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Abstract: Forest land managers rely on predictions of tree mortality generated from fire behavior
models to identify stands for post-fire salvage and to design fuel reduction treatments that reduce
mortality. A key challenge in improving the accuracy of these predictions is selecting appropriate
wind and fuel moisture inputs. Our objective was to evaluate postfire mortality predictions using the
Forest Vegetation Simulator Fire and Fuels Extension (FVS-FFE) to determine if using representative
fire-weather data would improve prediction accuracy over two default weather scenarios. We used
pre- and post-fire measurements from 342 stands on forest inventory plots, representing a wide range
of vegetation types affected by wildfire in California, Oregon, and Washington. Our representative
weather scenarios were created by using data from local weather stations for the time each stand
was believed to have burned. The accuracy of predicted mortality (percent basal area) with different
weather scenarios was evaluated for all stands, by forest type group, and by major tree species using
mean error, mean absolute error (MAE), and root mean square error (RMSE). One of the representative
weather scenarios, Mean Wind, had the lowest mean error (4%) in predicted mortality, but performed
poorly in some forest types, which contributed to a relatively high RMSE of 48% across all stands.
Driven in large part by over-prediction of modelled flame length on steeper slopes, the greatest
over-prediction mortality errors arose in the scenarios with higher winds and lower fuel moisture.
Our results also indicated that fuel moisture was a stronger influence on post-fire mortality than
wind speed. Our results suggest that using representative weather can improve accuracy of mortality
predictions when attempting to model over a wide range of forest types. Focusing simulations
exclusively on extreme conditions, especially with regard to wind speed, may lead to over-prediction
of tree mortality from fire.

Keywords: wildfire; tree mortality; fire behavior; post-fire management; forest inventory (FIA);
FVS-FFE

1. Introduction

Accurate predictions of tree mortality in forests affected by fire are important to land managers
and policy-makers charged with planning fuel treatments and assessing risk to life and property if
wildfire occurs [1,2]. Estimates of the likelihood of trees dying during, or following, a wildfire can
influence decisions about when and how to implement mechanical thinning or other fuel reduction
treatments. Managers of forests on public land may seek to balance the risk of trees dying from
fire effects against the costs and revenues from forest harvest [3] while also supporting the role that
fire-killed trees provide as habitat for insects and birds [4]. Recent increases in damage from wildfire
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and costs of suppression, and forecasts of future increases driven in part by anthropogenic global
warming [5] provide fresh motivation to improve the accuracy of tree mortality prediction.

Predicting post-fire tree mortality based on pre-fire stand conditions is difficult because it typically
requires an estimate of fire intensity and its impacts from a fire behavior model. Estimation of fire
intensity requires calculation of the rate of combustion that is dependent on fuel surface area and the
fuel-air mixture, which is related to particle size and fuel density [6]. These are difficult to measure so
the modeling of fire behavior tends to rely on highly-generalized fuel models [7]. Estimates of fuel
moisture, air temperature, and wind speed are combined with fuel models to estimate flame length.
Tree canopy base height and canopy density are used with flame length to estimate degree of crown
scorch, likelihood of crown fire, and subsequent tree mortality.

Forest managers in the western United States commonly use the Forest Vegetation Simulator (FVS)
and its Fire and Fuels Extension (FFE) to simulate wildfire effects on stand development and response
to management actions [8]. FVS is a modeling framework with 20 geographically distinct variants,
each developed using empirical growth data from within its geographical application area to simulate
the impact of management over a broad range of forest types and stand structures [9]. The ability
to link stand development with disturbances and forecast outcomes of silvicultural treatments has
led to FVS-FFE’s widespread adoption as a planning tool for fuels and post-fire management [10].
The FVS-FFE model [8] calculates fire intensity (reported as flame length) using equations formulated
by [11] and simulates crown fire spread based on the work of Van Wagner [12] and Scott and
Reinhardt [7]. Fire intensity and effects calculations in the model are strongly affected by wind
speed and fuel moisture that have long been recognized as the strongest environmental drivers of
fire intensity [6]. FVS-FFE uses the Ryan–Amman (RA) equation to relate fire intensity, indicated by
flame length, to tree mortality. The RA equation uses crown scorch and bark thickness to predict
tree mortality [8]. Crown scorch reflects direct heat damage to foliage while bark thickness serves as
a proxy for resistance to fire effects (e.g., cambial heating). While most work on validating the RA
mortality model has focused on individual trees, there remains a need to examine mortality at the
stand level [13]. Most RA validation studies rely on post-fire crown scorch assessments to evaluate
mortality prediction accuracy.

Because forecasting mortality from pre-fire stand conditions requires use of fire behavior models,
full validation of the RA equation requires testing over a range of conditions that influence fire behavior.
Forest managers in the United States commonly use FVS-FFE to weigh the impact of alternative
management scenarios on potential fire behavior and effects as part of planning processes, such as the
National Environmental Policy Act (NEPA) process. In such cases, they often use FVS-FFE’s default
weather scenarios (e.g., [14]) or percentile-selected extreme weather from local weather station archives
(e.g., [15,16]). FFE default weather scenarios are intended to represent fire effects under moderate
(POTMod) and severe conditions (POTSev), and are hereafter collectively referred to as POTFIRE
scenarios. While one or two such weather scenarios may adequately represent a subset of fires, they
may not be representative of most fires, leading to errant fire model predictions. In a rare, published
example of validating FVS-FFE’s tree mortality predictions with field data, Hummel [17] found major
differences between tree mortality predictions based on observed vs. FFE default weather data.
Inaccurate or unrepresentative weather data can lead to errant fire model predictions that preclude
reliable evaluation of fuel treatment effectiveness, effective hazard mitigation, or valid post-fire recovery
plans [18].

The US Department of Agriculture (USDA) Forest Service’s Forest Inventory and Analysis (FIA)
Program maintains and samples hundreds of thousands of forest inventory plots on a systematic grid
sample [19,20]. The many fires that encounter these plots, with the potential to affect the vegetation
growing there, present a unique and valuable opportunity to improve existing mortality models by
testing correspondence between model predictions and measured, empirical outcomes. A major
strength of analyzing fire effects using FIA plot data is that vegetation types and fire severities
are represented in FIA data in proportion to their frequency in the landscape; in other words,
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a representative, unbiased sample. Analysts at the Pacific Northwest Research Station’s FIA Program
initiated a Fire Effects and Recovery Study (FERS) to re-visit fire-affected plots within one year of fire
to assess post-fire tree mortality and fire-effects in California, Oregon, Washington and Alaska [21].

Using FIA pre-fire and post-fire measurements, we sought to understand (1) how accuracy of
FVS-FFE’s tree mortality predictions might be improved by replacing FVS-FFE’s default weather
scenarios with representative weather scenarios developed from local weather data collected when plots
were encountered by fire; and (2) how accuracy varies among species and forest types. We anticipated
that mortality predictions making use of representative weather scenarios would be more accurate and
that variation in accuracy among species and forest types would indicate areas for model improvement.

2. Methods

2.1. Study Area and Fire Selection

We sampled forests within wildfires that occurred in the states of California, Oregon, and
Washington on the west coast of the United States (32.6–49.0◦ N latitude, 114.2–124.2◦ W longitude).
Forests in this region are found from sea level to over 3000 m elevation with annual precipitation
ranging from 25 to over 600 cm. Dominant vegetation ranges from xeric–oak (Quercus sp.) and juniper
(Juniperus sp.) forest types to mesic–Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco)) and California
mixed conifer, and subalpine–true fir (Abies sp.). In years when funding was available to collect
post-fire FERS data on FIA plots, essentially all forested inventory plots on national forests within
the boundaries of fires larger than 400 hectares were selected for measurement. Because the FERS
was initiated in California, with support from National Forest System Pacific Southwest Region 5
cooperators, and only later expanded to other west coast states, most of the 74 fires sampled, which
burned between 2002 and 2015, were in California.

2.2. Vegetation Measurements

FIA plots in the Pacific Northwest are installed with a sampling intensity of one plot per 24 km2,
and are distributed among ten spatially balanced panels. One panel of plots is visited and measured
each year, and an entire cycle of inventory sampling completed in ten years [19]. In California, the
National Forests in the Pacific Southwest Region collect FIA protocol inventory data on additional plots
installed in selected forest types [22], and, when these burned, they became candidates for inclusion in
the FERS sample. The nationally-standard FIA plot design consists of four 7.31 m radius subplots,
where height, diameter, compacted crown ratio, species, and other attributes are assessed on all trees
≥12.7 cm in diameter at breast height (dbh). Trees smaller than 12.7 cm dbh are sampled on a 2.07 m
radius microplot within the subplot. Large trees (>75 cm dbh in western Oregon and Washington,
>61 cm in California and eastern Oregon and Washington) are sampled on an 18.0 m radius macroplot.
Factors computed as the inverse of a plot’s sample areas are used to expand tree measurements on an
area basis (e.g., trees and basal area per hectare). With the exception of the California Mixed-Conifer
forest type, which is assigned based on the presence of particular species combinations and location,
forest type is designated as the species with a plurality of stocking.

On plots occurring within fire boundaries, FIA field crews collected fire-effects data within 1-year
post-fire. Pre-fire FIA plot measurements were collected, on average, 4.0 years (0.1 sd) before the fire
(range 1 to 10 yrs.). FERS metrics include assessments of mortality, including whether fire-caused, as
well as fire effects on ground surface cover, tree boles, and crowns.

We relied on field-assessed bole char height to evaluate the accuracy of FFE-FVS’s estimates of flame
length—the metric that serves as a proxy for fire intensity in that model’s mortality predictions [23–25].
For every tree larger than 2.54 cm diameter breast height, we calculated tree-level bole char height
as the midpoint between the greatest height at which bole char was observed (high char height) and
the lowest height at which the bole was observed to have remained free of scorch (low char height),
as measured as a length along the bole of the tree from the root collar. A stand-level mean bole char
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height was calculated as the mean of all tree-level bole char heights on trees for which this attribute was
neither zero nor equal to actual tree height; unqualified trees provide no values as “yardsticks” capable
of “recording” flame length. All qualifying trees contributed equally in computing this mean, as the
intent was to represent stand-level surface flame length, which we would not expect to be significantly
affected by tree size or the plot size on which trees of a given size were sampled. The modelled
surface flame length output of FVS is intended to represent the average flame length for a stand [26].
We assessed the extent to which modeled flame length tracked observed mean bole char height by
computing the error (as modelled flame length—mean bole char height) and, for both all stands and
subgroups, mean error and root mean square error (RMSE).

FIA protocols partition a plot into separate “conditions” when a plot contains both forest and
non-forest area, straddles a reserved area boundary or contains >1 owner group, forest type, stand size
class, regeneration status, and/or tree density class [19]. We relied on condition as the areal analysis
unit because we sought to identify and understand patterns of mortality by forest type. Conditions can
be thought of as stands, and they were modeled as such in FVS (see below); those occupying less than
20 percent of a plot’s area were excluded as too small (these typically had a tree tally that was too small
to adequately represent a forest stand and risked introducing artifacts when calculating tree mortality).

Post-fire measurements were ultimately collected from a total of 443 forested conditions with
pre-fire data. Data from Remote Automated Weather Stations (RAWS) required data-cleaning before
use as some weather fields were not present for every hour during the representative time period.
Data for some RAWS stations also contained apparent error values for weather variables (−90 ◦F
for Temperature for example). Fire progression maps also had errors, such as perimeters showing
burned area decreasing, which had to be resolved. Based on trends in progression from previous
perimeters, we removed any perimeter timepoint that showed the perimeter shrinking instead of
growing or remaining static. We did not impute any missing perimeters (see Section 2.3 for sources of
fire perimeter data).

Given the difficulty of matching plots with both fire perimeters and suitable RAWS station data,
some stands lacked suitable weather data. After removing stands affected by these issues, there
remained 342 stands available for this analysis. Measurements include both standard FIA attributes
like diameter and height (Table 1) and others, like bole char height, that were specific to FERS. Each
pre-fire condition had been assigned an FIA forest type [27] via data compilation or in the field, but
when there were fewer than five conditions in a forest type, we combined types (Supplemental Table S1)
to create the 10 forest type groups constructed for this study (listed in Table 1).

Table 1. Mean and standard deviation (in parentheses) by forest type group of pre-fire stand basal area
(BA), diameter at breast height (DBH), and tree height from inventory data; Fire and Fuels Extension
(FFE) calculated canopy base height (CBH) and bulk density (CBD); and number of fire-affected Forest
Inventory and Analysis( FIA) stands, defined as conditions (see methods).

Forest Type BA (m2/ha) DBH (cm) Tree Height (m) CBH (m) CBD
(kg/m3) Number of Stands

Conifer forest type groups

California mixed
conifer 57.7 (35.5) 47.1 (16.3) 21.0 (7.1) 5.1 (5.6) 0.08 (0.05) 105

Ponderosa pine 40.7 (28.6) 37.2 (16.8) 16.2 (7.4) 3.6 (4.0) 0.07 (0.06) 32
Other Firs 75.3 (44.6) 32.5 (12.1) 17.7 (5.3) 2.7 (2.5) 0.16 (0.07) 26
Douglas-fir 45.6 (33.8) 36.4 (10.5) 18.5 (3.6) 3.3 (2.6) 0.09 (0.07) 19
Other Pines 45.9 (38.0) 31.7 (14.6) 15.7 (4.9) 3.0 (1.8) 0.08 (0.07) 17
White fir 32.5 (23.6) 49.3 (22.0) 22.4 (10.7) 2.5 (3.6) 0.11 (0.06) 16
Pinyon/juniper 29.0 (16.1) 28.0 (5.7) 7.7 (2.4) 2.1 (0.8) 0.06 (0.04) 12
Other conifers 65.8 (36.4) 71.9 (23.2) 33.6 (7.0) 6.6 (4.0) 0.09 (0.03) 6

Hardwood forest type groups

California oaks 52.4 (48.9) 27.4 (15.4) 11.0 (5.5) 10.1 (8.7) 0.02 (0.02) 97
Other hardwoods 41.6 (40.7) 27.4 (20.1) 14.3 (9.0) 7.1 (7.9) 0.03 (0.02) 12
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2.3. Fire Weather

To obtain weather attributes that potentially represent when each condition burned, we linked
data collected by the RAWS network to each forested condition after geoprocessing locations of
conditions, RAWS, and approximate daily fire progression perimeters delineated during the fire events
to identify the most suitable station for representing the fire behavior and the approximate date and
time that a plot burned. Stations in the RAWS network are located in large, open areas, free from
obstructions, sources of dust and surface moisture [28] and collect hourly average, minimum, and
maximum wind speed, temperature, and humidity, which can be used to predict fire danger metrics
via the National Fire Danger Rating System. While not necessarily permanent, most stations do offer
many years of weather observations and tend to have the most complete records during fire season.
For each plot, we downloaded (http://www.raws.dri.edu/) all RAWS data in the vicinity for the year
the fire encountered the plot and used it to calculate hourly fuel moisture (for 1-, 10- and 100-hr fuels)
via FireFamilyPlus [29]. We assigned, as the best station for a plot, the one that was closest in both
Euclidean space and elevation, with some leeway to also consider intervening geographic features
such as mountain ranges that occasionally made a station that was not the closest, as the best choice.

To select the best hourly weather observations, we conducted GIS overlay of shapefiles containing
date- and time-stamped fire perimeters from online fire perimeters archives on the plot locations
to estimate the timeframe during which the fire likely encountered the plot. Fire perimeters were
obtained from the USGS [30]. The fire ignition and containment dates, obtained from InciWeb [31] and
CALFire [32], were also helpful in bracketing and selecting the relevant fire progression perimeters,
which were separated in time by from a few hours to a few days, though most commonly about a
day apart.

Differences in temporal resolution pose a considerable obstacle to linking fire progression maps
and RAWS observations. The mean, over all plots, progression perimeter interval of 37 h is considerably
greater than the 1-h RAWS interval. In an attempt to reduce this scale disparity, we assigned each plot
to a spatial quartile via visual assessment of the progression perimeters that bracket a plot, assuming a
constant fire growth rate during the progression interval. In thirty-three plots with intervals under
four hours, there was no need to assign a quartile and all 2–4 h of weather observations were used.
To account for variation within the assigned quartile (or less than 4-h interval), we calculated the mean,
minimum, and maximum values for the observed, hourly weather attributes within the assigned
quartile. These means, minimums and maximums for wind speed, temperature, and fuel moisture
were arranged in three representative weather scenarios designed to reflect the range of weather
conditions, for use as input to the FFE model (Table 2).

Table 2. Representative weather scenarios modeled in Fire and Fuels Extension (FFE) combined
statistics calculated from remote automated weather stations (RAWS) weather observations covering
the time period during which each plot is believed to have burned.

Wind Temperature Fuel Moisture

Minimum Minimum Maximum
Mean Mean Mean

Maximum Maximum Minimum

2.4. FVS Modeling

The Forest Vegetation Simulator (FVS) is an empirically-based, distance-independent, individual
tree growth and yield model, which treats the stand as the population unit [9] (Dixon 2013). The Fire
and Fuels Extension (FFE-FVS) to FVS can simulate fire effects accounting for weather, slope and fuel
structure information supplied via tree list and stand characteristic data and user provided parameters.
Of interest for this study are FFE-FVS’s predictions of tree mortality, which are often relied upon by
managers interested in how fire hazards might be reduced or stand resistance increased in response to

http://www.raws.dri.edu/


Forests 2019, 10, 958 6 of 20

silivicultural activities such as fuel treatments. To evaluate prediction accuracy, we loaded pre-fire FIA
data for all 342 conditions into FVS as stands.

FFE estimates post-fire tree mortality via two submodels [8]. The fuel submodel tracks surface and
crown fuels (as parameterized by canopy bulk density and canopy base height), using logic intended to
assign two [33] (Anderson 1982) “default” fire behavior fuel models and associated weights, typically
based primarily on forest type, though specifics vary among FVS variants. For this study, we relied on
the default fuel models assigned by FFE. The fire intensity and fire effects submodel estimates flame
length and fire type (e.g., surface, active crown) based on the fuel model, weather parameters, slope,
and crown fuels. For the weather scenarios, flame length was taken from the Burn report output table
while the flame length for the POTFIRE scenarios was taken from the POTFIRE output table. As the
Burn report table only reports total flame length (surface and crown fire combined), we selected total
flame length from the POTFIRE table. FFE’s predictions of mortality are based on the Ryan–Amman
(RA) equation which models tree mortality as a function of crown scorch and bark thickness [34].
FFE first calculates mortality probability from surface fire and then adds additional mortality from
predicted crown fire activity. Mortality is expressed in terms of the percent of pre-fire live-tree basal
area (m2/ha) that died due to fire effects. FVS-FFE takes the probability of mortality and reduces the
basal area (BA) of the individual tree, which is then aggregated to produce a stand-level summary of
BA killed by fire. For example, a tree with a 0.5 mortality probability would have its BA reduced by
50%. Trees with 100% crown scorch, from a simulated crown fire for example, are considered dead,
resulting in 100% BA loss [8]. FFE users can test the influence of variations in fire intensity on tree
mortality by adjusting keywords that alter fire behavior, for example, air temperature, wind-speed,
and the amount and moisture content of fuels’ inputs.

To evaluate the accuracy of predicted mortality in response to the weather scenarios, without
regard to forest type group, we compared mortality observed at the post-fire FIA visit with FVS’s
estimate of stand-level tree species mortality provided in the FVS Mortality output table. The potential
fire report does not list mortality by tree species and so species specific mortality could not be compared
to observed mortality for the POTFIRE scenarios.

We used the FVS-FFE SIMFIRE keyword to model wildfires using the three RAWS derived weather
scenarios as well as running SIMFIRE with FFE’s default scenarios’ parameters. The Min Wind scenario
is effectively a zero-wind scenario given that the minimum hourly wind measurement for 99% of the
weather intervals was zero. Mean weather parameters for the three RAWS derived scenarios and the
two POTFIRE scenarios cover a broad range of weather under which fires occur (Table 3).

Table 3. Means and standard deviations (in parentheses, for the representative weather scenarios) of
temperature, wind speed and fuel moisture parameters (% by weight for 1, 10 and 100 hr fuel moisture)
used in Fire and Fuels Extension (FFE) model scenarios.

Scenario Name Temp (C) Wind (m/s) FM1 FM10 FM100

POTSev 21 9 3 4 5
Max Wind 35 (6) 7 (11) 2 (1) 3 (1) 5 (1)

Mean Wind 19 (4) 2 (1) 5 (1) 6 (1) 8 (1)
POTMod 21 3 12 12 14
Min Wind 9 (9) 0 11 (4) 11 (4) 13 (6)

2.5. Model Assessment

We used mean error (i.e., bias), root mean squared error (RMSE), and mean absolute error (MAE)
of stand-level percent basal area mortality to evaluate prediction accuracy under each of the five
weather scenarios (three RAWS based representative weather scenarios and two FFE default scenarios)
relative to observed mortality. FVS-FFE estimated mortality estimates at stand and tree levels were
obtained from the FVS Mortality table for the SIMFIRE simulations (conducted for the representative
weather) and from the POTFIRE table for simulations conducted with FFE default POTFIRE scenarios.
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We assessed basal area mortality as the percentage of pre-fire BA (m2/ha) killed by wildfire: (BA
killed/prefire BA) × 100. Error in % BA killed is defined as the difference between predicted and
observed % BA mortality. We applied FFE estimates of stand-level crown scorch height to measured
tree heights and crown ratios to calculate predicted tree crown scorch (% of compacted crown length
estimated as scorched and burned) for comparison to field-assessed crown scorch. To evaluate accuracy
of FFE’s flame length estimates, error was defined as predicted flame length minus mean bole char
height. For bole char and crown scorch, stand-level metrics were obtained by averaging the tree-level
observations to the stand-level.

Results were grouped for analysis separately by forest type group and by tree species (for species
with at least 500 live trees in the pre-fire dataset) (Table 4). The level of error in forecasting mortality
that might be considered acceptable depends on objectives; however, accuracy of at least 70% is
an accepted minimum standard for operational and forest planning models [35]. Given the broad
geographical scope of the fire-affected fire plots, we selected 30% RMSE as our acceptance standard for
stand-level mortality. The mortality errors for the Max Wind and POTSev scenarios were not normally
distributed, with a skew towards large overpredictions of mortality. Under non-normal distribution of
errors, RMSE is a conservative estimate of error as this metric is quite sensitive to and can be biased
by outliers [36]. For the purposes of the study, we accepted this bias as it would penalize scenarios
with extreme errors in mortality predictions. We also included MAE as a relevant metric that is less
sensitive to outliers.

Table 4. Tree species coding and number of pre-fire live trees included in the fire-effects analysis. Bark
thickness multiplier taken from [8].

Species Common Name Number of Trees Bark Thickness Coefficient

Ponderosa pine (Pinus ponderosa P.&C. Lawson) 1056 0.063
Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) 1282 0.063
Incense-cedar (Calocedrus decurrens (Torr.) Florin) 544 0.060
White fir (Abies concolor (Gord. & Glend.) Lindl.

Ex Hildebr.) 1152 0.048

California black oak (Quercus kelloggii Newberry) 883 0.030
Canyon live oak (Quercus chrysolepis Liebm.) 975 0.024

We used regression trees to assess, independently of FVS-FFE, the relationship of the RAWS
weather and stand structure inputs with observed stand-level mortality. The response variable was
observed mortality and the predictor variables were stand characteristics (Table 1) and weather
parameters from the three representative weather scenarios (Table 3). The R package rpart 4.1 was
initially run using default settings, with a minimum number of observations to split a node at 20.
Node splits must decrease overall lack of fit of the model by a specified complexity parameter, initially
set at 0.01 [37]. To further prevent overfitting, the initial tree is pruned using an optimal complexity
parameter selected from the number of node splits with lowest cross-validated error.

3. Results

3.1. Mortality Patterns

Stand mortality for all stands, expressed as a percent of live basal area that would die, was
48% (39% sd). For seven forest type groups, observed mean BA mortality fell between 40% and 60%
(Figure 1). The inter-quartile ranges spanned 80% for many types, including the three forest type
groups with the most stands (California Oaks, Mixed Conifer, and Ponderosa Pine). Mortality was
<10% for twenty-four percent of the stands, and ≥90% for another 27%. Mortality rates tended to be
lowest in the Other Conifers and Douglas-fir groups (median of 6 and 20%, respectively), and highest
in the Pinyon-Juniper and Fir groups (median of 91 and 75%, respectively). Means exceeded medians
in most forest type groups, owing to the high frequency of stands with 100% mortality.
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by at least 10%. The high RMSEs of all the weather scenarios indicate poor predictive ability at the 
stand scale; Pearson correlation coefficients (r) between predicted and observed percent basal area 
mortality ranged from 0.15 for Mean Wind to 0.28 for POTMod. The scenarios with the lowest 
predicted mean mortality (POTMod and Min Wind) also had the lowest RMSE and MAE values. All 
scenarios except for Max Wind had MAE within 5% of POTMod, and the RMSE for Min Wind was 
within 5% of POTMod as well. 
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Figure 1. Distributions of observed fire-induced mortality as a percent of pre-fire, live tree basal area
by forest type group, with mean (dashed red line), median (solid black line), quartiles (box ends), 5th
and 95th percentiles (whiskers), and observations (open circles). Forest type groups arranged, left to
right, from highest to lowest mean mortality.

3.2. Accuracy of Mortality Predictions by Weather Scenario

Across all stands, the Mean Wind scenario was the most accurately predicted stand level mortality
rate, with the lowest mean error (+4%), and with RMSE and MAE comparable to the POTMod and
Min Wind scenarios (Table 5). The POTSev and Max Wind scenarios over-predicted mean mortality
by over 20%, while the POTMod and Min Wind scenarios under-predicted mortality by at least 10%.
The high RMSEs of all the weather scenarios indicate poor predictive ability at the stand scale; Pearson
correlation coefficients (r) between predicted and observed percent basal area mortality ranged from
0.15 for Mean Wind to 0.28 for POTMod. The scenarios with the lowest predicted mean mortality
(POTMod and Min Wind) also had the lowest RMSE and MAE values. All scenarios except for Max
Wind had MAE within 5% of POTMod, and the RMSE for Min Wind was within 5% of POTMod
as well.

Table 5. Mean fire-induced mortality as a percent of pre-fire, live tree basal area; mean mortality
prediction error; root mean square error (RMSE), and mean absolute error (MAE) by weather scenario
(n = 342), with errors closest to zero per error metric in bold.

Scenario Mean Mortality (sd) Mean Error (sd) RMSE MAE

Max Wind 76% (32%) 28% (46%) 54% 42%
POTSev 70% (35%) 22% (44%) 50% 37%

Mean Wind 51% (33%) 4% (42%) 48% 37%
POTMod 34% (24%) −13% (40%) 42% 32%
Min Wind 38% (28%) −10% (42%) 44% 34%

The most accurate weather scenario differed among forest type groups, with Mean Wind having
the lowest error for five groups, POTMod for four groups, and Max Wind for one (Table 6). The Mean
Wind scenario had the lowest error for the most abundant conifer types (California mixed conifer and
Ponderosa pine), while the POTMod scenario had the lowest errors for the hardwood types (California
oaks and other hardwoods). The high mortality rates of subalpine forests in the Firs group were most
accurately modeled with the Max Wind scenario.
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Table 6. Mean fire-induced mortality as a percent of pre-fire, live tree basal area, mean error, root mean
square error (RMSE), and mean absolute error (MAE) by weather scenario for each forest type group,
with errors closest to zero for each type group in bold.

Forest Type Group Max Wind POTSev Mean Wind POTMod Min Wind

Error

California mixed conifer 20 16 −9 −26 −22
California oaks 42 19 21 0 4

Douglas-fir 42 54 22 −6 7
Firs 10 22 −16 −27 −29

Other conifers 34 27 11 2 4
Other hardwoods 39 24 23 9 14

Pines 21 19 −8 −18 −18
Pinyon/juniper 13 12 1 −18 −21
Ponderosa pine 20 26 −2 −13 −16

White fir 28 34 −3 −20 −12

RMSE

California mixed conifer 51 49 45 44 45
California oaks 57 42 46 34 38

Douglas-fir 70 71 61 38 50
Firs 48 54 47 47 44

Other conifers 49 43 22 3 5
Other hardwoods 68 59 57 49 52

Pines 41 44 45 48 52
Pinyon/juniper 45 49 48 49 51
Ponderosa pine 53 56 50 47 42

White fir 46 45 40 41 42

MAE

California mixed conifer 40 37 35 33 35
California oaks 44 32 37 28 31

Douglas-fir 66 64 53 29 38
Firs 40 44 40 39 36

Other conifers 34 28 11 3 4
Other hardwoods 54 45 45 38 43

Pines 31 30 35 40 44
Pinyon/juniper 33 37 40 40 45
Ponderosa pine 42 44 41 38 33

White fir 35 34 30 33 29

For most forest type groups, the POTMod or Min Wind scenarios had the lowest RMSE (Table 6).
These scenarios also had the lowest estimated mortality levels, with means exceeding 35% BA mortality
only for California oaks, other hardwoods, and Pinyon/juniper forest type groups (Figure 2). However,
for most of the forest type groups, the weather scenario with the lowest mean error also had an RMSE
within 3% of the lowest RMSE (e.g., California mixed conifer, Table 6). Because RMSE penalizes large
errors more than the other metrics, we examined the percentage of stands with over 50% absolute error
by forest type group and weather scenario. The percentage of stands with errors greater than 50% was
greatest in the Max Wind and POTSev scenarios for several of the largest forest type groups: California
mixed conifer, California oaks, and Douglas-fir (Figure S1). However, even in the Mean Wind scenario,
six of the forest types had over 30% of the stands with 50% or greater prediction error.

The most accurate weather scenarios for predicting mortality also varied at the tree species level.
The Mean Wind scenario produced the lowest mean error for white fir (Abies concolor (Gord. & Glend.)
Lindl. Ex Hildebr.), incense-cedar (Calocedrus decurrens (Torr.) Florin), Ponderosa pine (Pinus ponderosa
P.&C. Lawson), and Douglas-fir, while the Min Wind scenario had the lowest mean error for canyon
live oak (Quercus chrysolepis Liebm.) and California black oak(Quercus kelloggii Newberry) (Figure 3).
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Mean observed stand-level mortality was close to 60% for both hardwood species, near 50% for white
fir and incense-cedar, and less than 35% for Douglas-fir and Ponderosa pine. The Min Wind scenario
performed best in reducing RSME and MAE (Table 7).Forests 2019, 10, x FOR PEER REVIEW 10 of 20 

 

 
Figure 2. Mean fire-induced mortality as a percent of pre-fire, live tree basal area for modeled weather 
scenarios and observed by forest type group. 

The most accurate weather scenarios for predicting mortality also varied at the tree species level. 
The Mean Wind scenario produced the lowest mean error for white fir (Abies concolor (Gord. & 
Glend.) Lindl. Ex Hildebr.), incense-cedar (Calocedrus decurrens (Torr.) Florin), Ponderosa pine (Pinus 
ponderosa P.&C. Lawson), and Douglas-fir, while the Min Wind scenario had the lowest mean error 
for canyon live oak (Quercus chrysolepis Liebm.) and California black oak(Quercus kelloggii Newberry) 
(Figure 3). Mean observed stand-level mortality was close to 60% for both hardwood species, near 
50% for white fir and incense-cedar, and less than 35% for Douglas-fir and Ponderosa pine. The Min 
Wind scenario performed best in reducing RSME and MAE (Table 7). 

 

Figure 2. Mean fire-induced mortality as a percent of pre-fire, live tree basal area for modeled weather
scenarios and observed by forest type group.

Forests 2019, 10, x FOR PEER REVIEW 10 of 20 

 

 
Figure 2. Mean fire-induced mortality as a percent of pre-fire, live tree basal area for modeled weather 
scenarios and observed by forest type group. 

The most accurate weather scenarios for predicting mortality also varied at the tree species level. 
The Mean Wind scenario produced the lowest mean error for white fir (Abies concolor (Gord. & 
Glend.) Lindl. Ex Hildebr.), incense-cedar (Calocedrus decurrens (Torr.) Florin), Ponderosa pine (Pinus 
ponderosa P.&C. Lawson), and Douglas-fir, while the Min Wind scenario had the lowest mean error 
for canyon live oak (Quercus chrysolepis Liebm.) and California black oak(Quercus kelloggii Newberry) 
(Figure 3). Mean observed stand-level mortality was close to 60% for both hardwood species, near 
50% for white fir and incense-cedar, and less than 35% for Douglas-fir and Ponderosa pine. The Min 
Wind scenario performed best in reducing RSME and MAE (Table 7). 

 

Figure 3. Mean mortality (% basal area (BA)) for the five most common tree species by weather scenario
and observed. The key to species codes is in Table 4.



Forests 2019, 10, 958 11 of 20

Table 7. Mean error (with standard deviation in parentheses), root mean square error (RMSE), and mean
absolute error (MAE) of fire-induced mortality as a percent of pre-fire, live tree basal area differences
(observed minus predicted) for common (n > 500 trees) species by weather scenario, with errors closest
to zero for each error metric in bold.

Species Code Scenario Mean Error RMSE MAE

ABCO Max Wind 22 (48) 52 39
ABCO Mean Wind −6 (46) 46 35
ABCO Min Wind −18 (42) 46 36

CADE27 Max Wind 29 (53) 60 48
CADE27 Mean Wind −2 (52) 52 42
CADE27 Min Wind −15 (46) 48 39

PIPO Max Wind 26 (55) 60 47
PIPO Mean Wind 3 (55) 55 42
PIPO Min Wind −7 (51) 51 39

PSME Max Wind 34 (56) 65 54
PSME Mean Wind 4 (53) 53 53
PSME Min Wind −9 (46) 47 46

QUCH2 Max Wind 33 (37) 49 34
QUCH2 Mean Wind 21 (37) 42 31
QUCH2 Min Wind 7 (37) 37 30

QUKE Max Wind 23 (43) 48 34
QUKE Mean Wind 8 (45) 45 34
QUKE Min Wind −3 (43) 43 34

3.3. Consistency of Model Predictions with Field-Measured Crown Scorch and Bole Char

The distribution of observed stand-level crown scorch resembled that for observed mortality, with
a skew towards 100% in the highest mortality forest type groups (Figure S2). As with mortality, mean
error for crown scorch was lowest for the Mean Wind scenario, but variability among stands was so
great that all five scenarios had RMSE and MAE values within 5% of Mean Wind (Table 8), with a
range of crown scorch RMSE (47–51%) comparable to that for mortality RMSE (42–54%), and errors in
predictions of these variables were closely related. The most accurate weather scenario for estimating
crown scorch varied among forest type groups. The Max Wind and POTSev scenarios had the lowest
RMSEs in the high-mortality pinyon/juniper, firs, and pines forest type groups, while the Mean Wind
or POTMod scenarios had the lowest RMSEs for the abundant California mixed conifer, Ponderosa
pine, and white fir forest type groups (Figure S3).

Table 8. Mean error, root mean square error (RMSE), and mean absolute error (MAE) of stand level
mean crown scorch percent (calculated as the mean crown scorch length as a percent of pre-fire live
crown length across all trees in a stand) by weather scenario, with errors closest to zero per error metric
in bold.

Scenario Error (sd) RMSE MAE

Max Wind 28 (43) 51 41
POTSev 28 (40) 49 39

Mean Wind 0 (47) 47 37
POTMod −24 (41) 48 38
Min Wind −23 (44) 50 40

The mean stand-level bole char height across all stands was 3.3 m (3.0 sd), although it was not
unusual for stands in several forest type groups to have bole char heights exceeding 5 m (Figure S4).
When predicted flame length under the five weather scenarios was evaluated against these bole char
observations, patterns of error resembled those for mortality, with moderate scenarios predicting flame
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length lower than the measured bole char heights and severe weather scenarios predicting the opposite
(Table S2). The Min Wind and Mean Wind had the lowest mean errors across most forest type groups
while Mean Wind and POTMod had the lowest RMSE across most groups.

3.4. Importance of Factors That Contribute to Stand-Level Tree Mortality

The regression tree modeling revealed strong relationships between stand and weather attributes
and stand-level mortality. The model with the lowest error had three splits with a complexity parameter
of 0.03, and identified mean 1-hr fuel moisture, mean DBH, and mean stand height as major drivers
of mortality (Figure 4). The first spilt was driven by stands with a mean DBH ≥128 cm having low
mortality (21%). For the remaining stands, stands with mean stand height of less than 5.1 m had much
high mortality (95%) than those with a higher mean stand height (53%). The next spilt was driven by
mean 1-hr fuel moisture. Stands with ≥5% 1-hr fuel moisture had 47% mortality compared to 68%
when below 5%.
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Figure 4. Pruned regression tree of pre-fire stand measurements, remote automated weather stations
(RAWS) weather, and modeled attributes on fire-induced mortality as a percent of pre-fire, live tree
basal area. Pruned tree contains mean stand dbh (cm), stand height (m), one-hour fuel moisture
(FM1—percent water by weight); boxes contain mortality and number of FIA stands, defined as
conditions (see methods).

A separate regression tree analysis using the error in stand level mortality for the Mean Wind
scenario as the response variable indicated that FFE substantially over-predicted mortality on steep
slopes, with a mean error of 38% on slopes >68% (Figure S5). FFE also over-estimated mortality for
small-diameter stands (mean dbh < 8.5 cm), but was quite good for larger-diameter stands on moderate
slopes (43–68%). The model under-predicted mortality on gentle slopes (slope < 43%).

4. Discussion

4.1. Assessment of Representative Weather Inputs vs. FFE’s Defaults

Our expectation that representative weather scenarios would produce more accurate predictions
was partially confirmed. The Mean Wind representative weather scenario resulted in the lowest mean
error overall, and for most forest type groups and tree species. However, contrary to expectations, the
default FVS-FFE moderate burn scenario (POTMod) had the lowest RMSEs, primarily by providing a
better match than representative weather scenarios where observed mortality was low.

Accuracy of mortality prediction at stand scale was quite variable. Judged by mean absolute error
(MAE), all five weather scenarios had success within five percentage points of our 30% error maximum
target in at least two forest types while for nine of the forest type groups, MAE was below 33%.
By contrast, RMSE of differences between predicted and observed exceeded 40% for all five weather
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scenarios. A key distinction between MAE and RMSE is that the latter more severely penalizes errors
with the greatest magnitude [36]. In all five scenarios, there were many stands for which discrepancy
between predicted and observed mortality was very large, and this is apparent in the many cases with
RMSE > 50%. Even with the best scenario, Mean Wind, predictions for 30% of stands were off by more
than 50% in six of the forest type groups.

We expected that weather parameters more representative than those in FFE’s default scenarios
would reduce prediction errors in fire behavior [38,39]. Errors in predicting fire behavior like flame
length lead to errors predicting fire effects like crown scorch, and lead, in turn, to errors in predicting
mortality. Flame length predictions from the three more temperate weather scenarios appear to be
more accurate and credible, based on comparison with median bole char heights. However, relying on
such an indirect indicator of fire intensity warrants caveats. While flame height suggested by bole char
height may approximate flame length under low wind speed on gentle terrain [40], departure from
these conditions, for example, with respect to slope, fuel bed depth, and wind speed, can degrade this
approximation. For example, bole char extends higher on steep slopes, irrespective of flame length [41].
Nonetheless, much of the error in over-prediction in tree mortality in the MAXWind and POTSev
scenarios stemmed from an over-estimation of fire intensity resulting from a combination of high winds
and steep slopes. Our regression tree analysis highlighted greater over-prediction errors on very steep
slopes (>68). The Rothermel surface fire model was originally intended to model surface fire spread on
flat terrain, with later attempts to modify the model by increasing fire intensity on steeper slopes [8,42].
Our results suggest that the model as implemented in FVS-FFE has difficulty representing fires on
steep slopes and under high winds.

Despite wind being represented in FFE as the strongest driver of fire behavior [8], fuel moisture
inputs appeared to play a greater role in our results than wind. Given the greater predictive power
of the Mean Wind scenario, with POTMod and Min Wind not far behind, it appears that most of the
benefits of using representative weather, rather than FFE defaults, can be attributed to the dead fuel
moisture parameters and their influence on flame length prediction, rather than wind speed. At low
wind speeds between 0 and 4.5 m/s, FFE, predicts little difference in fire intensity [43]. The regression
tree results provide additional support for the greater role of fuel moisture, since at very low moisture
(<5% for 10-hr fuels), mortality was much greater (68%) than at higher fuel moisture. In FVS-FFE, low
fuel moisture facilitates transition from surface to crown fire, even with low wind speeds, thus elevating
the likelihood of mortality [7,8]. At the same time, in flatter stands (<43% slope), the regression
tree provided evidence that high estimated fuel moisture resulted in under-estimation of mortality
seen in the Min Wind scenario. Other limitations inherent in FVS-FFE’s fire behavior models may
have also contributed to the underprediction by the Min Wind and POT Mod scenarios. Cruz and
Alexander [44] reported that rate-of-spread (ROS) predictions for surface fire (using the Rothermel
model) and crown fire (using the Van Wagner model) were frequently underestimated. Moreover,
the coupled Rothermel–Van Wagner models tend to under-predict transition of surface fire to crown
fire in conifer forests [45]. These known model biases have the potential to under-predict mortality
by under-predicting fire intensity, and thus the crown scorch input to the mortality model. Surface
fire ROS is important because flame length increases with ROS at low wind speeds before plateauing
at higher wind speeds when fuel moisture is high [46]. At the same time, underestimation of the
transition of surface to crown fires might also be contributing to under-prediction in the Min Wind and
POT Mod scenarios. Whether a fire is heading or backing up or down slope can also affect intensity
and flame lengths [47]; however, FVS-FFE only models head fires [8].

Our discussion so far assumed that our “representative weather” wind estimates are accurate
depictions of the fire environment when FIA plots were affected. Given that the nearest station is
sometimes tens of miles away from the FIA plots, RAWS observations, especially wind speeds, are
imperfect proxies for the weather on the plots when fire arrives. While it is at least theoretically
possible to generate interpolated or meso-scale adjusted wind speed estimates using advanced
models, topographic complexity—mountain ranges, elevation differences, wind-protected areas—pose
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challenges to accuracy. Page et al. [48] tested the accuracy of the National Digital Forecast Database used
by fire modelers with RAWS station measurements and found that the model tended to underestimate
wind speeds when winds speed exceeded 4 ms−1. More accurate downscaling might provide better
weather inputs for future validation efforts. However, the temporal uncertainty on when, exactly, fire
encountered the plot makes it difficult to pin down the best hour or hours of RAWS observations to
use. Moreover, there may be limits to how well the models underlying FVS-FFE can use improved
wind inputs as wind effects on wildfire rate of spread and flame lengths are modeled quite simply
compared to other models (FARSITE e.g., [49]) or latest fire physics models [50].

Beyond weather inputs, fuel models are used to represent pre-fire conditions that influence fire
behavior [46]. In this study, we allowed FVS-FFE to select the fuel models, which vary by forest type.
We did experiment with selecting fuel models based on fuel load data from the inventory plot, but
the fuel models selected and results were typically not much different, which is consistent with other
studies which report limited benefits to simulated fire behavior accuracy from customizing fuel models
based on field-measured fuel loading [51].

We found that the most predictive weather scenario varied by forest type group. The more
severe weather scenarios produced the lowest prediction RMSEs in the Juniper/Pinyon and Pines
forest type groups, though RMSEs exceeded 40%. Mortality has been observed to be highly variable
in Pinyon-Juniper owing to high variability in fuel loads and vegetation composition [52], and these
species’ thin bark make them comparatively vulnerable to lethal cambial heating, though survival
remains possible where surface fuels and/or tree cover are sparse [53]. The Firs and Ponderosa pine
forest type groups had the lowest prediction RMSE with the Min Wind scenario, possibly reflecting
higher fuel moisture in these forest types than predicted.

The evaluation of FVS-FFE’s mortality predictions is complicated by challenges imposed by the
spatial scale of the FIA plot. The bi-modal distribution of observed mortality (high frequencies of 0 and
100%) could reflect fire effects in within-stand patches rather than the mean effect across individual
stands. Conditions adjacent to FIA plots may also introduce variation in fire effects, for example
local topographic features that amplify (e.g., a canyon headwall acting as a chimney) or mitigate
(e.g., a wind-protected spot) fire behavior. A strength of FIA data is that it reflects the full variation in
forest conditions visited by fire, in proportion to how to their occurrence in the landscape. However,
parameterization of the FFE was not based on a probability sample from the Pacific Northwest and
California, so some FIA conditions may occur in what are essentially “gaps” in the continuum of forest
conditions represented in the data from which the FFE model parameters were derived.

4.2. The Role of RA Equation and Tree Species Effects

As the only species-specific parameter in the Ryan and Amman [54] mortality model (RA), the
bark thickness coefficient (which is multiplied by tree diameter to estimate bark thickness) is intended
to account for species-specific resistance to fire-induced cambial injury [55] and can be interpreted as
inversely correlated with probability of cambium death [35,54]. In an assessment of the RA equation
on first-order mortality after prescribed fire on National Park lands in the western U.S., Kane et al. [56]
found that the RA equation over-predicted mortality for species with thin bark, under-predicted for
trees with thick bark, and wasn’t very accurate for any tree with bark <1 cm thick. The most abundant
species in this study included trees relatively resistant to fire (Douglas-fir, incense cedar, Ponderosa
pine), moderately resistant (white fir, tanoak), and not resistant (California black oak, canyon live
oak). Mortality prediction RMSE declined as bark thickness coefficient decreased such that canyon live
oak had the lowest RMSE. Bark thickness appears to be a good predictor of first-order mortality, but
the assumed linear relationship between bark thickness and tree diameter is not always correct [55].
Zeibig-Kichas [57] found FVS-FFE tended to under-predict bark thickness in California conifers, which
would lead to over-prediction of mortality [1,56], but empirical evidence for this effect is lacking given
limited data on bark thickness.
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In this study, thin-barked canyon live oak was the only species for which mortality was
over-predicted by all three representative weather scenarios. While errors in estimation of bark
thickness or its effect on mortality may be partly responsible, hardwoods like this have the additional
complication in top-killed trees with 100% crown scorch. Even if aboveground plant tissues are dead,
new stems and leaves from underground plant tissue will commonly emerge [58], but this does not
convert the tree’s status to live under the FIA protocol. However, any tree that sprouts living tissue
above the point of diameter measurement is considered a survivor under FIA measurement protocol
(as opposed to basal sprouts, which count as new trees). Considering surviving trees included in this
study that experienced any crown scorch, we found that 2.8% of the canyon live oak trees had 100%
crown scorch, but most had recovered with live crown ratios over 10%. Fewer than 1% of the surviving
burned trees of the other species discussed here had recovered from 100% crown scorch. Canyon live
oak is increasing in basal area despite increased fire activity in California, possibly due to exploiting
niches in unburned stands where fuels are sparse and to its shade-tolerance [59].

Average observed mortality for the more fire-resistant California black oak was no less than
for the thinner barked canyon live oak; other studies report comparable mortality rates of about
60% [13,60]. The best RMSE scenario slightly under-predicted mortality, suggesting that resprouting of
heavily-scorched trees was not as strong a factor as in canyon live oak. Nevertheless, basal sprouting
can greatly affect post-fire stand dynamics, with up to 70% of the top-killed black oak resprouting in
one study [13]. California black oak has been experiencing a decline in basal area in California [59],
in part due to conifer encroachment into black oak canopies resulting in greater crown-fire caused
mortality [61].

FFE’s mortality predictions have several limitations, some of which can be overcome. First, crown
scorch is less effective than fire residence time in predicting mortality for species that re-sprout and for
small trees [55]. Second, the RA equation does not account for heat-induced root damage, which is a
significant mortality mechanism in ecosystems like Ponderosa pine [55,62]. Third, the development
and validation of the RA equation focused on conifers and largely excluded hardwoods [1,55], so
expanding coverage of fire effects on species beyond major conifer species, such as Douglas-fir and
Ponderosa pine, would be a major contribution to accuracy improvement and could build on the work
now underway to improve mortality models for southern hardwoods [63,64]. Although the ability of
the model to predict mortality for the major hardwood and softwood species was similar in this study,
the route to improving model performance will likely require different variables for different species
(e.g., root damage for Ponderosa pine as noted above).

4.3. Model Evaluation and Improvement in the Context of Forest Management

There are alternative ways to interpret model errors depending on objectives. Because it is based
on a squared error term, RMSE gives greater weight to large errors than to small ones. The direction of
error (under vs. over prediction) is also important. In some management contexts, over-prediction of
tree mortality, as we observed occurring with the Max Wind and POTSev scenarios, might sometimes be
preferred. Our results are particularly relevant to landscape-level assessments of fire-caused mortality
used to support land management planning. Such assessments often focus on the extreme weather
and fuel moisture (e.g., 90th or 97th percentiles) [65,66], such as those represented by the POTSev
weather scenario. Our approach highlights some advantages of using a broader range of weather
rather than relying on a single percentile. Over-reliance on the upper percentile wind values may lead
to over-estimating fire effects like tree mortality, since stands might burn in light to no wind during
otherwise extreme fire events. Given that differences between observed and predicted mortality were
very high for a substantial fraction of cases for every forest type for every weather scenario (hence the
large RMSEs), reliability of mortality prediction for an individual stand seems insufficient to support
decisions concerning that stand. However, applying the mortality model using the weather scenario
with the lowest mean error may nonetheless generate mortality predictions that, when considered
in aggregate across multiple stands, prove useful in representing alternative outcomes, for example,
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under alternative forest management or fuel treatment scenarios. In a study of carbon recovery after
the 2007 Angora fire the Lake Tahoe Basin, Carlson et al. [67] found that getting accurate estimates
of mortality was a key consideration in determining how fuel reduction treatments affected post-fire
recovery of carbon stores. They found that FVS-FFE predicted basal area mortality for all stands
examined to be within ±15% of observed mortality.

FFE-FVS provides many controls that may be deployed to localize, fine-tune and calibrate model
inputs so as to improve mortality predictions [63]). Moreover, some FFE model users possess expert
knowledge in fire science and/or fire operations that may help them utilize even inaccurate model
outputs to support decision-making, and guide modeling efforts, as is common practice [68,69].
However, extensive calibration effort introduces the potential to convert fire and mortality modeling
to an exercise that does little more than confirm pre-existing assumptions. This study demonstrates
very large discrepancies between modeled and observed tree mortality under a wide range of input
scenarios guided by either FFE default assumptions or weather deemed relatively representative of
when and where fire burned. While performance may approach what is acceptable for some purposes
when considering accuracy on average, for every forest type group, for FIA conditions representing at
least 20% of the forest (and as high as 35%–40% in some type groups), predicted differed from observed
by more than 50 absolute percentage points. These errors have implications for decisions based on
model output. For example, in a case where a stand has 100 percent mortality observed, predicted
mortality could be less than 50%. The underestimation of mortality would present a misleading
forecast of fire effects, potentially contributing to a lack of success in achieving desired management
outcomes in cases where outcomes are affected by degree of mortality, such as when assessing recovery
of carbon stocks after wildfire [67].

5. Conclusions

Evaluating the ability of FVS-FFE to predict tree mortality benefits from considering the full range
of fire weather. Modelling only the worst-case weather scenarios may not always provide useful
predictions, even in the era of megafires driven by extreme weather. There is, in fact, a growing demand
to include stands which rarely burn (e.g., “fire refugia”) into fire effects modelling so that the full range
of fire effects is captured in studies [70]. The advisability of taking the trouble to obtain and refine
representative weather scenarios will depend on the goals of end-users. For many applications, such
as evaluating fuel treatments’ effects on fire hazards, our results suggest that the two default POTFIRE
scenarios offer realistic starting places for mortality predictions given assumptions on moderate or
severe burning conditions. Given the complexity of fire behavior and heterogeneity of fire effects, the
addition of representative weather can help generate a more realistic set of mortality predications
when dealing with stands representing a wide-range of forest conditions, such as those in the FIA
dataset. Our results also emphasize the need for more ground-truthing of fire models and validation
of the RA mortality equations as used within the models, not just the equation itself. The process of
model validation is an on-going endeavor and there are no final definitive mortality models.
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weather scenario. Figure S4. Boxplots of mean stand-level bole char height (meters) by forest type. Boxes depict
quantiles, whiskers are 5th and 95th percentiles, and red diamonds are means. Figure S5. Pruned regression tree
of pre-fire stand measurements, remote automated weather stations (RAWS) weather, and modeled attributes on
predicted mortality errors (predicted—observed % basal area (BA)) in the Mean Wind weather scenario. Values in
boxes are mortality percent and number of stands. Slope is topographic slope (%), dia1_mean is mean stand tree
diameter (in), FM1_Mean and FM100_mean are 1- and 100-hr fuel moisture (%), respectively. Table S1. Grouping
of Forest Inventory and Analysis (FIA) forest types used to evaluate Forest Vegetation Simulator- Fire and Fuels
Extension (FVS-FFE) mortality predictions. Table S2. Mean observed bole char height (m), mean error and
root mean square error (RMSE )(m) of differences between field-assessed bole char height and weather scenario
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informed modeled flame length, by weather scenario, by forest type group, with weather scenario enabling error
closest to zero in bold.
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