coarse: shrub Shrubland
96 Fresh, silty to fine loamy: shrub Shrubland

134 Mineral thicket swamp Shrubland
135 Organic thicket swamp Shrubland
142 Mineral meadow marsh Shrubland
143 Rock meadow marsh Shrubland
144 Organic meadow marsh Shrubland

24 Very shallow, humid: black spruce–pine conifer Upland mixed conifer
33 Dry, sandy: red pine–white pine conifer Upland mixed conifer
34 Dry, sandy: jack pine–black spruce dominated Upland mixed conifer
35 Dry, sandy: pine–black spruce conifer Upland mixed conifer
48 Dry to fresh, coarse: white pine conifer Upland mixed conifer
50 Dry to fresh, coarse: pine–black spruce dominated Upland mixed conifer
65 Moist, coarse: pine–black spruce conifer Upland mixed conifer
68 Moist, coarse conifer Upland mixed conifer
82 Fresh, clayey: black spruce–jack pine dominated Upland mixed conifer
83 Fresh, clayey: pine–black spruce conifer Upland mixed conifer
85 Fresh, clayey: spruce–fir conifer Upland mixed conifer

98 Fresh, silty to fine loamy: black spruce–jack pine
dominated Upland mixed conifer

99 Fresh, silty to fine loamy: pine–black spruce conifer Upland mixed conifer
100 Fresh, silty to fine loamy: cedar (hemlock) conifer Upland mixed conifer
114 Moist, fine: pine–black spruce conifer Upland mixed conifer
116 Moist, fine: spruce–fir conifer Upland mixed conifer

C.1.2. Time-Since-Fire

We created our own time-since-fire layer using the fire perimeters captured into two provincial
GIS polygon datasets: FiresByDecade (1929-1959) [40] and Fire Disturbance Area (1960–2013) [41].
We clipped the two datasets to the extent of the study area, merged them and converted the new layer
to a raster format in ArcGIS 10.5 [36]. We calculated time-since-fire by subtracting the fire year from
2014 (the study year for producing the lichen map). Areas unaffected by fire since 1929 were assigned
a uniform value of 100.

C.1.3. Canopy Closure

We created a canopy closure layer from the overstorey crown closure attribute (OCCLO) [61] for
each polygon in the Forest Resource Inventory datasets for Woodland Caribou Provincial Park (2009)
and the surrounding Forest Management Units: Kenora (2015), Red Lake (2013) and Whiskey Jack
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(2015) [39]. We merged the individual inventory datasets together, clipped them to the study area and
created a single canopy closure raster in ArcGIS 10.5 [36].

Simple linear regression indicated poor agreement (R2
adj = 0.17) between our canopy closure

layer and our field observations. To improve the accuracy of our canopy closure layer, we used
generalized linear models (family = Gamma, link = logit) to predict our field observations as a
function four environmental covariates: canopy closure derived from the inventory datasets (OCCLO),
ecosite (1 = sparse conifer, 2 = dense conifer), time-since-fire (TSF) and normalized difference vegetation
index (NDVI) (Table A4).

Table A4. Name and structure of candidate models used to create the canopy closure layer for
modelling lichen presence and abundance. Obs = canopy closure recorded in the field; OCCLO =

canopy closure derived from the inventory datasets; TSF = time since fire (years), NDVI (normalized
difference vegetation index).

Model Name Model Structure

Null Obs ~ OCCLO
Ecosite Obs ~ Ecosite + OCCLO

TSF Obs ~ TSF + OCCLO
NDVI Obs ~ NDVI + OCCLO

Ecosite + TSF Obs ~ Ecosite + TSF + OCCLO
Full Obs ~ Ecosite + TSF + NDVI + OCCLO

We ranked the candidate models by AICc score [36] and considered the model with the lowest
AICc score as the best of the candidate set. The model with the lowest AICc score included canopy
closure derived from the inventory datasets, ecosite, time-since-fire and NDVI (Table A5).

Table A5. Ranking of candidate models used to create the canopy closure layer for modelling lichen
presence and abundance. k = number of fixed effects (+ 1 for intercept), wi = Akaike weight. TSF =

time-since-fire, NDVI = normalized difference vegetation index.

Model Name k log likelihood AICc ∆AICc wi

Full 4 −436.16 885.15 0 0.91
Ecosite 2 −441.03 890.44 5.29 0.06

Ecosite + TSF 3 −440.71 892.01 6.86 0.03
NDVI 2 −444.63 897.65 12.50 0.00
Null 1 −452.89 912.01 26.86 0.00
TSF 2 −452.87 914.13 28.98 0.00

The model summary for the top model is presented in Table A6. We interpolated this top model
across the study area using the raster package in R version 3.6.0 [37,38] to create the canopy closure
layer we used to model lichen presence and abundance. Simple linear regression indicated the new
canopy closure layer showed greater agreement with our field observations (R2

adj = 0.40).

Table A6. Model summary for the model used to create the canopy closure layer for modelling lichen
presence and abundance. TSF = time-since-fire, NDVI = normalized difference vegetation index,
OCCLO = canopy closure derived from the forest inventory datasets. SE = standard error.

Covariate Coefficient SE z-Value p-Value

Ecosite −8.15 × 10−3 2.01 × 10−3 −4.06 9.55 × 10−5

TSF −4.978 × 10−5 2.86 × 10−5 −1.742 0.08
NDVI −4.14 × 10−2 1.30 × 10−2 −3.19 <0.01

OCCLO −1.19 × 10−4 4.87 × 10−5 −2.44 0.02
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C.1.4. Elevation & Slope

Elevation (metres above sea level) was obtained directly from a provincial digital elevation
model [44]. Slope values were derived from the digital elevation model using ArcMap 10.5 [36].

C.1.5. Remote Sensing Covariates

We derived our remote sensing covariates from the spectral bands of two Landsat 8 Surface
Reflectance datasets (captured July 31, 2014) [42,43]. The individual spectral bands used in this
study are:

Band 2: Blue (Blue reflectance)
Band 4: Red (used in NDVI)
Band 5: Near infrared (NIR; used in NDVI and NDMI)
Band 6: Shortwave infrared 1 (SWIR1; used in NDMI)
Band 7: Shortwave infrared 2 (SWIR2 reflectance)

The equations for the spectral indices are:

NDVI = [NIR − Red]/[NIR + Red] (A1)

(normalized difference vegetation index) [19].

NDMI = [NIR − SWIR1]/[NIR + SWIR1] (A2)

(normalized difference moisture index) [20].
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