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Abstract: To optimize suppression, restoration, and prevention plans against wildfire, postfire
assessment is a key input. Since little research has been carried out on applying Sentinel-2 imagery
through an integrated approach to evaluate how environmental parameters affect fire severity, this
work aims to fill this gap. A set of large forest fires that occurred in northwest Spain during extreme
weather conditions were adopted as a case study. Sentinel-2 information was used to build the fire
severity map and to evaluate the relation between it and a set of its driving factors: land cover, aspect,
slope, proximity to the nearest stream, and fire recurrence. The cover types most affected by fire were
scrubland, rocky areas, and Eucalyptus. The presence of streams was identified as a major cause of the
reduced severity of fires in broadleaves. The occurrence of fires in the past is linked to the severity of
fires, depending on the land cover. This research aims to help fire researchers, authority managers,
and policy makers distinguish the conditions under which the damage by fire is minimized and
optimize the resources allocated to restoration and future fire suppression.
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1. Introduction

Wildfires can have beneficial effects on societies and ecosystems [1,2]. Conversely, wildland fires
can turn into extreme wildfire events, which cause a measurable impact on the socio-economic scenario
in terms of very large economic losses [3,4], can affect human health and mortality, and can contaminate
water supplies [5]. Wildfires can also turn into wildfire disasters, which mainly occur when they
provoke fatalities and affect human systems. Wildfire disasters may also have a measurable impact on
ecology [6–8], due to their impact on biodiversity and soil degradation [9], significant influence on
atmospheric chemistry and composition, gas and aerosol emissions [10], and contribute to altering the
Earth’s climate and radiation budget [11].

Although some recent studies suggest that there is a slightly declining trend in the number of
fires around the world [12,13], some other analyses point to a coupling between global warming
and wildfire probability [14,15]. In 2017 and 2018, a large number of extreme fire events occurred
in many parts of the world, including the US, Canada, Chile, the Mediterranean, Russia, and even
Greenland [16]. In the particular case of Spain, the 2017 warm season was more severe than usual; that
year, Spain was the second most affected country in the European Union in terms of both burned area
and number of fires, just behind Portugal [17]. The large forest fires (LFFs) that occurred in Galicia
(Spain) and Portugal were analyzed in Molina-Terrén et al. [18].

Forest fires are a substantial concern for public authorities in the European Union. In Mediterranean
Europe, 2.6% of the wildfire events for the period 1980 to 2006 involved approximately 75% to 80% of
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the total burned area [19,20]. Although they are a global phenomenon, there is no universal definition
for a large forest fire (LFF) [21]; however, in the European Union, LFFs are considered to be those that
burn an area larger than 500 ha [22,23].

Once an LFF has occurred, a strategy for restoration or land recovery must be studied: on-site
treatments [24] and restoration activities are evaluated [25,26], the evolution of the burned wildland
is monitored [27,28], and the likely future downstream impacts due to flooding, landslides, and soil
erosion are estimated [29]. To perform this decision-making process in postfire management, the
characterization of the burned areas becomes a key input. This information is obtained by assessing fire
severity, which is considered the magnitude of ecological change caused by fire [24] in both vegetation
and soil [30]. Wildfire risk reduction also benefits from this line of research, especially in the case
of LFFs under extreme weather conditions [31]. The characterization of unburned patches in LFF is
also an active area of research since they play an important role in ecosystem dynamics and wildfire
risk [32,33].

Burn scar mapping and characterization are fundamental inputs for an aerosol emissions estimation,
carbon cycle modeling, hazard assessment, resource management, and policy creation [34]. A few years
ago, wildfires had to be characterized through fieldwork, while the original situation was recorded on
gross forestry maps. Apart from the very low reliability of these information sources, they were barely
comparable due to their different natures. Nowadays, remote sensing has been consolidated as the
main technique for assessing fire severity. Satellite sensors allow the measurement of the impact of
fires by comparing pre- and postfire information. Remote sensing products are inexpensive, do not
entail safety hazards, and provide rapid information for large areas [35]. For example, Abatzoglou et
al. [36] applied the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to assess at a
global scale the relation between fire activity, climate variability, and anthropogenic influence. Satellite
models can also be transferred to platforms such as the Google Earth Engine, enabling a ready-to-use
remote sensing product for the public [37].

Landsat has been the most explored program for decades. The operational land imager (OLI)
aboard Landsat-8 generates high quality multispectral images at 30 m resolution with a revisiting
time of 16 days [38,39]. The Sentinel-2 satellite missions of ESA’s Copernicus program, specifically
designed for vegetation sensing, were launched in 2015 and 2017. They have led to significant increases
in the available Earth surface acquisition data, both in spatial (10 m to 30 m) and temporal (five-day
revisit) domains [40]. However, the application of Sentinel-2 imagery in fire severity assessment is still
underdeveloped [41–43]. In fact, to date, six documents were published in Scopus under the search
Title-Abs-Key (“sentinel-2” AND (“fire severity” OR “fire assessment”)).

Optical sensors allow the evaluation of fire severity through several indices that consist of numeric
combinations of reflectance values from different spectral bands. The normalized difference vegetation
index (NDVI) [44] and (differenced) Normalized Burn Ratio (NBR) [45] are the most commonly used
indices [24].

Beyond the assessment of the fire impact on a location, a deeper understanding of the relations
between the biophysical variables involved in the wildfire would facilitate postfire management.
The fundamental biophysical variables that affect the spread and the fire intensity are meteorology
(wind and air moisture), topography (elevation, slope, and aspect), and fuel (type of vegetation and
moisture of vegetation) [46]. The correlation between some of these physical variables and the fire
severity was described by Pereira et al. [47] and Mitsopoulos et al. [48].

Moreover, while there is a large body of scientific literature in the analysis and development of
spectral indices derived from satellite data [49], there is little research on the relationship between fire
severity and biophysical variables through satellite remote sensing. Amos et al. [50] demonstrated
the suitability of Sentinel-2 imagery to separate burning severity levels. Further, they performed
a short investigation into the association of six environmental variables—elevation, slope, aspect,
fraction vegetation cover, terrain roughness index, and land cover—and fire severity, but no significant
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correlations were found. Soil erosion prediction is a physical parameter that can be mapped in
conjunction with fire severity by using Sentinel-2 data [51,52].

Due to its relatively recent release, the potential of Sentinel-2 for wildland assessment needs to
be further verified [40]. This paper presents a case study of burned area mapping and fire severity
assessment by Sentinel image analysis. Fire severity was compared between the following variables:
land cover, aspect, slope, proximity to the nearest stream, and fire recurrence. Indeed, no papers
were found in Scopus under the search Title-Abs-Key (sentinel-2 AND fire AND (“land cover” OR
“land use”) AND (moisture OR recurrence)). The fires that integrate this case study occurred under
similar meteorological conditions. This represented an opportunity to analyze other key environmental
variables that have been less studied to date.

The next section presents the geographic context of the eleven wildfires analyzed, as well as the
methodology followed to compare the variables affecting fire severity. The results and the interpretation
performed are found in Section 3, and the conclusions are summarized in Section 4.

2. Materials and Methods

2.1. Study Area and Datasets

The studied region is Pontevedra, the southwestern province of Galicia, on the Atlantic coast of
Spain. Although Galicia represents only 6% of the national surface area, between 2006 and 2015, it
registered an approximate average of 29.2% of Spanish LFFs and 19.4% of the total burned forest area
by LFFs [53,54].

This is an event-based study: it involves the eleven largest wildfires of the 215 that arose between
14th and 16th October 2017 in Pontevedra. The location and the burned area of each wildfire are
collected in Figure 1: five fires burned over 500 ha, and all of them burned over 79 ha. In that October,
a total of 19,919 ha burned, and 3 fatalities occurred in Pontevedra. A drought was declared in the
region in January, and it still persisted through October. The temperature reached in the affected region
on 14th October ranged from 25.6 to 30.5 ◦C and from 26.5 to 34.8 ◦C on 15th October. In most of
the region, between the 14th and 15th of October, the air relative humidity fell below 30% and wind
speed varied from 17 to 22 m/s [55]. In brief, the fires stared under similar meteorological conditions,
which was an opportunity to analyze other environmental variables that have a substantial impact on
wildfire behavior.
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The study was based on the imagery from Sentinel-2. It consists of a partnership of twin satellites
flying in the same orbit but phased at 180◦ to give a revisit frequency of 5 days. These satellites are
a mission of the Copernicus program designed by the European Commission in partnership with
the European Space Agency (ESA). Their goal is to provide information about Earth’s surface that
is useful for a wide range of applications in a variety of areas. The mean orbital altitude of these
satellites is 786 km, their orbit inclination is 98.62◦, and their geographical coverage consists of the
band of latitude extending from 56◦ South (Isla Hornos, Cape Horn, South America) to 83◦ North
(above Greenland) [56].

No geometric and radiometric corrections needed to be applied to the Sentinel-2 data acquired,
since such operations are included in the product used (Level-1C). Images from Sentinel’s MSI have a
radiometric resolution of 12 bits, enabling the detection of 4095 potential light intensity values [56].
The spectral band specifications are presented in Table 1.

Table 1. Specifications of spectral bands provided by Sentinel [56].

Band Central
Wavelength (nm) Bandwidth (nm) Spatial

Resolution (m)

Band 1—Coastal aerosol 443 20 60
Band 2—Blue 490 65 10

Band 3—Green 560 35 10
Band 4—Red 665 30 10

Band 5—Near Infrared (NIR) 705 15 20
Band 6—NIR 740 15 20
Band 7—NIR 783 20 20
Band 8—NIR 842 115 10

Band 8A—NIR narrow 865 20 20
Band 9—Water vapor 945 20 20

Band 10—Shortwave Infrared
(SWIR) (Cirrus) 1375 30 60

Band 11—SWIR 1610 90 20
Band 12—SWIR 2190 180 20

The input images for this study were selected pursuing a low cloud percentage, a similar
phenological stage, and the lowest elapsed time between the wildfires and the pre- and post-wildfire
situations. They consisted of 4 images: for the northern part of Pontevedra, two images were recorded
on 10 October 2017 for prefire and 30 October 2017 for postfire. For the southern part of Pontevedra,
the pre- and postfire dates were 10 October 2017 and 14 November 2017. Images count with geometric
and radiometric correction, which facilitates the methodology.

2.2. Methodology

The Sentinel-2 images were used to build up the fire severity map. Once the map was created,
the aforementioned biophysical variables that affect fire spread and severity were analyzed. Sentinel
image analysis and available regional cartography were combined. The biophysical variables were
calculated and combined with severity to find possible correlations.

2.2.1. Burned Areas Detection and Fire Severity

The burned areas were detected through the NBR index; this index is sensitive to chlorophyll
content, vegetation humidity, and ashes [45,57]. The NBR combines NIR and SWIR wavelengths
through the Formula (1):

NBR = (NIR− SWIR)(NIR + SWIR). (1)

Prefire, healthy vegetation has very high near-infrared reflectance and low reflectance in the
shortwave infrared portion of the spectrum. However, recently burned areas have relatively
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low reflectance in the near-infrared and high reflectance in the shortwave infrared band [58,59].
Consequently, a high NBR value generally conforms to healthy vegetation covers and bare ground,
while recently burned areas present low NBR values.

The difference between NBR pre- and postfire values was used to measure the impact that fire
had on the burned areas and thus to detect fires [58], as expressed by Formula (2). This magnitude,
sometimes called dNBR (differenced NBR), exploits the changes in pixels caused by fire. The dNBR is
currently one of the most consolidated indicators to analyze fire severity with very different fuel types
among different ecosystems and geographic areas [24,60].

dNBR = NBRprefire −NBRpostfire. (2)

The discrimination of fire severity levels was carried out by establishing threshold values over
the dNBR index. The threshold values were adapted from those used by Key et al. [58]. In the next
sections, the relationship between fire severity and the following variables was investigated: land
cover, aspect, slope, proximity to the nearest stream, and fire recurrence.

2.2.2. Land Cover

In regard to fire behavior, land cover is a critical factor since the amount of fuel and its spatial
distribution strongly influence fire spread [61]. There is no land-cover cartography available in Spain
dating from 2017 with a resolution comparable to Sentinel-2 products. For this reason, the land-cover
mapping was calculated in this work by supervised classification of the Sentinel images. The training
areas were defined based on the photointerpretation of aerial images provided by the Spanish Plan for
Aerial Orthophotography (PNOA) 2015 [62].

The land cover classes were defined through a simplification of the classes used in the European
program CORINE Land Cover [63], which is the base for the Information System on Land Use in Spain
(SIOSE) [64]. Eight classes of land cover were considered, based on a field survey, as well as on shared
characteristics and distinguishable physiognomies:

• Rocky areas: consist of scrubs on rocky outcrops.
• Crops: mainly composed of orchards, vineyards, pastures, and annual crops.
• Anthropogenic areas: composed of infrastructures and urban areas, including gardens, slopes,

urban trees, and surrounding vegetation.
• Scrubland: most common scrubs are woody shrubs that can reach up to 2 m high, mainly Ulex sp.,

Cytisus sp., and Erica sp.
• Eucalyptus sp.
• Conifers: the most common is Pinus sp.
• Broadleaves: includes Quercus sp., Castanea sp., Acacia sp., and other typical riverside

Galician species.

Training areas were distributed around all the study regions to obtain representative data according
to different aspect, slope, age, and phenology. Every training sample was over 900 pixels for the
scrubland cluster, equivalent to 36.4 hectares. The classification algorithm applied was the maximum
likelihood, which uses probability densities for the categories to predict the inclusion of a pixel in
each [65,66].

The classification was performed using Sentinel bands (resampled to 20 m). Given that the
vegetation phenology varies throughout the year, the potential for canopy discrimination through
remote sensing images also depends on the image date. For this reason, the land-cover classification
procedure was tested on images from different seasons. The accuracy of classifications was evaluated
through a sample of ground control points. The cover of the sample points was identified over the
PNOA of 2015 [62]. The image that provided optimal results in terms of seasonal analysis was the one
dated 24th April 2017.
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2.2.3. Topography and Physiography

A second driving factor for fire spread and fire severity is the characteristics of the terrain.
The wildfire spread rate is the result of a complex interaction between topography, fuel, and
vegetation [67]. Most authors agree that topographic, physiographic, and fuel conditions strongly
affect fire severity when weather conditions are not extreme [68,69]. Physiography is defined as the
range of topographic variation encountered within a focal landscape, as aspect, slope, and distance
to streams [70]. In contrast, there is disagreement when conditions are extreme, as is the case for the
analyzed wildfires. Extreme meteorological conditions can induce high spatial variations in wildfires in
terms of location on the fire perimeter and time of day of burning. The correlation of fuels, topography,
and weather in such mixed-severity fires remains poorly understood [71]. As mentioned in Section 2.2,
the weather conditions during the eleven wildfires occurred during similar weather conditions, and
this facilitates the analysis of other biophysical variables.

This study considers the soil moisture in riverbanks, which is usually one of the neglected variables
affecting forest fires. This moisture is absorbed by the vegetation, thus eventually resulting in lower
fire severity. The spatial analysis of this moisture source remains under-investigated, as opposed to
the temporal analysis in relation to a precipitation regime [72], as well as the presence of streamflows,
which has been reviewed in the context of hydrologic drought [73]. The soil moisture was expected to
be seriously lowered all over the studied region because of two reasons: it underwent a prolonged
drought, and most of the region has primarily sandy soils [74]. In view of this, the proximity to streams
was tested as an approximation of the soil moisture.

The impact of fuel and weather on wildfire severity has undergone more active research than that
of topographic variables. Thus, to clarify the influence that topography and physiography have in fire
severity on temperate Spanish wildland, the following variables were analyzed:

• Aspect: defined as the orientation of the slope, the aspect map was generated from the Digital
Terrain Model, 5 m resolution, dating from 2009, provided by the official cartographic services [75].
The resulting values for every pixel were categorized into four sectors: 90◦—amplitude:
315◦–45◦ was north-facing, 45◦–135◦ was east-facing, 135◦–225◦ was south-facing, and 225–315◦

was west-facing.
• Terrain slope: as in the previous case, the slope map was generated from the Digital Terrain

Model provided by the official cartographic services [75]. The resulting values for every pixel
were categorized into four classes: below 20%, 20–40%, 40–60%, and over 60%.

• Distance to nearest stream: the cartography of streams at a 1:10,000 scale provided by the regional
official services [76] was considered to discriminate surrounding areas that could potentially benefit
from the available soil moisture. A buffer of 50 m was used for the final streams map. Beyond
that length, the influence provided by streams is neglected. Sentinel-2 data could not be used to
provide a smaller buffer because they have not enough resolution to provide this information.

The area for every parameter in the resulting maps was obtained in hectares, and then relative
values were obtained for the severity of each fire.

2.2.4. Fire Recurrence

Prescribed fires are infrequent in Galicia. Once a land burns, depending on the fire severity, most
of the vegetation might be destroyed, and the soil conditions might be altered. Then, in an ecosystem
such as that analyzed in this work, after a fire, the ground is rapidly covered by germinating plants,
among which short-lived species are abundant [77], or by resprouting plants. Seeds can be present
in the burned soil or can arrive from unburned neighboring areas [78], in which pioneer plants are
dominant [79]. A different vegetation pattern would entail a different wildfire behavior.

In addition, the reduction in soil and vegetation evolution may obstruct either soil organic matter
formation or limit the establishment of plant species, which foster erosive processes [80]. Erosion, in
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turn, impedes vegetation restoration, causing a decrease in soil moisture. The vegetation that prevails
in such conditions would ignite easier and burn faster than the prefire vegetation.

Another consequence of fires is the abandonment of prefire crops. Crops usually function as
firebreaks because firefighting is easier over them and because of their geographic association with
human presence, facilitating a quicker response [81]. Once they are no longer exploited, unmanaged
fuel begins to cover the area, increasing fire proneness.

Consequently, the occurrence of past fires determines the available fuel, the spatial patterns of
fire, and the firefighting conditions, so fire recurrence should be analyzed as a factor that potentially
correlates with the severity of new wildfires. The fire recurrence for the regions analyzed in the present
study was extracted from Regos [82], which includes the fire recurrence of the whole Galician Spanish
Region from 2000 to 2017. The author developed the fire recurrence map through the data acquired
from the MODIS, specifically from the product MCD64A1. The period 2000–2016 was used to build
the recurrence map.

3. Results and Discussion

3.1. Burned Area Detection and Fire Severity Mapping

Following the methodology described in Section 2.2.1, maps of burned areas and resulting dNBR
were generated. They are shown in Figure 2. The fire severity discrimination was performed by
applying the threshold values presented in Table 2 to the dNBR map. The determination of these
values was based on the approach followed by Key et al. [58]. The first threshold, referred to as the
unburned–burned threshold, was chosen at the 200 value by analyzing the frequency distribution of
the dNBR values. Furthermore, four classes were considered with different levels of forest fire severity.
This is in accordance with the characteristics of wildfires occurred in Pontevedra [83,84], and it matches
the number of severity classes adopted by the European Forest Fire Information System (EFFIS) [85]
and the United States Department of Agriculture (USDA) [86]:

• Low severity (2): this class includes areas where stems of trees and shrubs were partially affected.
• Moderate severity (3): this class includes areas where less than 50% of tree canopies were scorched,

and some shrubs remained unburned.
• High severity (4): a burned area falls in this class if more than 50% of tree leaves were scorched

but not burned, as well as some small branches of shrubs (see Figure 3a).
• Very high severity (5): in this class, the leaves and the thin branches of trees and shrubs were

burned. Just stems and thick branches remained standing (see Figure 3b).
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The Sentinel-based classification was validated through photointerpretation of orthorectified
images at 25 cm spatial resolution dating from 2015 [62]. A sample of 420 randomly distributed
points around the studied area was used to compute the confusion matrix and is presented in Table 3.
An overall accuracy of 89.8% was obtained for this thematic map.

Table 3. Confusion matrix of the land-cover verification for the wildfires.

Sentinel-Based Classification

Reference Classes Rocky
Area Crops Anthropogenic

Area Scrubland Eucalyptus Conifers Broadleaves Sea Stream Total Commission
Error (%)

Rocky area 50 1 3 0 0 0 0 0 0 54 7.4
Crops 0 70 2 0 0 0 0 0 0 72 2.8

Anthropogenic area 2 5 48 0 0 0 0 0 0 55 12.7
Scrubland 0 3 1 53 0 0 4 0 0 61 13.1
Eucalyptus 4 0 0 3 58 1 2 0 0 68 14.7
Conifers 1 0 0 3 2 27 2 0 0 35 22.9

Broadleaves 0 1 1 1 0 0 51 0 0 54 5.6
Sea 0 0 0 0 0 0 0 10 0 10 0.0

Stream 0 0 1 0 0 0 0 0 10 11 9.1
Total 57 80 56 60 60 28 59 10 10 420

Omission error (%) 12.3 12.5 14.3 11.7 3.3 3.6 13.6 0 0
Overall accuracy (%) 89.8

The area of land-cover classes was analyzed for every severity level. The absolute and relative
values were obtained. The relative values are presented in Table 4, which also includes the area-weighted
average severity for every cover class. The results reveal significant differences among the types of
cover. For instance, 17.7% of the low-severely damaged surface corresponds to broadleaves, while
this percentage decreases to 8.7% in the very high-severely damaged areas. The most pronounced
difference between the lowest and highest severity degrees is shown in scrubland: 9.7% of the surface
affected by low severity corresponds to scrubland, while it rises to 25.8% in the areas with very high
severity. Furthermore, this is the cover with the highest average severity. Strong differences among
high–low damaged areas also appear in crops and anthropogenic areas, but in the opposite direction.
Anthropogenic areas only include 1.2% of the very high severity class, whereas they account for 6.2%
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of the low severity areas. They both present the minimum average severity. These results seem to
be linked to the available woody fuel in each type of cover. Fire suppression efforts are an important
explicative factor since they are usually focused on anthropogenic areas. The proximity to streams
for certain covers is another variable that may explain some of these results and is analyzed in the
next section.

Table 4. Relative land-cover values for each severity class (%).

Land Cover
Fire Severity Class Area-Weighted Average

Fire Severity2 3 4 5

Rocky area 13.8 17.0 24.7 18.7 3.9
Crops 12.4 7.9 5.3 2.5 3.3

Anthropogenic area 6.6 4.2 2.6 1.2 3.3
Scrubland 9.7 11.9 20.3 25.8 4.1
Eucalyptus 26.7 32.0 27.2 32.4 3.8
Conifers 13.1 12.3 9.0 10.7 3.7

Broadleaves 17.7 14.7 11.0 8.7 3.6
Total (%) 100 100 100 100 3.8

To better appreciate the aforementioned links between land cover and fire severity, Figure 5
illustrates a detail of both thematic maps for the wildfire 8. The fire was extinguished in many crops
and broadleaf surfaces or caused less damage than other types of cover.
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3.3. Topography and Physiography

The maps depicting aspect, slope, and distance to the closest stream were obtained for the studied
fires following the methodology described in Section 2.2.3. Images for fire number 8, the largest one
among the set of fires occurring within the study period, are shown in Figure 6.
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The relation between fire severity and aspect of burned areas is presented in Table 5. The average
fire severity for each slope shows no significant variation. However, the analysis of the relative presence
of the different orientation classes in every fire severity class reveals that the west-oriented (135◦–225◦)
hills accounted for the largest burned at all damage levels. This is consistent with the physiography of
the analyzed regions since most of the hydrographic basins face this orientation. In addition, when the
fires started to break out on 14th October 2017, south–southwest wind prevailed [55], which influenced
the propagation of the primary fire and the induction of new fires. The relative areas also reveal that
the north orientation was clearly less affected by the highest levels of severity. An example can be
found in the wildfire 2 case, where the aspect map in the northern part of the affected area clearly
matches the fire severity distribution.

Table 5. Relative values of aspect in relation to area for each fire severity (%).

Aspect of the Burned
Surface

Fire Severity Class Area-Weighted Average
Fire Severity2 3 4 5

315◦–45◦ 27.0 26.6 20.9 15.8 3.6
45◦–135◦ 20.6 20.2 21.6 26.2 3.9

135◦–225◦ 21.5 21.4 23.7 24.7 3.8
225◦–315◦ 31.9 32.8 34.5 33.7 3.8

Total 100 100 100 100
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The relation between fire severity and slope is presented in Table 6. The analysis of this parameter
for every severity class shows a similar distribution: for every severity class, more than 74% of the
terrain presented slopes under 40%; slopes over 60% represent 6.2% of the areas affected by severity
5 and 9.2% of the areas affected by severity 2. The average fire severity is 3.0 for every slope class.
In summary, no correlation was observed between slope and fire severity. One reason may relate to the
fact that, according to the slope map, the terrain in the area of study is not steep: only 8% of the burned
areas have slope values over 60%, while 73% are under 40%.

Table 6. Relative values of slope in relation to area for each fire severity (%).

Slope (%)
Fire Severity Class Area-Weighted Average

Fire Severity2 3 4 5

0–20 39.3 36.2 34.7 31.8 3.0
20–40 35.2 38.1 40.0 43.0 3.0
40–60 17.2 18.1 18.2 19.3 3.0
>60 9.2 8.5 7.7 6.2 3.0

Total 100 100 100 100 3.0

As mentioned above, the soil moisture was considered from the spatial point of view by classifying
the burned area into two groups, depending on their proximity to a stream. This variable was analyzed
together with fire severity and is shown in Table 7. It can be seen that the higher the fire severity was,
the lower the area burned near a stream. Additionally, in a visual inspection of severity, vegetation
and stream maps seem to be correlated; Table 8 shows the relative values of land cover in stream areas.
This analysis reveals that 27.0% of the burned riverbank was occupied by broadleaves, while they only
involved 12.0% of the whole burned surface. This correlation could explain the better behavior of
broadleaves to fire severity that was noted in the previous section.

Table 7. Relative values of the proximity to streams in relation to area for each fire severity (%).

Proximity to the Closest
Stream

Fire Severity Class Area-Weighted Average
Fire Severity2 3 4 5

>50 m 86 88 90 91 3.7
≤50 m 14 12 10 9 3.6
Total 100 100 100 100

Table 8. Relative values of the land cover in relation to area for each level of proximity (%).

Land Cover
Distance to Nearest Stream

>50 m ≤50 m

Rocky area 10.4 20.9
Crops 7.3 5.9

Anthropogenic area 2.8 3.2
Scrubland 16.1 18.2
Eucalyptus 30.9 29.4
Conifers 5.5 11.3

Broadleaves 27.0 10.3
Total 100 100

The three described thematic maps of wildfire 8 are presented at a greater resolution in Figure 7:
aspect, slope, and proximity to streams, together with fire severity. The contour of the burned area
was added to all of them. No appreciable influence of slope on fire severity was found. North-faced
(315◦–45◦) hills possessed a mild trend to lower severity.
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As shown in these results, riverbanks are associated with fire refugia, which are of increasing
interest to ecology. Biodiversity can retreat to them and, once the conditions change, expand [87].

3.4. Fire Recurrence

Finally, a recurrence map was obtained, as explained in Section 2.2.4. According to the available
data, 5% of the territory has been affected by three or more fires in the period 2000 to 2016, 32% by two
fires, and 35% by one fire. Figure 8 corresponds to the map built from the information gathered.
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The numeric comparison between fire severity and fire recurrence is illustrated in Tables 9 and 10.
Both contain the relative values in relation to the burned area, the former for each fire severity level,
and the latter for each fire occurrence category. Table 9 shows that 47.8% of the areas affected by
very high severity correspond to level two of wildfire occurrence. According to Table 10, 75.2% of
the burned area that experienced two previous fires underwent fire severity of high (4) or very high
(5), and 77.1% for areas with three previous fires. These results reveal that the vegetation might be
sufficiently restored from one wildfire to the next.

Table 9. Relative values of fire recurrence in relation to area for each fire severity (%).

Fire Recurrence
Fire Severity Class Area-Weighted Average

Fire Severity2 3 4 5

No fire occurred 52.1 40.3 23.5 11.6 3.3
1 fire 28.9 35.4 36.4 33.2 3.8
2 fires 17.0 21.2 34.9 47.8 4.1
3 fires 2.1 3.1 5.3 7.4 4.1
Total 100 100 100 100

Table 10. Relative values of fire severity in relation to area for each level of fire recurrence (%).

Fire Recurrence
Fire Severity Class

Total
2 3 4 5

No fire occurred 16.3 42.9 30.6 10.2 100
1 fire 7.2 30.4 39.0 23.5 100
2 fires 4.5 20.3 38.9 36.3 100
3 fires 3.7 19.2 39.7 37.4 100

The relationship between fire occurrence and high severity levels shows that a wildfire can alter
the characteristics of the vegetation. Wildfires may involve a selection of species; a biomass restoration
is more likely to be performed by those species with greater postfire resprouting capabilities or that
are better adapted to burned environments. The success of these species also has the consequence
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of a high uniformity in the ecosystem, which makes fire suppression more difficult in future fires.
Additionally, soil degradation entails less soil moisture retention, which makes the biomass living there
more prone to burn. Another effect lies in human postfire behavior: agriculture and forestry tend to be
discontinued, and thus, prevention activities and fire suppression resources are also discontinued.

4. Conclusions

The fire severity map for the eleven largest wildfires that occurred in October 2017 in northwest
Spain was created using Sentinel-2 imagery. Wildfires broke out under extreme weather conditions
in terms of temperature, wind speed, and air moisture. The influence that the topographic and
physiognomic variables or wildfire recurrence have on the behavior of fire under such conditions is
not well known. To fill this gap, an intercomparison was performed between fire severity, aspect,
slope, proximity to waterways, and fire recurrence. It was facilitated by the spatial homogeneity of
meteorological conditions. The analysis includes a detailed, accurate land-cover map and the analysis
of the relationship of this parameter with fire severity.

Sentinel-2 capabilities have great potential to improve the understanding of the effect that the
aforementioned factors have on wildfire behavior simultaneously. In fact, the relations between the
different land-cover types and fire severity were more precisely described than the current official maps
allow. An overall accuracy of 89.8% in the land cover map was achieved. Considering the obtained
map, the most affected cover types by fire were, from higher to lower impact, scrubland, rocky area,
and Eucalyptus.

Some conclusions were derived from the integrated analysis performed through the environmental
variables and fire recurrence. While research on soil moisture as a variable affecting wildfire has
been focused on its temporal variation, the present work considered its spatial variation in relation
to streams. Fire severity tends to be lower in areas that are not farther than 50 m from a stream.
This could be caused by the prolonged drought over primarily sandy soils. Under these conditions, the
gradient of soil moisture in riverbanks is high, providing moisture to riverside vegetation. Broadleaves
occupied 27.0% of this area, although they accounted for only 12.0% of the total area. This challenges
the assumption that Broadleaves always resist the fire spread better than conifers and Eucalyptus.
The higher severity occurred in the west-faced areas, which can be explained by the orography and the
wind direction during the fire.

With regard to the occurrence of fires within the 17 years before the analyzed wildfires occurred,
the severity increased with two or three fire occurrences. The rationale lies in the human postfire
response: agriculture, farming, and forestry tend to be discontinued, which reduces the efforts in
prevention work and the resources for fire suppression.

In view of the limited research on the combination of remote sensing information and physical
variables, this work describes a method to exploit state-of-the-art remote sensing imagery to find how
prefire variables affected fire severity. This research aims at helping fire researchers, authority managers,
and policy makers to distinguish the conditions under which the damage by fire is minimized and the
resources allocated to restoration and future fire suppression are optimized.

Some remarkable future lines of research might include the precise monitoring of fire dynamics
and the role played by streams and underground water in fire severity. Through open-access remote
sensing products, postfire wildland management has the chance to take a major step in improving the
cost and precision of the involved magnitudes—fuel type, physiography, and fire history—compared
to the method of aerial photointerpretation. Then, the efficacy and the cost-effectiveness of the decision
process in wildland management could be improved.

Author Contributions: J.P. conceived the research and methodology. L.A., J.A. and G.B. performed the data
processing and statistical analysis. J.A. and J.P. contributed equally to the analysis of the results. J.P. provided
expertise related to fire dynamics. The writing was carried out by J.A., L.A. and G.B.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.



Forests 2019, 10, 1021 16 of 20

References

1. Pausas, J.G.; Keeley, J.E. Wildfires as an ecosystem service. Front. Ecol. Environ. 2019, 17, 289–295. [CrossRef]
2. Myers, R.L. Living with Fire: Sustaining Ecosystems & Livelihoods through Integrated Fire Management; The

Nature Conservancy – Global Fire Initiative: Tallahassee, FL, USA, 2006.
3. Tanase, M.A.; Kennedy, R.; Aponte, C. Fire severity estimation from space: A comparison of active and

passive sensors and their synergy for different forest types. Int. J. Wildl. Fire 2015, 24, 1062–1075. [CrossRef]
4. Vhengani, L.; Frost, P.; Lai, C.; Booi, N.; Van Den Dool, R.; Raath, W. Multitemporal burnt area mapping using

Landsat 8: Merging multiple burnt area indices to highlight burnt areas. In Proceedings of the International
Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4153–4156.

5. Smith, H.G.; Sheridan, G.J.; Lane, P.N.J.; Nyman, P.; Haydon, S. Wildfire effects on water quality in forest
catchments: A review with implications for water supply. J. Hydrol. 2011, 396, 170–192. [CrossRef]

6. Bowman, D.M.J.S.; Williamson, G.J.; Abatzoglou, J.T.; Kolden, C.A.; Cochrane, M.A.; Smith, A.M.S. Human
exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 2017, 1, 58. [CrossRef] [PubMed]

7. Pausas, J.G.; Llovet, J.; Rodrigo, A.; Vallejo, R. Are wildfires a disaster in the Mediterranean basin? A review.
Int. J. Wildl. Fire 2008, 17, 713–723. [CrossRef]

8. Tedim, F.; Leone, V.; Amraoui, M.; Bouillon, C.; Coughlan, R.M.; Delogu, M.G.; Fernandes, M.P.; Ferreira, C.;
McCaffrey, S.; McGee, K.T.; et al. Defining extreme wildfire events: Difficulties, challenges, and impacts. Fire
2018, 1, 9. [CrossRef]

9. Barreiro, A.; Martín, A.; Carballas, T.; Díaz-Raviña, M. Response of soil microbial communities to fire and
fire-fighting chemicals. Sci. Total Environ. 2010, 408, 6172–6178. [CrossRef]

10. Urbanski, S. Wildland fire emissions, carbon, and climate: Emission factors. For. Ecol. Manag. 2014, 317,
51–60. [CrossRef]

11. Kumar, A. Wildfire Emissions in the Context of Global Change and the Implications for Mercury Pollution.
Michigan Technological University, 2018. Available online: https://digitalcommons.mtu.edu/etdr/765
(accessed on 18 March 2019).

12. Doerr, S.H.; Santín, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing
world. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150345. [CrossRef]

13. Earl, N.; Simmonds, I. Spatial and temporal variability and trends in 2001–2016 global fire activity. J. Geophys.
Res. Atmos. 2018, 123, 2524–2536. [CrossRef]

14. Fasullo, J.T.; Otto-Bliesner, B.L.; Stevenson, S. ENSO’s changing influence on temperature, precipitation, and
wildfire in a warming climate. Geophys. Res. Lett. 2018, 45, 9216–9225. [CrossRef]

15. Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S.
Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537.
[CrossRef] [PubMed]

16. Spreading like wildfire. Nat. Clim. Chang. 2017, 7, 755. [CrossRef]
17. San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Libertà, G.; Branco, A.; de Rigo, D.; Ferrari, D.; Maianti, P.; Artés

Vivancos, T.; Costa, H.; et al. Forest Fires in Europe, Middle East and North Africa 2017. EUR 29318 EN.
2018. Available online: http://effis.jrc.ec.europa.eu/media/cms_page_media/40/Annual_Report_2017_final_
pdf_uCckqee.pdf (accessed on 27 February 2019).

18. Molina-Terrén, D.M.; Xanthopoulos, G.; Diakakis, M.; Ribeiro, L.; Caballero, D.; Delogu, G.M.; Viegas, D.X.;
Silva, C.A.; Cardil, A. Analysis of forest fire fatalities in Southern Europe: Spain, Portugal, Greece and
Sardinia (Italy). Int. J. Wildl. Fire 2019, 28, 85–98. [CrossRef]

19. San-Miguel-Ayanz, J.; Schulte, E.; Schmuck, G.; Camia, A. The European Forest Fire Information System in
the context of environmental policies of the European Union. For. Policy Econ. 2013, 29, 19–25. [CrossRef]

20. San-Miguel-Ayanz, J.; Camia, A. Forest fires at a glance: Facts, figures and trends in the EU. In Living with
Wildfires: What Science Can Tell Us; European Forest Institute: Joensuu, Finland, 2009; pp. 11–21. ISBN
978-952-5453-30-0.

21. Ferreira-Leite, F.; Ganho, N.; Bento-Gonçalves, A.; Botelho, F. Iberian atmospheric dynamics and large forest
fires in mainland Portugal. Agric. For. Meteorol. 2017, 247, 551–559. [CrossRef]

22. San-Miguel-Ayanz, J. The European Forest Fire Information System (European Forest Fire Early Warning
System) 2012. Available online: http://www.gofcgold.wur.nl/documents/wageningen13/16-04/Session6/

JSanMiguel.pdf (accessed on 25 March 2019).

http://dx.doi.org/10.1002/fee.2044
http://dx.doi.org/10.1071/WF15059
http://dx.doi.org/10.1016/j.jhydrol.2010.10.043
http://dx.doi.org/10.1038/s41559-016-0058
http://www.ncbi.nlm.nih.gov/pubmed/28812737
http://dx.doi.org/10.1071/WF07151
http://dx.doi.org/10.3390/fire1010009
http://dx.doi.org/10.1016/j.scitotenv.2010.09.011
http://dx.doi.org/10.1016/j.foreco.2013.05.045
https://digitalcommons.mtu.edu/etdr/765
http://dx.doi.org/10.1098/rstb.2015.0345
http://dx.doi.org/10.1002/2017JD027749
http://dx.doi.org/10.1029/2018GL079022
http://dx.doi.org/10.1038/ncomms8537
http://www.ncbi.nlm.nih.gov/pubmed/26172867
http://dx.doi.org/10.1038/nclimate3432
http://effis.jrc.ec.europa.eu/media/cms_page_media/40/Annual_Report_2017_final_pdf_uCckqee.pdf
http://effis.jrc.ec.europa.eu/media/cms_page_media/40/Annual_Report_2017_final_pdf_uCckqee.pdf
http://dx.doi.org/10.1071/WF18004
http://dx.doi.org/10.1016/j.forpol.2011.08.012
http://dx.doi.org/10.1016/j.agrformet.2017.08.033
http://www.gofcgold.wur.nl/documents/wageningen13/16-04/Session 6/JSanMiguel.pdf
http://www.gofcgold.wur.nl/documents/wageningen13/16-04/Session 6/JSanMiguel.pdf


Forests 2019, 10, 1021 17 of 20

23. San-Miguel-Ayanz, J.; Moreno, J.M.; Camia, A. Analysis of large fires in European Mediterranean landscapes:
Lessons learned and perspectives. For. Ecol. Manag. 2013, 294, 11–22. [CrossRef]

24. Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.;
Benson, N.C. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J. Wildl.
Fire 2006, 15, 319–345. [CrossRef]

25. Thompson, J.R.; Spies, T.A.; Ganio, L.M. Reburn severity in managed and unmanaged vegetation in a large
wildfire. Proc. Natl. Acad. Sci. USA 2007, 104, 10743–10748. [CrossRef]

26. Vlassova, L.; Pérez-Cabello, F. Effects of post-fire wood management strategies on vegetation recovery and
land surface temperature (LST) estimated from Landsat images. Int. J. Appl. Earth Obs. Geoinf. 2016, 44,
171–183. [CrossRef]

27. Gitas, I.; Mitri, G.; Veraverke, S.; Polychronaki, A. Advances in remote sensing of post-fire vegetation recovery
monitoring-A review. In Remote Sensing of Biomass–Principles and Applications; Fatoyinbo, L., Ed.; IntechOpen:
Rijeka, Croatia, 2012. [CrossRef]

28. Chen, W.; Moriya, K.; Sakai, T.; Koyama, L.; Cao, C. Monitoring of post-fire forest recovery under different
restoration modes based on time series Landsat data. Eur. J. Remote Sens. 2014, 47, 153–168. [CrossRef]

29. Nedkov, R.; Velizarova, E.; Molla, I.; Radeva, K. Application of remote sensing data for forest fires severity
assessment. In Proceedings of the SPIE, Berlin, Germany, 2 November 2018. [CrossRef]

30. Pereira, P.; Úbeda, X.; Martin, D.A. Fire severity effects on ash chemical composition and water-extractable
elements. Geoderma 2012, 191, 105–114. [CrossRef]

31. Tedim, F.; Remelgado, R.; Borges, C.; Carvalho, S.; Martins, J. Exploring the occurrence of mega-fires in
Portugal. For. Ecol. Manag. 2013, 294, 86–96. [CrossRef]

32. Kolden, C.A.; Lutz, J.A.; Key, C.H.; Kane, J.T.; van Wagtendonk, J.W. Mapped versus actual burned area
within wildfire perimeters: Characterizing the unburned. For. Ecol. Manag. 2012, 286, 38–47. [CrossRef]

33. Tedim, F.; Royé, D.; Bouillon, C.; Correia, F.; Leone, V. Understanding unburned patches patterns in extreme
wildfire events: Evidences from Portugal. In Advances in Forest Fire Research; Viegas, D.X., Ed.; Universidade
de Coimbra: Coimbra, Portugal, 2018.

34. Clark, J.; Bobbe, T. Using remote sensing to map and monitor fire damage in forest ecosystems. In
Understanding Forest Disturbance and Spatial Pattern: Remote Sensing and GIS Approaches; Wulder, M.A.,
Franklin, S.E., Eds.; CRC Press: Boca Ratón, FL, USA, 2006; pp. 113–128. ISBN 978-084-9334-25-2.

35. Soverel, N.O.; Perrakis, D.D.B.; Coops, N.C. Estimating burn severity from Landsat dNBR and RdNBR
indices across western Canada. Remote Sens. Environ. 2010, 114, 1896–1909. [CrossRef]

36. Abatzoglou, J.T.; Williams, A.P.; Boschetti, L.; Zubkova, M.; Kolden, C.A. Global patterns of interannual
climate–fire relationships. Glob. Chang. Biol. 2018, 24, 5164–5175. [CrossRef]

37. Jansen, S.V.; Kolden, A.C.; Schmalz, J.H. The development of near real-time biomass and cover estimates for
adaptive rangeland management using landsat 7 and landsat 8 surface reflectance products. Remote Sens.
2018, 10, 1057. [CrossRef]

38. Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.;
Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research.
Remote Sens. Environ. 2014, 145, 154–172. [CrossRef]

39. Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat data continuity mission. Remote
Sens. Environ. 2012, 122, 11–21. [CrossRef]

40. Fardusi, M.J.; Chianucci, F.; Barbati, A. Concept to practice of geospatial-information tools to assist forest
management and planning under precision forestry framework: A review. Ann. Silv. Res. 2017, 41.
[CrossRef]

41. Quartulli, M.G.; Olaizola, I. A review of EO image information mining. ISPRS J. Photogramm. Remote Sens.
2013, 75, 11–28. [CrossRef]

42. Pletsch, M.A.J.S.; Körting, T.S. Information mining for automatic search in remote sensing image catalogs.
Rev. Bras. Cartogr. 2019, 70. [CrossRef]

43. Cardil, A.; Mola-Yudego, B.; Blázquez-Casado, Á.; González-Olabarria, J.R. Fire and burn severity assessment:
Calibration of Relative Differenced Normalized Burn Ratio (RdNBR) with field data. J. Environ. Manag. 2019,
235, 342–349. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.foreco.2012.10.050
http://dx.doi.org/10.1071/WF05097
http://dx.doi.org/10.1073/pnas.0700229104
http://dx.doi.org/10.1016/j.jag.2015.08.011
http://dx.doi.org/10.5772/20571
http://dx.doi.org/10.5721/EuJRS20144710
http://dx.doi.org/10.1117/12.2325742
http://dx.doi.org/10.1016/j.geoderma.2012.02.005
http://dx.doi.org/10.1016/j.foreco.2012.07.031
http://dx.doi.org/10.1016/j.foreco.2012.08.020
http://dx.doi.org/10.1016/j.rse.2010.03.013
http://dx.doi.org/10.1111/gcb.14405
http://dx.doi.org/10.3390/rs10071057
http://dx.doi.org/10.1016/j.rse.2014.02.001
http://dx.doi.org/10.1016/j.rse.2011.08.026
http://dx.doi.org/10.12899/asr-1354
http://dx.doi.org/10.1016/j.isprsjprs.2012.09.010
http://dx.doi.org/10.14393/rbcv70n5-45180
http://dx.doi.org/10.1016/j.jenvman.2019.01.077
http://www.ncbi.nlm.nih.gov/pubmed/30703648


Forests 2019, 10, 1021 18 of 20

44. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains
with ERTS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Volume
1: Technical Presentations, section A. Washington, DC, USA, 10–14 December 1973; NASA/Goddard
Space Flight Center: Washington, DC, USA, 1974; Volume 1, pp. 309–317. Available online: https:
//ntrs.nasa.gov/search.jsp?R=19740022614 (accessed on 19 February 2019).

45. Key, C.H.; Benson, N.C. Measuring and remote sensing of burn severity. In Joint Fire Science Conference and
Workshop; Neuenschwander, L.F., Ryan, K.C., Eds.; University of Idaho: Moscow, ID, USA, 1999; Volume 2,
Available online: https://www.researchgate.net/publication/241687936_Measuring_and_remote_sensing_of_
burn_severity_the_CBI_and_NBR (accessed on 11 April 2019).

46. Rothermel, R.C. How to Predict the Spread and Intensity of Forest and Range Fires; United States Department
of Agriculture: Ogden, UT, USA, 1983. Available online: https://www.fs.usda.gov/treesearch/pubs/24635
(accessed on 6 November 2018).

47. Pereira, P.; Cerdà, A.; Lopez, A.J.; Zavala, L.M.; Mataix-Solera, J.; Arcenegui, V.; Misiune, I.; Keesstra, S.;
Novara, A. Short-term vegetation recovery after a grassland fire in Lithuania: The effects of fire severity,
slope position and aspect. L. Degrad. Dev. 2016, 27, 1523–1534. [CrossRef]

48. Mitsopoulos, D.I.; Dimitrakopoulos, P.A. Canopy fuel characteristics and potential crown fire behavior in
Aleppo pine (Pinus halepensis Mill.) forests. Ann. For. Sci. 2007, 64, 287–299. [CrossRef]

49. Tran, N.B.; Tanase, A.M.; Bennett, T.L.; Aponte, C. Evaluation of spectral indices for assessing fire severity in
Australian temperate forests. Remote Sens. 2018, 10, 1680. [CrossRef]

50. Amos, C.; Petropoulos, G.P.; Ferentinos, K.P. Determining the use of Sentinel-2A MSI for wildfire burning &
severity detection. Int. J. Remote Sens. 2019, 40, 905–930. [CrossRef]

51. Colson, D.; Petropoulos, G.P.; Ferentinos, K.P. Exploring the potential of Sentinels-1 & 2 of the Copernicus
Mission in support of rapid and cost-effective wildfire assessment. Int. J. Appl. Earth Obs. Geoinf. 2018, 73,
262–276. [CrossRef]

52. Brown, A.R.; Petropoulos, G.P.; Ferentinos, K.P. Appraisal of the Sentinel-1 & 2 use in a large-scale wildfire
assessment: A case study from Portugal’s fires of 2017. Appl. Geogr. 2018, 100, 78–89. [CrossRef]

53. Ministerio de Agricultura, Pesca y Alimentación. Los Incendios Forestales en España. Decenio 2006–2015
(Spanish). 2019. Available online: https://www.mapa.gob.es/es/desarrollo-rural/estadisticas/incendios-
decenio-2006-2015_tcm30-511095.pdf (accessed on 8 September 2019).

54. Barreal, J.; Loureiro, M.L. Modelling spatial patterns and temporal trends of wildfires in Galicia (NW Spain).
For. Syst. 2015, 24. [CrossRef]

55. Parlamento de Galicia. Reunión da Comisión Especial de Estudo e Análise das Reformas da Política Forestal,
de Prevención e Extinción de Incendios Forestais e do Plan Forestal de Galicia, Avaliando a Experiencia
Acumulada Dende 2006 e, Especificamente, a Extraordinaria Vaga de Lumes que vén de Sufrir Galicia
en Outubro de 2017 (Galician). Santiago de Compostela, Spain, 2018. Available online: http://www.
parlamentodegalicia.es/sitios/web/AxendaParlamentaria/cnp_rpf_2018_02_15_docu_10.30.pdf (accessed on
21 April 2019).

56. European Space Agency (ESA) ESA Standard Document–Sentinel-2 User Handbook 2015, 64. Available
online: https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook (accessed on 19 April
2019).

57. López García, M.J.; Caselles, V. Mapping burns and natural reforestation using thematic mapper data.
Geocarto Int. 1991, 6, 31–37. [CrossRef]

58. Key, C.H.; Benson, N.C. Landscape Assessment (LA) Sampling and Analysis Methods. In FIREMON:
Fire Effects Monitoring and Inventory System; Lutes, D.C., Keane, R.E., Caratti, J.F., Key, C.H., Benson, N.C.,
Sutherland, S., Gangi, L.J., Eds.; USDA Forest Service–Rocky Mountain Research Station: Ogden, UT,
USA, 2005; pp. 1–51. Available online: https://www.researchgate.net/publication/241688462_Landscape_
Assessment_LA_Sampling_and_Analysis_Methods (accessed on 7 April 2019).

59. Verbyla, D.L.; Kasischke, E.S.; Hoy, E.E. Seasonal and topographic effects on estimating fire severity from
Landsat TM/ETM+ data. Int. J. Wildl. Fire 2008, 17, 527–534. [CrossRef]

60. Arellano, S.; Vega, J.A.; Rodríguez y Silva, F.; Fernández, C.; Vega-Nieva, D.; Álvarez-González, J.G.;
Ruiz-González, A.D. Validation of the remote sensing indices dNBR and RdNBR to assess fire severity in the
Oia-O Rosal (Pontevedra) wildfire in 2013. Rev. Teledetección 2017, 49, 49–61. [CrossRef]

https://ntrs.nasa.gov/search.jsp?R=19740022614
https://ntrs.nasa.gov/search.jsp?R=19740022614
https://www.researchgate.net/publication/241687936_Measuring_and_remote_sensing_of_burn_severity_the_CBI_and_NBR
https://www.researchgate.net/publication/241687936_Measuring_and_remote_sensing_of_burn_severity_the_CBI_and_NBR
https://www.fs.usda.gov/treesearch/pubs/24635
http://dx.doi.org/10.1002/ldr.2498
http://dx.doi.org/10.1051/forest:2007006
http://dx.doi.org/10.3390/rs10111680
http://dx.doi.org/10.1080/01431161.2018.1519284
http://dx.doi.org/10.1016/j.jag.2018.06.011
http://dx.doi.org/10.1016/j.apgeog.2018.10.004
https://www.mapa.gob.es/es/desarrollo-rural/estadisticas/incendios-decenio-2006-2015_tcm30-511095.pdf
https://www.mapa.gob.es/es/desarrollo-rural/estadisticas/incendios-decenio-2006-2015_tcm30-511095.pdf
http://dx.doi.org/10.5424/fs/2015242-05713
http://www.parlamentodegalicia.es/sitios/web/AxendaParlamentaria/cnp_rpf_2018_02_15_docu_10.30.pdf
http://www.parlamentodegalicia.es/sitios/web/AxendaParlamentaria/cnp_rpf_2018_02_15_docu_10.30.pdf
https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook
http://dx.doi.org/10.1080/10106049109354290
https://www.researchgate.net/publication/241688462_Landscape_Assessment_LA_Sampling_and_Analysis_Methods
https://www.researchgate.net/publication/241688462_Landscape_Assessment_LA_Sampling_and_Analysis_Methods
http://dx.doi.org/10.1071/WF08038
http://dx.doi.org/10.4995/raet.2017.7137


Forests 2019, 10, 1021 19 of 20

61. Bajocco, S.; Ricotta, C. Evidence of selective burning in Sardinia (Italy): Which land-cover classes do wildfires
prefer? Landsc. Ecol. 2008, 23, 241–248. [CrossRef]

62. Instituto Geográfico Nacional (IGN) PNOA imagen–Productos (Spanish). Available online: http://pnoa.ign.
es/productos (accessed on 15 May 2018).

63. Gobierno de España CORINE Land Cover 2018 (España) (Spanish). Available online: https://datos.gob.es/es/
catalogo/e00125901-spaignclc2018 (accessed on 19 August 2019).

64. Ministerio de Fomento. Gobierno de España Plan Nacional de Observación del Territorio. Sistema de
Información de Ocupación del Suelo de España (Spanish). Available online: https://www.siose.es (accessed
on 24 June 2019).

65. Strahler, A.H. The use of prior probabilities in maximum likelihood classification of remotely sensed data.
Remote Sens. Environ. 1980, 10, 135–163. [CrossRef]

66. Greig, C.; Robertson, C.; Lacerda, A.E.B. Spectral-temporal modelling of bamboo-dominated forest succession
in the Atlantic Forest of Southern Brazil. Ecol. Model. 2018, 384, 316–332. [CrossRef]

67. Carmo, M.; Moreira, F.; Casimiro, P.; Vaz, P. Land use and topography influences on wildfire occurrence in
northern Portugal. Landsc. Urban Plan. 2011, 100, 169–176. [CrossRef]

68. Turner, M.G.; Romme, W.H. Landscape dynamics in crown fire ecosystems. Landsc. Ecol. 1994, 9, 59–77.
[CrossRef]

69. Bessie, W.C.; Johnson, E.A. The relative importance of fuels and weather on fire behavior in subalpine forests.
Ecology 1995, 76, 747–762. [CrossRef]

70. Meineri, E.; Dahlberg, C.J.; Hylander, K. Using gaussian bayesian networks to disentangle direct and indirect
associations between landscape physiography, environmental variables and species distribution. Ecol. Model.
2015, 313, 127–136. [CrossRef]

71. Oliveras, I.; Gracia, M.; Moré, G.; Retana, J. Factors influencing the pattern of fire severities in a large wildfire
under extreme meteorological conditions in the Mediterranean basin. Int. J. Wildl. Fire 2009, 18, 755–764.
[CrossRef]

72. Yebra, M.; Dennison, P.E.; Chuvieco, E.; Riaño, D.; Zylstra, P.; Hunt, E.R.; Danson, F.M.; Qi, Y.; Jurdao, S. A
global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards
operational products. Remote Sens. Environ. 2013, 136, 455–468. [CrossRef]

73. Fernandes, P.M. Fire-smart management of forest landscapes in the Mediterranean basin under global change.
Landsc. Urban Plan. 2013, 110, 175–182. [CrossRef]

74. Instituto Geológico y Minero de España (IGME); Ministério de Ambiente, Ordenamento do Território e
Energia. Governo de Portugal; Laboratório Nacional de Energia e Geologia (LNEG). Mapa Geológico
de la Península Ibérica, Baleares y Canarias a escala 1:1.000.000, edición 2015 (Spanish). 2015. Available
online: http://info.igme.es/cartografiadigital/datos/geologicos1M/Geologico1000_(2015)/pdfs/EditadoG1000_
(2015).pdf (accessed on 3 October 2019).

75. Centro Nacional de Información Geográfica Modelos digitales de elevaciones. Modelo Digital del—MDT05
(Spanish). Available online: http://centrodedescargas.cnig.es/CentroDescargas/index.jsp (accessed on 11
April 2019).

76. Xunta de Galicia. Información Xeográfica de Galicia. Available online: http://mapas.xunta.gal/portada
(accessed on 27 April 2019).

77. Trabaud, L.; Lepart, J. Diversity and stability in garrigue ecosystems after fire. Vegetatio 1980, 43, 49–57.
[CrossRef]

78. Díaz-Delgado, R.; Lloret, F.; Pons, X.; Terradas, J. Satellite evidence of decreasing resilience in Mediterranean
plant communities after recurrent wildfires. Ecology 2002, 83, 2293–2303. [CrossRef]

79. Lloret, F. Fire, canopy cover and seedling dynamics in Mediterranean shrubland of northeastern Spain. J.
Veg. Sci. 1998, 9, 417–430. [CrossRef]

80. Pardini, G.; Gispert, M.; Dunjó, G. Relative influence of wildfire on soil properties and erosion processes in
different Mediterranean environments in NE Spain. Sci. Total Environ. 2004, 328, 237–246. [CrossRef]

81. Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.;
Xanthopoulos, G.; et al. Landscape–wildfire interactions in southern Europe: Implications for landscape
management. J. Environ. Manag. 2011, 92, 2389–2402. [CrossRef]

http://dx.doi.org/10.1007/s10980-007-9176-5
http://pnoa.ign.es/productos
http://pnoa.ign.es/productos
https://datos.gob.es/es/catalogo/e00125901-spaignclc2018
https://datos.gob.es/es/catalogo/e00125901-spaignclc2018
https://www.siose.es
http://dx.doi.org/10.1016/0034-4257(80)90011-5
http://dx.doi.org/10.1016/j.ecolmodel.2018.06.028
http://dx.doi.org/10.1016/j.landurbplan.2010.11.017
http://dx.doi.org/10.1007/BF00135079
http://dx.doi.org/10.2307/1939341
http://dx.doi.org/10.1016/j.ecolmodel.2015.06.028
http://dx.doi.org/10.1071/WF08070
http://dx.doi.org/10.1016/j.rse.2013.05.029
http://dx.doi.org/10.1016/j.landurbplan.2012.10.014
http://info.igme.es/cartografiadigital/datos/geologicos1M/Geologico1000_(2015)/pdfs/EditadoG1000_(2015).pdf
http://info.igme.es/cartografiadigital/datos/geologicos1M/Geologico1000_(2015)/pdfs/EditadoG1000_(2015).pdf
http://centrodedescargas.cnig.es/CentroDescargas/index.jsp
http://mapas.xunta.gal/portada
http://dx.doi.org/10.1007/BF00121017
http://dx.doi.org/10.1890/0012-9658(2002)083[2293:SEODRI]2.0.CO;2
http://dx.doi.org/10.2307/3237106
http://dx.doi.org/10.1016/j.scitotenv.2004.01.026
http://dx.doi.org/10.1016/j.jenvman.2011.06.028


Forests 2019, 10, 1021 20 of 20

82. Regos, A. Cartografía de áreas queimadas en Galicia no século XXI: Presentación do produto e aplicación
web mapping (Galician). Nov. Acta Científica Compostel. 2018, 25, 45–53. Available online: http://www.usc.es/
revistas/index.php/nacc/article/download/5150/5640 (accessed on 3 April 2019).

83. The National Institute for Agricultural and Food Research and Technology (INIA)—GEPRIF Project.
Recomendaciones básicas para reducción de la severidad durante la ejecución de quemas prescritas
basadas en resultados científicos de parcelas experimentales (Spanish). 2019. Available online: http:
//proyectogeprif.es/wp-content/uploads/2019/03/ProductoFinal74_FichasRecomendaciones.pdf (accessed on
17 February 2019).

84. Vega, J.; Fonturbel, T.; Fernández, C.; Arellano, A.; Carballas, T.; Martín, A.; González-Prieto, S.; Merino, A.;
Benito, E. Acciones Urgentes Contra la Erosión en Áreas Forestales Quemadas: Guía Para su PLANIFICACIÓN en
Galicia; Xunta de Galicia: Santiago de Compostela, Spain, 2013; ISBN 978-84-8408-716-8.

85. European Commission European Forest Fire Information System (EFFIS). Available online: https://effis.jrc.ec.
europa.eu (accessed on 8 May 2019).

86. Lutes, D.C.; Keane, R.E.; Caratti, J.F.; Key, C.H.; Benson, N.C.; Sutherland, S.; Gangi, L.J. FIREMON: Fire
Effects Monitoring and Inventory System; Gen. Tech. Rep. RMRS-GTR-164; United States Department of
Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2016. [CrossRef]

87. Meddens, A.J.H.; Kolden, C.A.; Lutz, J.A.; Smith, A.M.S.; Cansler, C.A.; Abatzoglou, J.T.; Meigs, G.W.;
Downing, W.M.; Krawchuk, M.A. Fire refugia: What are they, and why do they matter for global change?
Bioscience 2018, 68, 944–954. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.usc.es/revistas/index.php/nacc/article/download/5150/5640
http://www.usc.es/revistas/index.php/nacc/article/download/5150/5640
http://proyectogeprif.es/wp-content/uploads/2019/03/ProductoFinal74_FichasRecomendaciones.pdf
http://proyectogeprif.es/wp-content/uploads/2019/03/ProductoFinal74_FichasRecomendaciones.pdf
https://effis.jrc.ec.europa.eu
https://effis.jrc.ec.europa.eu
http://dx.doi.org/10.2737/RMRS-GTR-164
http://dx.doi.org/10.1093/biosci/biy103
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area and Datasets 
	Methodology 
	Burned Areas Detection and Fire Severity 
	Land Cover 
	Topography and Physiography 
	Fire Recurrence 


	Results and Discussion 
	Burned Area Detection and Fire Severity Mapping 
	Land Cover 
	Topography and Physiography 
	Fire Recurrence 

	Conclusions 
	References

