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Abstract: Although urban trees are proposed as comparatively economical and eco-efficient biofilters
for treating atmospheric particulate matter (PM) by the temporary capture and retention of PM particles,
the PM removal effect and its main mechanism still remain largely uncertain. Thus, an understanding
of the removal efficiencies of individual leaves that adsorb and retain airborne PM, particularly in the
sustainable planning of multifunctional green infrastructure, should be preceded by an assessment
of the leaf microstructures of widespread species in urban forests. We determined the differences
between trees in regard to their ability to adsorb PM based on the unique leaf microstructures and
leaf area index (LAI) reflecting their overall ability by upscaling from leaf scale to canopy scale.
The micro-morphological characteristics of adaxial and abaxial leaf surfaces directly affected the PM
trapping efficiency. Specifically, leaf surfaces with grooves and trichomes showed a higher ability
to retain PM as compared to leaves without epidermal hairs or with dynamic water repellency.
Zelkova serrata (Thunb.) Makino was found to have significantly higher benefits with regard to
adsorbing and retaining PM compared to other species. Evergreen needle-leaved species could be a
more sustainable manner to retain PM in winter and spring. The interspecies variability of the PM
adsorption efficiency was upscaled from leaf scale to canopy scale based on the LAI, showing that
tree species with higher canopy density were more effective in removing PM. In conclusion, if urban
trees are used as a means to improve air quality in limited open spaces for urban greening programs,
it is important to predominantly select a tree species that can maximize the ability to capture PM by
having higher canopy density and leaf grooves or trichomes.

Keywords: adsorption; leaf surfaces; microstructure; particulate matter; roadsides; urban forests

1. Introduction

Urban forests have a wide range of benefits, particularly the purification of air and water quality,
mitigation of urban heat islands [1,2], space services for recreational activities [3], and enhancement
of the physical and mental health of urban dwellers [4,5]. In recent years, air pollution, including
airborne particulate pollutants in urban areas, has become a serious problem in developed and
developing countries. It has a detrimental effect on humans, as well as on living organisms, plants,
and environments [6]. The ability of plants to absorb and metabolize gaseous atmospheric pollutants
and nanoparticles has been reported in previous studies. Thus, in recent years, the air purification
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service of urban trees has become increasingly important, as they adsorb atmospheric particulate
matter (PM), linking adaptation, mitigation, and sustainable management to air pollutants.

The PM is a major atmospheric pollutant with aerodynamic particle diameters in the range of
0.001-100 um and is typically monitored as coarse particulate matter (PMyg), less than 10 um, and fine
particulate matter (PMy5), less than 2.5 pum, in aerodynamic diameter [7]. PM is widely recognized
as one of the pollutants that are most harmful to natural and human health and is estimated to be
responsible for approximately 8 million premature deaths annually worldwide. Since the International
Agency for Research on Cancer (IARC) designated PM; 5 as a Group 1 carcinogen to humans in 2013 [8],
the demand for diversification of urban air quality management, including airborne particulates,
is increasing in order to enhance human health and environmental welfare.

Trees within urban life zones are one of the key elements in mitigating and reforming atmospheric
environmental issues, but many planters do not take into account the potential of urban policy and
strategy. Improving particle deposition rates on plant leaf surfaces can reduce the concentration of
suspended PM near the surface. Therefore, plants have the functional advantage of reducing the effects
of air pollutant exposure on human health in urban areas; this is one of the recognized ecosystem
services of urban vegetation [9,10]. Compared to other surfaces in the city, plants, especially coniferous
trees, can improve the adsorption and deposition of fine dust particles owing to the finely divided
structure of their leaves. Conifers have a larger collection surface per unit area and reduced laminar
boundary layer, which limits particle adsorption [11].

Studies are underway to investigate the adsorption and/or absorption of PM by plant
species [10,12-18]. Nevertheless, there is a lack of knowledge about PM deposition on the leaves of
urban trees. Given the limited area of urban green spaces, there is a need to select the most effective
plant species to mitigate PM for urban greening. Although many studies have focused on quantifying
the amount of PM adsorbed on plant leaves, there is still a knowledge gap about the potential capacities
for PM accumulation on the leaf surface among plant species.

Plants adsorb PM on their leaf surfaces and absorb gaseous pollutants through the leaf pores,
thereby directly removing air pollutants and improving air quality. The ability of trees to adsorb
and retain PM air pollutants depends on several factors such as the canopy type, leaf and branch
density, and leaf cuticular micromorphology (e.g., grooves, trichomes, and wax). In addition, there are
important interactions between local meteorological conditions and ambient PM concentrations [18-20].

Given the difficulty of reducing airborne PM in the short term, it is necessary to select plants with
high efficiency at removing the particulate air pollution in urban environments and to reflect them in
air quality improvement policies. Since the leaf surface characteristics of plants are known to reflect
the ability of plants to adsorb and retain PM [21], the ability of plants to remove suspended particulate
pollutants can vary among species. Depending on the amount of PM mass deposited on the leaf
surface of trees, tree species might vary their own critical physiological, biochemical, morphological,
and architectural features and growth [22-24].

The primary aim of this study was therefore to demonstrate the amount of PM adsorbed by
major tree species, especially species that are commonly planted in both urban forests and roadsides,
and to evaluate tree species that are highly effective at capturing PM particles from the atmosphere
in temperate zone trees. The second aim was to determine whether PM can cause physiological and
biochemical deterioration when tree species are exposed to ambient PM levels in urban green spaces.

2. Materials and Methods

2.1. Site Description

This study was performed to detect the potential capacity of several tree species for adsorbing
particulate pollutants on their leaf surfaces. Leaf sampling and monitoring of trees used in the field
experiment were conducted in the Seoul Forest Park and Yangjae Citizen’s Forest (hereafter denoted
as SFP and YCEF, respectively) on the northern and southern sides of Seoul, South Korea (Figure 1).
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These areas appropriately represent urban air quality in South Korea. The SFP and YCF, which
are surrounded by roadsides, are 480,994 m? (32°32.6’ N, 127°2.4’ E) and 258,991 m? (37°28.2" N,
127°2.2" E), respectively, and are managed forests mainly comprising Korean red pine (Pinus densiflora
Siebold & Zucc.), Korean flowering cherry (Prunus yedoensis Matsum.), sawleaf zelkova (Zelkova serrata
(Thunb.) Makino), American sycamore (Platanus occidentalis L.), and maidenhair tree (Ginkgo biloba L.).
We hereinafter used the terms inside (SFP-IN, YCF-IN) and roadsides (SFP-OUT, YCF-OUT) of the
Seoul Forest Park (SFP) and Yangjae Citizen’s Forest (YCF), respectively.
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Figure 1. Location of two sampling sites in Seoul, South Korea: Seoul Forest Park (SFP) and Yangjae
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Citizen’s Forest (YCF). National Geographic Information Institute.

Data on the average PM; and PM; 5 concentrations for the past five years were obtained from the
Seoul Metropolitan Government. Based on the annual average concentrations, the PM;g and PM; 5
concentrations at the two sites were similar to those at Seoul (Table 1).

Table 1. Annual averages of airborne PMjy and PM; 5 concentrations in Seoul, Seongdong District,
and Seocho District during a 5-year period (2013-2017).

Site PMlo PM2.5
Seoul 4541 24.6
Seongdong District 2 474 244
Seocho District 2 47.8 24.1

1 Annual average concentrations of airborne PM;y and PM, 5 particles in Seoul; 2 Two districts in Seoul, Seongdong
District and Seocho District, are local government districts located on the northern and southern sides of Seoul and
located in Seoul Forest Park (SFP) and Yangjae Citizen’s Forest (YCF), respectively.

2.2. Data Collection

In the present study, we monitored and tested the potential adsorption capacity of PM particles
throughout the growing season on the leaf surface of five representative species that frequently occur
in the urban forests and roadsides of Seoul (see Section 2.3 for more details). The most commonly
planted tree species in the Seoul area’s living zones are G. biloba, P. occidentalis, Z. serrata, P. yedoensis,
and P. densiflora, based on the public data service [25]. For each detected tree species on the inside
and outside of the two urban forests, nine sample trees for each species were selected, and the
measurements of tree diameter and height were determined using a digital dendrometer (Criterion™
RD1000, Laser Technology, USA) with the aid of a laser distance meter (Leica DISTO™ A5; Leica
Geosystems, Heerbrugg, Switzerland).
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Prior to the analysis procedure, all leaf samples were cut into branches, carefully performed so
that the number of particulates on the leaf surfaces was not affected. Leaf samples to determine PM
adsorption capacity and air pollution tolerance index (APTI) were picked at a tree height of 3 to 6 m
and obtained from branches at the outer part of the canopy exposed to the atmosphere. The samples
were also collected three times during four consecutive months (June, July, August, and September
of 2018) from each site. Three to five branches were cut from selected each tree and then placed
directly in individually labeled paper bags. Leaf samples for ascorbic acid and pH analysis were
detached from the branches, immediately packed with aluminum foil to avoid contamination, frozen in
liquid nitrogen, and thus stored in deep freezer at —80°C until biochemical analysis. Leaf samples for
relative moisture content and chlorophyll analysis were stored in an icebox. After sample processing,
all samples collected from the sites were immediately transferred to the laboratory. In addition,
the concentration data on individual airborne particulates including the total suspended particulate
matter were directly obtained 72 times in both urban forests and roadsides using a DustMate handheld
PM monitor (Turnkey Co. Ltd., British) over a three-month field study at each site.

2.3. PM Particles Deposited on a Unit Leaf Area Basis (ULA)

The adsorption of PM was measured by modifying the methods of [26] and [27]. Five tree
species as mentioned above were tested for their capacity to capture airborne particulates through
their leaf surfaces. To recover the air-suspended particulates captured on leaf surfaces, leaf samples
(as mentioned in Section 2.2) of each species were washed sequentially by water cleaning and ultrasonic
cleaning. First, twelve leaves of each species (seventy samples in the case of pine needles) were washed
by immersing them in an individual beaker filled with 270 mL of deionized water and then stirred for
10 min using a shaker. Second, the beaker containing leaves washed with deionized water was put
directly into an ultrasonic cleaning machine and homogeneously cleaned by an ultrasonic wave of 500W
for 1 min. After the leaves were ultrasonically washed, 270 mL of the obtained eluent was dispensed,
with 90 mL put into each of three beakers. We also measured their leaf area after washing, using
WinFOLIA PRO 2013a software (Regent Instruments Inc., Quebec, Canada). Before the experiment,
all test beakers were thoroughly dried after ultrasonic cleaning and weighed using an electronic
balance (W1). Each beaker containing eluting solvent was uniformly covered with a clean filter paper
to prevent the pollution of other particulates. Next, all beakers were dried for 3 days at 70 °C using an
oven dryer until the moisture completely evaporated, cooled in the balance chamber, equilibrating the
temperature and humidity, and immediately weighed again using an electronic balance (W2). The PM
mass filtered through each washing step was calculated as W2-W1 and represented as the masses of
particulates per ULA (mg-cm~2).

2.4. Quantifying the Overall PM Removal Capacity Including Leaf Area Index (LAI) by Different Tree Species

The leaves of different plants have different surface areas and are distributed differently depending
on the space. The total amount of PM adsorption on leaves of different tree species may vary depending
on the leaf surface area available for PM capture [28]. Because the high LAI value corresponding to a
very dense canopy is an important factor in PM deposition based on scaled up ecosystem scale from
individual leaf level deposits, we hypothesized that the adsorption of particulates on leaf surfaces
would be equivalent to different parts of the tree [29].

We developed an LAl-based method for estimating the amount of PM adsorbed in green leaf area
per unit ground surface. The LAI was measured using an LAI-2000 Plant Canopy Analyzer (Li-Cor).
After the LAI measurement, expressed as the ratio of the leaf area sum per unit land area (m?-m~2),
the PM-capturing capacity of different tree species (mg-cm~2) was calculated by multiplying the LAI
value by the PM adsorption amount per ULA values.

Allometric equations are most frequently used to estimate the total leaf area (TLA) based on the
diameter at breast height (DBH) representing tree species from different environments. The TLA values
from the DBH of trees at each monitoring site were calculated using the prediction equation model as
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shown in Table 2 [30-32]. The PM-capturing capacity of different tree species (mg-cm~2) based on the
TLA using the prediction equation model was calculated by multiplying the TLA value by the amount
of PM adsorption per ULA values.

Table 2. Allometric equations to calculate TLA values using DBH for tree species.

Species Leaf Morphology Allometric Equation (m?tree~1) R? References
P. densiflora EC! y = 0.2988 x (DBH2) — 7.5336 x (DBH) + 74.075 0.94 [30]
7. serrata DC?2 y = EXP(4.033) x EXP((0.045 x DBH) —1) x EXP(0.12706/2) ~ 0.91 [31]
P. occidentalis DC y = EXP(5.198) x EXP((0.021 x DBH) —1) x EXP(0.23508/2)  0.74 [31]
P. yedoensis DC y = 3.036 x (EXP(0.09 x DBH) —1) 0.80 [32]
G. biloba DC y = EXP(3.410) x EXP((0.053 x DBH) —1) x EXP(0.30207/2) ~ 0.86 [31]

1 Ec: evergreen coniferous species; 2 Dc: deciduous broad-leaved species.

2.5. Calculation of Air Pollution Tolerance Index (APTI)

APTI was adopted to assess their tolerance level to air pollutants based on the below four
parameters. APTI as a marker to evaluate plant tolerance to air pollutants has been evaluated from
four physiological and biochemical parameters: leaf extract pH (pH), relative water content (RWC),
total chlorophyll (TChl), and ascorbic acid (AsA) [6,33,34]. For each of these parameters, AsA serves
as an important coenzyme in multiple biological metabolism reactions, TChl acts as one of the main
essential parts of energy production in plants, and directly related to the health status of plants based
on stress environmental conditions, RWC is a useful indicator for the performance of cell protoplasmic
permeability, and intracellular pH regulation is required for trafficking network of proteins and
transporting small molecule such as hormones [33,34].

In order to measure the degree of susceptibility to air pollution in each tree species, three fully
mature leaves were randomly selected and collected. Leaf samples were immediately put in a plastic
bag and stored separately in an icebox or in liquid nitrogen. The analysis of each parameter for
APTI was performed as previously described [6,33-36]. APTI values were calculated using the
following formula:

APTI = (A % (T + P) + R)/10 1)

where A is the AsA (mg'g_1 FW, [35]), T is the TChl (mg'g_1 FW, [6]), P is the leaf extract pH [34],
and R is the RWC (%, [36]).

2.6. Statistical Analysis

Statistical analysis of all data was performed using IBM SPSS Statistics 25 software (SPSS Inc.,
IBM Company Headquarters, Chicago, IL, USA). One-way analysis of variance (ANOVA) was used
to examine statistically significant differences in the PM adsorption based on ULA, LAI, and TLA
values on five tree species in urban forests and roadsides. Then, ANOVA was performed to identify
statistically significant differences between groups, and Duncan’s multiple range test was used to test
the significance of differences between groups. The statistical significant differences between urban
forests and roadsides within each site of SFP and YCF were performed using a paired-samples ¢-test.

3. Results

3.1. Comparison of Particulate Matter between Urban Forests and Roadsides

According to the surveyed annual average of PMjy and PM, 5 concentrations in Seoul for the last
five years [37], the average PM;g and PM; 5 of Seoul were 45.4 and 24.6 ug'm‘B, the average PMjp and
PMj, 5 of Seongdong-gu were 47.4 and 24.4 ug-m_3, and the average PM;y and PM; 5 of Seocho-gu
were 47.8 and 24.1 pg-m_3, respectively (Table 1). The maximum concentration of PMj; 5 in 2013 was
94 ug-m=3, and the number of PM, 5 warning alerts issued was one per year. On the other hand,
the maximum concentration of PM, 5 in 2017 was 157 pg'm_B, and the number of alerts issued about
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PM, 5 was five per year (data not shown). This reflects the recent trend toward increased issuance
of “warning” notifications about PM; 5 concentrations, which are highly toxic to humans in urban
areas. As shown in Figure 2, the ambient PM concentrations of urban forests and roadsides during
the study period were found to be lower compared to the Korean air quality 24 h average standard
(i.e., 100 ug-m_3 for PM;g and 35 ug-m_3 for PM;5), especially the concentrations of PM in urban
forests, which were considerably lower than those of roadsides. The PM particles of roadsides at sites
of SFP and YCF were approximately 2-fold higher in TSP, PM;g, PM; 5, and PM; g compared to urban
forests, while these particles of urban forests showed the levels of decreased pollutants of almost 7% to
69% at urban forests than at roadsides (Figure 2).
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Figure 2. Comparison of particle concentrations on PM pollutants including TSP, PM;g, PM; 5,
and PM; o at urban forests and roadsides of (a) Seoul Forest Park (SFP-IN, SFP-OUT) and (b) Yangjae
Citizen’s Forest (YCF-IN, YCF-OUT). Each bar represents the mean of 72 replicates. Error bars refer to
the standard deviation (SD) of the mean. Light green bars, SFP-IN; grey bars, SFP-OUT; green bars,
YCEF-IN; black bars, YCF-OUT. Asterisks represent significant differences between urban forests and
roadsides (i.e., SFP-IN and SFP-OUT; YCF-IN and YCF-OUT) within each site (paired t-test, * p < 0.05;
** p <0.01; *** p < 0.001; ns, not significant).

3.2. PM Adsorption of a ULA Basis on Different Tree Species

The present study was focused on estimating the potential capacity of five major street trees in
Seoul (South Korea) to adsorb suspended particulate pollutants. The foliar PM deposition of major
species in urban areas varied depending on the plant species. There were also significant differences in
particulate adhesion on a per ULA basis. These data revealed that, in general, Z. serrata was more
effective at adsorbing PM in both urban forests and roadsides of two distinct sites of SFP and YCF,
as compared to other tree species. In more detail, Z. serrata adsorbed 0.05 to 0.14 mg-cm_Z, owing
to leaf surfaces that were densely covered hairy trichomes (Figure 5a—c), whereas G. biloba showed
the least adsorption capacity (0.01 mg-cm~2), and expressed a sustained water repellency during
the growth season (data not shown). As shown in Figure 3, the results indicated that there was
no statistically significant difference in the particulate adhesion between YCF-IN and YCF-OUT for
each species. However, Z. serrata showed statistical difference exists in particulate adhesion per ULA
between SFP-IN and SFP-OUT. There were significant variations in PM adsorption capacities among
tree species, and the capacities of species with a maximum efficiency of PM adsorption were about
2.5 to 6 times higher as compared to species with a minimum efficiency. With regard to the capacity for
adsorption of particulate pollutants on a per ULA basis (Figure 3a), Z. serrata was the highest, followed
by P. occidentalis, P. densiflora, P. yedoensis, and G. biloba (p < 0.001).
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Figure 3. Comparison of the capacity to capture airborne PM particles on a per unit leaf area
basis (ULA) of five tree species in urban forests and roadsides of (a) Seoul Forest Park (SFP-IN,
SFP-OUT) and (b) Yangjae Citizen’s Forest (YCF-IN, YCF-OUT). Each bar represents the mean of nine
replicates. Light green bars, SFP-IN; grey bars, SFP-OUT; green bars, YCF-IN; black bars, YCF-OUT.
Different lowercase letters mean significant differences among tree species within each SFP-IN and
YCF-IN, while different uppercase letters mean significant differences among tree species within
each SFP-OUT and YCF-OUT (Duncan’s multiple range after one-way ANOVA). Asterisks represent
significant differences between urban forests and roadsides (i.e., SFP-IN and SFP-OUT; YCF-IN and
YCF-OUT) within each site (paired t-test, * p < 0.05; ** p < 0.01; *** p < 0.001; ns, not significant).

3.3. PM Adsorption Based on LAI and TLA of Different Tree Species.

The amount of PM adsorption (g-m~2) in both urban forests and roadsides recalculated based on
the LAI is shown in Figure 4. Measurements of PM adsorption based on LAI showed no statistically
significant differences between urban forests and roadsides at YCF site and were concordant with a
result of the PM adsorption based on ULA (Figure 4b). In contrast, the PM adsorption based on LAI of
Z. serrata and P. occidentalis in SFP site exhibited a maximum absolute difference between urban forests
and roadsides (Figure 4a). Based on PM adsorption calculated by LAI, Z. serrata had the highest PM
capture capacity (1.4 to 3.0 g'm~2), while G. biloba had the lowest capture capacity (0.1 to 0.4 g'm~2),
compared to other species (one-way ANOVA, p < 0.001), P. occidentalis (0.8 g-m~2), P. densiflora (0.4 to
1.2 g¢m~2), and P. yedoensis (0.3 to 0.7 gr-m~2) at two sites of SFP and YCF (Figure 4). The TLA values
of each species, determined by using the prediction equation model, was in the following order:
P. occidentalis, P. densiflora, Z. serrata, G. biloba, and P. yedoensis (data not shown). In these PM adsorption
based on the TLA values, Z. serrata showed the highest amount of PM adsorption (37~96 g-tree™!),
with an average of 66.6 g-tree™! in the range of DBH, followed by P. yedoensis (45.3 g-tree™!), P. densiflora
(24.2 g-tree_l), and G. biloba (10.7 g-tree_l).
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Figure 4. The amount of PM adsorption based on LAI of five tree species in urban forests and roadsides
of (a) Seoul Forest Park (SFP-IN, SFP-OUT) and (b) Yangjae Citizen’s Forest (YCF-IN, YCF-OUT).
Each bar represents the mean of nine replicates. Light green bars, SFP-IN; grey bars, SFP-OUT; green
bars, YCF-IN; black bars, YCF-OUT. Different lowercase letters mean significant differences among tree
species within each SFP-IN and YCF-IN, while different uppercase letters mean significant differences
among tree species within each SFP-OUT and YCF-OUT (Duncan’s multiple range after one-way
ANOVA). Asterisks represent significant differences between urban forests and roadsides (i.e., SFP-IN
and SFP-OUT; YCF-IN and YCF-OUT) within each site (paired t-test, * p < 0.05; ** p < 0.01; *** p < 0.001;

ns, not significant).

3.4. Suitable Biomonitors through Calculation of the Air Pollution Tolerance Index (APTI) from
Biochemical Parameters

As shown in Table 3, the APTI was used to rank tolerance to air pollution. The APTI value of
various tree species was determined by analyzing four major biochemical parameters; namely, AsA,
TChl, pH, and RWC (see Supplementary Files for details: Tables S1 and S2). At site SFP, the results
indicated that there was no statistically significant difference in APTI values between SFP-IN and
SFP-OUT for each species during the study period. The mean APTI values of each tree species at
SFP-IN and SFP-OUT were as follows (in ascending order): P. occidentalis (9.3, 9.0), P. densiflora (8.9,
8.8), P. yedoensis (8.6, 8.7), G. biloba (8.2, 8.4), and Z. serrata (8.0, 8.4). The APTI values of five tree species
in YCF-IN and YCF-OUT at site YCF were high in P. occidentalis (9.0, 8.7) and P. densiflora (8.7, 8.9)
(Table 3). Interestingly, Z. serrata showed a statistically significant difference in APTI values between
YCF-IN and YCF-OUT, as compared to other tree species. Nonetheless, the APTI values of Z. serrata
were slightly lower than those of P. occidentalis, P. densiflora, and P. yedoensis in both urban forests and
roadsides at two sites of SFP and YCF.

Table 3. Assessment of air pollution tolerance index (APTI) on selected five tree species in urban forests
(SFP-IN, YCF-IN) and roadsides (SFP-OUT, YCF-OUT) at Seoul Forest Park (SFP) and Yangjae Citizen’s

Forest (YCF).

Sites P.densiflora  Z. serrata P. occidentalis  P.yedoensis G. biloba
SFP-IN 89+ 053 80+ 07°¢ 93 + 042 86+ 07° 82+ 03¢

SF
SFP-OUT 88+ 044 84+ 05B 90 =+ 054 87+ 044 84x 03B
YCE-IN 87+ 052 69+ 077 90 + 072 87+ 062 82+ 04Pb

YCF
YCE-OUT 89+ 064 81+ 06€ 87 =+ 054B 85+ 05B 81+ 05€

Values are expressed as the mean + SD (1 = 15). Different superscript letters denote significant differences between
values within the same row (p < 0.05). Asterisks represent significant differences between urban forests and roadsides
(i.e., YCF-IN and YCF-OUT) within each site (paired f-test, *** p < 0.001).
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3.5. Specificity of PM according to Leaf Micromorphological Structures

There were clear differences in the topology of leaf abaxial and adaxial surfaces on five tree species
(Figure 5). Airborne particulate pollutants typically accumulated around grooves and epidermal
trichomes of adaxial surfaces (especially Z. serrata) and embedded in stomata of abaxial surfaces,
blocking the entrance of the stomata (Figure 5a—c). In the case of a detailed survey of epidermal
trichomes, the leaf micromorphology of Z. serrata was noticeably more complex on the adaxial
surfaces owing to their hairy trichomes (Figure 5a). Both Z. serrata (Figure 5a,c) and P. yedoensis
(Figure 5d,f) showed prominently higher levels of PM particles on the adaxial surfaces. In general,
the larger leaf roughness was observed on the leaf adaxial surfaces (especially P. yedoensis, Figure 5f).
Moreover, P. occidentalis adsorbed PM particles on grooves with slightly rough surfaces on the adaxial
surfaces (Figure 5g,i). Interestingly, G. biloba markedly embedded airborne PM particles inside the
surrounding stomata of the abaxial surfaces (Figure 5k), and there were a few particulate pollutants on
the sparsely arranged grooves of the adaxial sides (Figure 5j,1). On the other hand, P. densiflora typically
appeared to have the ability to accumulate high airborne particulate particles by exhibiting wax crystals
with a dense arrangement in surrounding leaf abaxial and adaxial surfaces (Figure 5m—o). We also
analyzed the elemental composition of various types of particles (<10 pm) on leaf surfaces using a
field emission scanning electron microscopy/energy-dispersive X-ray spectrometer (FESEM/EDX).
The EDX spectra indicated that the airborne particulates on leaf surfaces contained a major elemental
composition of Si, Al, Fe, and Mg, suggesting that these crystals are mostly aluminosilicate/silica
mineral and Si—Al rich fly ash (data not shown).

Figure 5. Variability of surface topography of adaxial leaf surfaces showing grooves and trichomes

(a,d,gj,m,c fI]l0)and abaxial leaf surfaces showing stomata (b,e,h,k,n). (a—c) Z. serrata, (d—f) P. yedoensis,
(g-i) P. occidentalis, (j-1) G. biloba, and (m—o) P. densiflora. Note PM particle accumulation in (cf,0).
Airborne particulate pollutants typically accumulated around grooves and epidermal trichomes of
adaxial leaf surfaces and embedded in guard cells surrounding open stomata of abaxial leaf surfaces.
Scale bars = 10 pm.

4. Discussion

There were significant variations in the PM adsorption capacities of the different tree species.
A temperate deciduous broad-leaved tree (Ulmaceae), Z. serrata, exhibited the highest capacity of 0.06 to
0.11 mg-cm~2 on PM capture per unit leaf area. Because plants generally exhibit a species-specificity
in associated responses to air pollution, the efficiency for PM adsorption varies across plant species.
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The leaf micro-morphological features are known to directly affect the agglomeration and capture
of fine particles by trees. More specifically, in previous studies that reported a possible association
between specific leaf characteristics and PM adsorption, leaf microstructures such as stomata, grooves,
and trichomes were found to be optimal areas for capturing PM particles owing to their coarse and
adhesive properties [18,38—40]. Notably, our results indicate that the leaf surfaces with high grooves or
trichomes have a markedly enhanced ability to retain PM (especially PM, 5) as compared to smooth
leaf surfaces. Furthermore, leaf shape and venation of the broad-leaved species have no significant
influence on the immobilization rates and retention times of the fine PM, because individual leaves do
not reflect the physical properties of canopy density [18].

On the other hand, the effect of leaf area on PM accumulation was observed to be dominant over
other investigated characteristics (leaf size and macro- and micro-morphology). The canopy density
affects air turbulence around leaves, which has been proposed as an important explanatory factor for
the deposition of PM particles, enhancing dry deposition of PM on leaves. Several studies have shown
that tree species with higher LAI and smaller leaf size were most effective in adsorption of PM [28,29].
LAI can be used as a surrogate for the photosynthetically active area between the atmosphere and
underlying land surfaces [30]. Our current work agrees that in addition to leaf micromorphological
characters, total leaf area also plays important role in capturing airborne particulates when total leaf
area was incorporated in foliar PM capture efficiency for upscaling of unit leaf level to tree scale
(Figures 3 and 4). Tree species (especially in Z. serrata) with higher LAI and smaller leaves were the
most effective for PM adsorption. Therefore, the ability to adsorb and retain PM per unit leaf area is
important, but it is also important to consider the total leaf area and LAI.

Remarkably, the effect of PM adsorption on unit leaf area was lower in P. occidentalis, P. densiflora,
and P. yedoensis as compared to Z. serrata. The current issues and future challenges regarding airborne
particulate pollutants depend largely on the tolerance and susceptibility of plants to air pollution [41].
At the physiological and biochemical level, the response of plants to air pollutants can be understood
by analyzing the factors that determine tolerance and susceptibility. Many studies, even field survey
research, have suggested that the air pollution tolerance index (APTI) is one of the impressive indices
in evaluating the response of tolerance to air pollution [33,34,42]. Most of those results calculated the
APTI using the parameters indicated in this paper such as ascorbic acid, total chlorophyll, leaf extract
pH, and relative water content. These parameters act as an important coenzyme, the main essential
parts of energy production, intracellular regulation for trafficking network of proteins, and a useful
indicator of cell protoplasmic permeability, respectively. Previous studies have shown that ascorbic
acid content, total chlorophyll content, leaf extract pH, and leaf relative water content are biochemical
variables related to tolerance and susceptibility to air pollutants [6,33,34].

Asshown in the assessment of the above mentioned APTI, P. occidentalis, P. densiflora, and P. yedoensis
showed relatively high APTI values, while Z. serrata displayed the lowest APTI value. Tree species
with higher APTI showed the reduction for PM trapping effects and tree species with lower APTI
revealed a capacity to enhance the capture of air-suspended particles. Interestingly, Z. serrata revealed
the distinguishable capacity to prolong APTI values on roadsides as compared to urban forests
(Table 3), possibly by enhancing RWC (Tables S1 and S2). The higher RWC value acts as an indicator
useful of the plant protoplasmic permeability, indicating possibly more tolerant of environmental
pollutions. Air pollutants increase cell permeability, which eventually causes water and nutrient
losses, resulting in early leaf senescence [33,34]. Thus, by enhancing RWC positively regulates their
variability to regulate the physiological balance of plants under stress conditions [6]. Therefore, higher
leaf RWC values are possibly more tolerant of pollutants. As shown in Figure 5, the adsorption and
deposition of PM particles were observed around stomatal pores on abaxial leaf surfaces. If the leaf
transpiration interrupts due to stomatal limitation by air pollutants, plants can lead to an inhibition of
their photosynthesis and growth due to loss of its engine that pulls water up from the soil into the roots.

In the PM adsorption based on the TLA, P. occidentalis showed the highest PM adsorption amount
of 95~104 g-tree™! among tree species due to relatively high DBH as compared to the other species.



Forests 2019, 10, 960 11 of 15

Nevertheless, P. occidentalis and G. biloba have been reported to disperse pollen, the main airborne
allergen [43] in urban trees in Seoul, Korea. The main pollen allergens (Pla a 1, putative invertase
inhibitor; Pla a 2, polygalacturonase; Pla a 3, nsLTP) of Platanus acerifolia have been reported [44-46].
The major allergen, Pla a 1, from P. acerifolia pollen, has also been reported in P. occidentalis [47,48].
In Seoul, G. biloba. which has the highest planting rate owing to its climate resilience and resistance
to disease and insect pests, has recently required improvement in the selection of species owing
to its foul-smelling fruits and the allergic reactions caused by its inhalant allergen contents [49].
Therefore, P. occidentalis and G. biloba may be unsuitable as tree species for superior PM removal
efficiency because they are likely to cause allergies during the spring season and are to be replaced
with other species owing to various problems. Interestingly, the hydrophobic leaf surface with dense
wax crystals reduces the interfacial area that can help to effectively adsorb PM particles, leading to the
reduction of trapping potential in particulate pollutants [13]. Nevertheless, PM particles permanently
encapsulated in epicuticular wax layers can be expected to maintain particles encapsulated regardless
of widespread rainfall conditions, suggesting that leaf microstructure and wax layer could be important
factors to maximize PM trapping effects.

Across previous studies [18,19,38,50], there is clear and consistent evidence of the effects of the
roughness of leaf surfaces and trichome densities of adaxial and abaxial leaf surfaces in determining
PM retention capacity. The ability of urban vegetation to remove pollutants is well known [51],
but there is a lack of information on the leaf microstructures such as grooves and trichomes of various
tree species. Moreover, the PM particles on leaf surfaces showed a strong positive correlation with
abaxial trichomes, thereby potentially improving PM adsorption. Results also showed the positive
relationships between PM removal and leaf surface groove ratio, whereas stomatal density showed
less association in capturing PM (Figure S1). As mentioned in Figure 5, leaf microstructures such as
the grooves and trichomes of Z. serrata are believed to improve its ability to capture and retain PM
particles as compared to other species. Furthermore, the air purification abilities of trees to adsorb and
retain particulate pollutants can be affected by various factors, including stem, branch, canopy type,
leaf area, and especially leaf microstructures (grooves, trichomes, glands, and epicuticular wax layer),
showing significant species specificity [18-20].

Interestingly, G. biloba has been found to decrease PM accumulation by self-cleaning its leaf
surfaces owing to its water repellency; therefore, airborne PM particles could be sufficiently embedded
in the surrounding stomata of abaxial leaf surfaces. Obviously, sustained water repellency leads
to the repeated removal of PM from leaves by different types of precipitation, thereby preventing
successful deposition of suspended particles on leaf surfaces during the whole growing season [50].
Additionally, the leaf water repellency exhibited by some G. biloba species can purify the leaf surfaces
by aiding in PM removal during rainy and foggy weather [52]. Therefore, the leaves of G. biloba, which
maintain water repellency over the whole leaf lifetime, appear to be well protected from permanent
deposition as well as damage caused by particulate pollutants. In addition, these tree species have
been reported to be very resistant to environmental pollution [50,53].

Canopy density, PM concentration, particle size distribution, and wind speed are important factors
that can potentially affect particle deposition on trees [54]. When wind carrying PM, 5 crosses leaves,
the boundary layers are relatively fixed and form a barrier between leaf surfaces and the ambient air.
Recent evidence of PM adsorption by interspecific plant leaves has shown that coniferous trees have a
higher PM, 5 adsorption capacity as compared to broadleaved trees in urban environments [18,40,55].
The thin boundary layer of long and narrow needle leaves is more conducive to the deposition of PM; 5
on the leaf surface and has a high ability to retain fine particles because it does not affect PM; 5 release
during rainfall. Therefore, coniferous tree species have the clear benefit of excellent PM abatement
in urban areas, especially during the winter and early spring seasons, when there are no leaves on
broadleaved trees in temperate climatic zones.

On the other hand, pine trees are highly susceptible to pollutants, and thus are not recommended
for use in areas with high levels of gaseous pollutants. For example, ozone (O3) can have a negative
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impact on the net photosynthetic capacity of pine leaves and greatly reduces dry weight [56]; sulfur
dioxide (50,) causes necrosis of pine leaves [57]; and atmospheric sulfur and nitrogen depositions
cause nutritional imbalances and suppress or accelerate growth patterns in Scots pines [58]. In addition,
nitrogen dioxide (NO,) causes physiological disturbance and shortens the life span of pine trees [59].

In other words, the response of tree species to ambient particulate loading is important in order to
estimate the overall greening effect on potential PM abatement. Although the PM adsorption amount
of conifers per unit leaf area is almost two times higher than that of broadleaf leaves, their adsorption
efficiency may be only one-third of the total leaf level owing to air pollution stress. Thus, broadleaved
trees can be more effective at trapping airborne PM particles at the stand level [18]. Valuable elements
of urban forests, including forest area, forest structure, and leaf shape, determine the PM adsorption
capacity of trees. The PM adsorption/deposition/retention capacity of plants depends on leaf structure,
tree height and canopy, and source location, as well as meteorological factors [13,17]. Branches and
leaves of trees and shrubs have a higher PM removal effect owing to their larger surface area and
complex structure as compared to herbaceous plants. The PM reduction process in plants is caused by
dry or wet deposition processes and chemical reactions in the atmosphere, vegetation, and soil [60].
In addition, the PM adsorption process is further influenced by environmental conditions, altitude,
wind speed and direction, precipitation, and season and accumulation period [61]. Furthermore, annual
variations in plant leaf phenology in urban areas can maximize PM trapping effects.

5. Conclusions

Levels of airborne particulates, especially PM, are relatively low in urban forests as compared to
that on roadsides, reflecting the removal efficiencies as natural biofilters of urban trees that improve air
quality. PM adsorption efficiency by trees under stressful urban conditions is different depending on
leaf morphology, physical properties, and microstructure of broadleaved surfaces with well-developed
trichomes and grooves. The micro-morphological characteristics such as leaf trichomes and grooves,
rather than the macro-morphological characteristics of broadleaved species, can be used as effective
indicators for adsorbing PM adsorption. However, their overall ability to capture PM particles by
upscaling leaf level to ecosystem-scale especially emphasizes the importance of reflecting the total
leaf area and LAI Regarding the characteristics of leaves, evergreen pine needles may display a
higher potential for particulate reduction, especially during winter and early spring, as compared to
broad-leaved species. Therefore, as urban open space for green infrastructure programs is limited,
if plants are to be used as a means to improve air quality, further studies are needed on various mitigation
techniques to maximize airborne PM uptake by trees. Establishing effective policies and management
controls to reduce air pollution of particulates is one of the policy tasks of the Korean government.
In addition, the Seoul Metropolitan Government and the Korea Forest Service are conducting projects
and research for the selection of suitable street trees and urban trees in the construction of urban forests
and to establish effective policies to reduce particulate matter. This study is a field study conducted
as part of green infrastructure programs. The Seoul Metropolitan Government is trying to replace
street trees with trees which are able to maximize the ability to capture PM based on the scientific
research data.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/10/11/960/s1,
Figure S1: Relationships between PM adsorption on leaf surfaces (ug cm™2) and leaf micro-morphological
characters of trichome density (a), groove area ratio (b), and stomatal density (c) in five urban tree species in Seoul,
South Korea., Table S1: Biochemical parameters of selected tree species in urban forests (SFP-IN) and roadsides
(SFP-OUT) at site SFP during the study period., Table S2: Biochemical parameters of selected tree species in urban
forests (YCF-IN) and roadsides (YCF-OUT) at site YCF during the study period.
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