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Abstract: In the Pacific Northwest, the use of forest vegetation management (FVM) and seedling stock 
type selection are important tools to ensure seedling establishment according to organizational 
objectives and state laws. Individually, these two reforestation decisions have been shown to increase 
growth and survival of Douglas-fir seedlings, however, the interaction between seedling stock type and 
level of vegetation control represents economic and ecologic tradeoffs that are less well understood. 
This study was designed to test the combined effects of three FVM regimes and three containerized 
stock types, one of which was experimental at the time, on Douglas-fir growth during the initial ten 
years of establishment on a site near Belfair, Washington (USA). When compared to the no-action 
control, FVM treatments reduced competitive plant cover below 20% during the year of application, 
and differences in vegetation cover persisted through the fifth growing season. Vegetation species 
diversity recovered quickly after FVM and there were no differences among the treatments by the third 
growing season. After ten growing seasons, trees in plots treated with FVM were 1.1 m taller with a 
mean diameter at breast height (DBH) 2.2 cm larger than those in the no-action control. Larger seedlings 
at the time of planting (styro-60) were 0.6 m taller with a mean DBH 1.1 cm larger than smaller seedlings 
(styro-8 and styro-15). The only significant stock type by FVM interaction in the experiment occurred 
with the survival of styro-60 seedlings growing in the no action control which had lower survival than 
all other treatment combinations (67% vs 91%). The long-term competitive impact of shrub cover was 
demonstrated by a strong non-linear relationship. Increasing cumulative shrub cover from 10% to 30% 
during the first two years of establishment reduced stand volume at year 10 by 79%.  

Keywords: Pseudotsuga menziesii; stock size; vegetation control; reforestation; intensive silviculture; 
available soil water; shrub competition; target plant concept 

 

1. Introduction 

Understanding the synergies of silvicultural practices is important, as decisions made during the 
early years of stand establishment can have long-term consequences on stand development. The use of 
intensive silviculture has been shown to increase the productivity of plantation forests across the world 
[1–4]. Intensive silvicultural systems commonly include several practices including the use of genetically 
improved artificial regeneration, mechanical soil preparation, forest vegetation management, fertilizer 
application, and density management [5,6]. Research has shown the benefits of each of these practices on 
increasing forest growth, however the interactive effects of these practices is less well known.  
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In the Unites States Pacific Northwest (PNW), chemical forest vegetation management treatments 
(FVM) and seedling stock type selection are important tools used by forest managers to establish 
Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco) plantations in compliance with organizational 
objectives and state laws. Competition between the plant community and newly planted conifer 
seedlings is often intense, especially during the dry summer months typical of the region [7,8]. The 
prolonged summer drought period creates intense competition for available soil water, which has been 
shown to be an important factor affecting the early survival and growth of Douglas-fir seedlings [7,8]. 
The application of FVM treatments creates a temporal reduction in competing vegetation cover, allowing 
seedlings to better capture available soil water and other vital resources such as nutrients and light [8,9].  

Studies have demonstrated that Douglas-fir seedlings respond positively to FVM treatments [3,7,10–
13], however the long-term effects of stock type and stock type by FVM interactions on Douglas-fir 
establishment and growth are not as prevalent in the literature [14]. Van der Driessche (1992) [15] 
assessed the performance of six different Douglas-fir stock types on a site in South Vancouver Island and 
found no differences in tree size after six growing seasons despite larger initial differences. In contrast to 
Van der Driessche (1992) [15], others have reported that larger Douglas-fir planting stock outperformed 
smaller planting stock [16,17]. The different results presented in these studies point to the need for further 
research that investigates how stock type and silvicultural treatments interact to influence reforestation 
success.   

The Target Plant Concept (TPC) provides a framework for nursery and forest managers to integrate 
and improve the link between nursery practices and seedling performance in the field [18]. One of the 
central components of the TPC is the concept of “fitness for purpose” which suggests that seedling 
quality should be assessed by outplanting performance rather than nursery performance. Applying this 
concept to better ensure successful reforestation requires detailed information on the performance of 
various stock types under different silvicultural regimes at the outplanting site. Field performance under 
a range of operational conditions can also be utilized to direct financial investments, especially when 
unique stock types are a consideration.   

The Vegetation Management Research Cooperative (VMRC) at Oregon State University installed 
the Combining Weed Control study in 2009 to investigate how interactions among three FVM treatment 
regimes and three containerized stock types impact the long-term survival and growth of Douglas-fir 
seedlings on a site near Belfair, WA (USA). The specific objectives of the study were: 1) assess the impact 
of FVM regime on vegetation community dynamics, 2) assess the impact of FVM regime on available soil 
water, and 3) determine the effect of FVM regime, stock type, and the interaction of these factors on 
Douglas-fir seedling morphology, growth, and survival.  

2. Materials and Methods  

2.1. Study Design  

The VMRC Combining Weed Control study was established in 2008 on lands managed by Olympic 
Resources Management near Belfair, WA. The Kitsap peninsula site has shallow glaciated soils 
characterized as very gravelly sandy loam, a mean annual temperature of 11.1 °C, and mean annual 
rainfall of 1433 mm. Neighboring mature stands bordering the study site are comprised primarily of 
Douglas-fir mixed with a small portion of western redcedar (Thuja plicata Donn ex D. Don), western 
hemlock (Tsuga heterophylla (Raf.) Sarg.), and western white pine (Pinus monticola Douglas ex D. Don). 
The site was clear-cut using a machine harvester during the winter and early spring of 2007–2008.  

The study utilized a factorial design with three levels of FVM regime and three levels of 
containerized stock type for a total of nine unique treatments. The FVM regimes included: a no-action 
control (OOO), a fall site preparation with a spring release during the first growing season (FTO), and a 
fall site preparation with a spring release during both the first and second growing seasons (FTT). The 
fall site preparation treatment was applied on 11th September, 2008, and included a broadcast application 
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of 3.5 l ha−1 glyphosate and 1.8 l ha−1 imazapyr. The spring release treatments were designed to reduce 
competitive plant cover below a 20% threshold throughout the application year. The first growing season 
spring release consisted of a broadcast application of 0.44 l ha−1 clopyralid in April 2009 and a direct foliar 
application of 2% glyphosate in June 2009. Spring weather conditions in 2010 as well as logistical 
constraints made it impossible for the second-year broadcast spring release treatment to be applied. 
However, a direct foliar application of 2% glyphosate was applied to the FTT plots in June and was 
sufficient to meet the < 20% competition cover goal of the study.   

The containerized stock types tested include styro-8 (S8), styro-15 (S15), and styro-60 (S60). Seedlings 
for each stock type were produced using styroblocks™ (Beaver Plastics, Ltd., Alberta, Canada) with 
cavity volumes of 130, 250, and 1,000 mL for the S8, S15, and S60 stock types, respectively. For more 
detailed information on styroblock dimensions, see Wightman et al. (2018) [14]. Production of the S60 
stock type required two years and may occur on a limited basis in forest nurseries. The S60 stock type 
was produced by growing a cohort of S8 seedlings during 2007. These seedlings were then repotted into 
styro-60 containers and grown for another season (2008). To be clear, the S60 seedlings were two years 
old at the time of planting, whereas the S8 and S15 seedlings were one year old. The cost of the S8, S15, 
and S60 seedlings was $0.25, $0.35, and $1.25 per seedling, respectively. A list of the treatments included 
in this analysis is provided in Table 1.   

Table 1. Description of vegetation control and stock type treatments. Vegetation management regimes 
include a fall site preparation, a spring release in year one and a spring release in year two. Stock sizes 
include styro-8 (S8), styro-15 (S15), and styro-60 (S60). 

Treatment  Vegetation Control Stock Size 
1 OOO No-action Control  S8 
2 FTO Fall Site Preparation + Spring Release in Year 1 S8 
3 FTT Fall Site Preparation + Spring Release in Years 1 and 2 S8 
4 OOO No-action Control S15 
5 FTO Fall Site Preparation + Spring Release in Year 1 S15 
6 FTT Fall Site Preparation + Spring Release in Years 1 and 2 S15 
7 OOO No-action Control S60 
8 FTO Fall Site Preparation + Spring Release in Year 1 S60 
9 FTT Fall Site Preparation + Spring Release in Years 1 and 2 S60 

Seedlings were planted on January 13 and 14, 2009, at a spacing of 3.05 × 3.05 m (1076 trees ha−1) and 
were protected from ungulate browse with 15 cm diameter Vexar® tubing. Treatment plots were 30 × 30 
m allowing for the internal measurement plot of 8 rows of 8 trees to be surrounded by a one tree buffer 
row on all sides. Each treatment was replicated four times using a randomized complete block design for 
a total of 27 plots.     

2.2. Tree and Vegetation Measurements  

Seedling height, ground-line diameter and, when achieved, DBH (diameter at breast height, 1.37 m) 
was measured during the dormant season of years 1–5, 8, and 10. Ground cover vegetation assessments 
were conducted during July of growing seasons 1–5 and 10 on five 1m radius subplots within each 
experimental unit. Subplots were randomly located equidistant between measurement trees. A 
vegetation survey was conducted in September 2008 prior to the application of the fall site preparation 
treatment to assess pre-treatment site conditions. All vegetation assessments included visual estimates 
of plant cover percentage by species. Each species found was assigned one of the following growth habits: 
forb, fern, graminoid, shrub, vine/shrub (Rubus species) or tree. Any vegetation over 2 m in height and 
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all crop trees were excluded from surveys. Total cover was calculated as the summation of all species-
level cover percentages on a given subplot and therefore, total cover can exceed 100 percent.  

Initial pre-planting measurements were conducted on a subset of 40 seedlings of each stock type. 
Two or three unopened bags of seedlings were randomly selected from those at the planting site and 
brought back to OSU laboratory facilities for morphologic assessments including seedling height, root-
collar diameter, shoot volume (shoots + needles), and root volume. Seedlings were removed from the 
bags and the roots gently washed to remove potting media prior to morphologic assessments. Shoot and 
root volume measurements were made using the water displacement method and shoot volume was 
measured with live needles still attached, therefore reflecting the volume of all aboveground tissues [19].    

2.3. Soil Moisture Measurements 

Soil volumetric water content was measured using vertically oriented, 20-cm-long capacitive soil 
moisture probes (EC-20, Decagon Devices, Pullman, WA, USA) on 2 random points inside three 
replicates of each treatment regime. Soil moisture estimates using the capacitive probe were calibrated 
for the study site using a process specific to the glaciated soils on the site. A large quantity of soil from 
the A horizon in several blocks was sieved through a 2 mm screen and taken back to laboratory facilities 
at Oregon State University. A portion of this sieved soil was used for sensor calibration while the 
remainder was reserved for on-site sensor deployment. Plastic window screen and a hose clamp were 
attached to one end of a 10 cm diameter × 45 cm long polyvinyl chloride tube. Alternating between sieved 
soil and water, EC-20 sensors were centrally encased in the PVC tubes. Soil wetting continued until field 
capacity was reached (i.e., the amount of water added to the top of the PVC pipe was within 10 grams of 
the water collected at the bottom). Sensors were then programmed to take twice daily measurements for 
a period of 14 weeks. Once per week, each tube was weighed. When soil moisture percentages were no 
longer declining, the length of the sieved soil was measured, removed, dried in a laboratory oven for 72 
hours at 68 °C, and weighed. After subtracting the weight of the sensor, screen, hose clamp, and PVC 
tube, these data permitted the calculation of soil moisture percentage at each date the entire core had 
been weighed. This dataset served as the basis for the development of a calibration equation using 
regression analysis to compare the EC-20 reading with the actual moisture content on a given date.   

The same EC-20 sensors were then taken to the study site for deployment. An 8 cm soil auger was 
used to remove site soils and minimize disturbance to neighboring plant roots, rocks, and soil. The EC-
20 probes were installed centrally using a similar process of adding sieved soil and water in an alternating 
fashion. Fractional available soil water (ASW) was calculated for each plot and day by analyzing the 
limits of wetting and drying of the soil through the entire study period. Drained upper limits (DUL) and 
lower limits of water extraction (LL) were determined for each plot and ASW was calculated using the 
formula proposed by Ritchie (1981) [20]: 

ASW = 1 − (DUL − WC) / (DUL − LL) (1)

where ASW is available soil water, DUL is drained upper limit, WC is volumetric water content, and LL 
is the lower limit of water extraction. An automatic weather station (HOBO H21-002; Onset Computer 
Corporation, Massachusetts, USA) was used to collect weather data, including air temperature, relative 
humidity, wind speed, solar radiation, and rainfall. 

2.4. Statistical Analysis 

Stem volume was calculated following Maguire et al. (2009) [13], where the volume of the section 
below 1.37 m was calculated as a cylinder with basal diameter equal to DBH and the volume of the top 
section above 1.37 m was calculated as a cone with basal diameter equal to DBH. After summing the stem 
volume of all living seedlings, volume per hectare (m3 ha−1) was determined for each measurement plot 
using the plot expansion factor. Analysis of variance, including Tukey adjustments, was performed using 
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the mixed procedure in SAS 9.4 (SAS Institute Inc., Cary, NC, USA) to test fixed treatment effects on tree 
morphology and vegetation community dynamics while including the random effect of block. The linear 
model for the analysis was: 

 Yijk= µ + Vi + Sj + VSij + Bk + εijk (2)

where Yijk is the parameter value of the plot with the ith level of FVM regime (V), the jth level of stock 
type (S), in the kth block (B) and µ is the population mean and εijk is the error term ~NID (0, σ2ε) (NID, 
normally and independently distributed).  

Analysis of co-variance was used to test the effects of treatments on seedling morphology using 
initial size as the covariate. Linear regression analysis was used to correlate seedling size and shoot and 
root volume. Non-linear regression analysis was used to correlate vegetation cover and stand volume 
production. Allometric equations were developed to calculate seedling shoot volume and root volume 
from seedling diameter and height. Several models were tested for this relationship and the model 
selected was: lnሺ𝑉௜ሻ =  𝑎 + 𝑏 · ln (𝐷ଶ𝐻) (3)

where Vi is volume (root or shoot, cm3) a and b are curve fit parameter estimates, D represents seedling 
root collar diameter (cm), and H represents seedling height (cm). These equations were then applied to 
the initial inventory data to calculate plot-level averages for seedling shoot volume and root volume, and 
this dataset was used to correlate seedling survival rate with initial seedling size. Repeated measures 
analysis was used to analyze time series of ASW. Several covariance structure models were used for the 
time series and the heterogeneous first-order autoregressive model was selected as it showed the lowest 
Schwartz’s Bayesian information criterion [21]. 

3. Results 

3.1. Plant Community Dynamics 

Prior to study installation (year = −1) there were no differences in vegetation cover among the FVM 
regimes (p = 0.984), averaging 39% cover, and the most common species at the study site were Gaultheria 
shallon (salal), Rubus ursinus (trailing blackberry), Vaccinium ovatum (evergreen huckleberry), Pteridium 
aquilinum (bracken fern), Hypochaeris radicata (false dandelion), and Senecio sylvaticus (woodland 
ragwort). After the initiation of the FVM regimes, stock type did not affect total vegetation cover in any 
year (p > 0.484), so cover percentages were averaged by FVM regime across all stock types in each block 
for analysis.   

The herbicide treatments applied in this study reduced vegetation cover during the year of 
application and continued to affect the composition and cover of vegetation through the fifth growing 
season (Figure 1 and 2). The herbicide treatments applied in the first year (FTO and FTT) significantly 
reduced vegetation cover and species per plot during the first growing season when compared to the no-
action control (54% vs 16%; p < 0.001). At this time, the cover of OOO plots was dominated by Rubus 
ursinus (trailing blackberry), Gaultheria shallon (salal), Vaccinium ovatum (evergreen huckleberry), and 
Pteridium aquilinum (bracken fern). When analyzed by growth habit, the year 1 herbicide treatment 
significantly reduced the cover of forbs, ferns, shrubs, and vine/shrubs when compared to the no-action 
control during the first growing season (Figure 2; p < 0.001). The cover of graminoids and trees was 
minimal in all plots during the first growing season and the species per plot of the no-action control was, 
on average, eight species greater than the FTO and FTT regimes (p < 0.001; Figure 2).  
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Figure 1. Forest vegetation management treatment regime effect on: (a) development of summed 
vegetation cover over time, and (b) changes in the average number of species per plot over time. 
Treatment descriptions are provided in Table 1. 

 

Figure 2. Vegetation community composition during years 1, 5, and 10 (left to right). Summed vegetation 
cover (top panel) and average species number per plot (bottom panel) are presented by growth habit for 
each vegetation management regime. When significant differences were found, letters over each bar 
represent significant differences for total cover (top) or species number (bottom) at a significance level of 
α = 0.05. Treatment descriptions are provided in Table 1.   
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During the second year, the early summer glyphosate treatment applied to the FTT plots reduced 
vegetation cover when compared to the FTO regime (15% vs 39% cover; p = 0.033). The no-action control 
had greater vegetation cover than both the FTO and FTT regimes during the second year and averaged 
81% cover (p < 0.001). The higher vegetation cover in the control was, in part, due to this treatment having 
greater shrub cover than the other regimes (27% vs 8%; p < 0.003). After the treatment regimes were 
completed, vegetation cover began to increase in all FVM regimes through year 5 (Figure 1a). Their 
relative differences, however, were maintained with the OOO plots having the highest vegetation cover, 
FTT the lowest, and FTO between these two extremes. There were no differences among the regimes in 
the average number of species per plot during years 3–5, even when analyzed by growth habit. During 
these years, there were, on average, 18 species growing in each plot (p = 0.797). 

In year 5, vegetation cover in the OOO plots (118%) was larger than the FTO (p = 0.007) and the cover 
in the FTO plots (97%) was larger than the FTT (82%, p = 0.033). Gaultheria shallon (salal), Rubus ursinus 
(trailing blackberry), Pteridium aquilinum (bracken fern), Hypochaeris radicata (false dandelion), and 
Vaccinium ovatum (evergreen huckleberry) were the most common species at year 5, accounting for 80% 
of all vegetation cover across all stock types and vegetation management regimes.    

The persistent effect of the treatment regimes on vegetation cover during the first five years of the 
study was largely due to differences in the cover of shrubs. In year 5, the shrub cover of the OOO regime 
(50%) was greater than the FTO (p = 0.005) and the shrub cover of the FTO regime (28%) was greater than 
the FTT regime (20%) although this difference was not significant (p = 0.145). Salal (Gaultheria shallon) was 
the dominant shrub in all plots and the cover of this species was significantly reduced but not eliminated 
by the herbicide treatments (p = 0.042). Salal cover averaged 36%, 25%, and 17% cover at year 5 for the 
OOO, FTO, and FTT regimes, respectively. The FTT regime had higher forb and lower fern cover than 
the no-action control at year 5 (p < 0.041), however the cover of these lifeforms did not differ between the 
FTO and OOO regimes (p > 0.167; Figure 2).  

After 10 growing seasons, there were no differences in total vegetation cover (p = 0.476) or species 
per plot (p = 0.422) among the FVM regimes, even when analyzed by growth habit (cover p > 0.1801; 
species number p > 0.075). Plots averaged 90% cover and 12 species at year 10. Shrubs were the dominate 
growth habit on the site, averaging 61% cover, while the cover of forbs had declined below 3%. Gaultheria 
shallon (salal), Vaccinium ovatum (evergreen huckleberry), Rubus ursinus (trailing blackberry), Pteridium 
aquilinum (bracken fern), and Polystichum munitum (sword fern) were the most abundant plant species in 
year 10.  

3.2. Soil Moisture 

The Mediterranean climate of the Pacific Northwest is known for having wet winters and dry 
summer months, a fact illustrated by the weather station and soil moisture data. Between June 15 and 
September 15, total rainfall was about 53, 42, and 50 mm, for years 2009, 2010, and 2011, respectively 
(Figure 3). Differences in vegetation cover among the FVM regimes during the first two growing seasons 
of the study impacted soil moisture dynamics (Figure 3). During the first growing season (2009), the FTO 
and FTT plots had higher ASW than the OOO plots between May 27 and October 14 (p < 0.048), even 
though there was an increase is ASW in all plots due to 47 mm of rainfall during September and early 
October (Figure 3). During the second growing season (2010), the FTT plots showed larger ASW than the 
OOO and FTO plots between July 1 and September 16 (p < 0.045). During this year, the FTO plots did not 
receive a vegetation control treatment and showed similar ASW to the OOO plots (p > 0.16). During the 
third growing season (2011), the ASW of all plots was similar (p > 0.34) except for the FTT plots having 
higher ASW than the OOO and FTO plots between July 22 and August 4 (p < 0.029), after a large recharge 
in ASW due to 18.6 mm of rainfall during mid-July (Figure 3).    
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Figure 3. Effect of vegetation management regime on available soil water during the first three growing 
seasons (5 September 2009–11 November 2011). Daily precipitation is depicted by the vertical bars. 
Treatment descriptions are provided in Table 1.    

3.3. Seedlings 

Initial pre-planting measurements on seedling morphology indicated significant differences in 
seedling height (p < 0.001), root-collar-diameter (p < 0.001) and stem volume (p < 0.001). Seedling size at 
the time of planting increased with each incremental expansion in cavity volume (Table 2). The root 
volume of the S8 seedlings did not significantly differ from the S15 seedlings (p = 0.430), however, the 
S60 stock type had significantly larger root volume than the others (p < 0.001). The S15 seedlings had a 
moderately higher H:D ratio when compared to the other stock types (p < 0.081). A similar pattern was 
observed for shoot to root volume ratio. 

Table 2. Initial seedling height (H), root-collar-diameter (RCD), height to root collar diameter ratio (H:D), 
shoot volume, root volume and shoot to root volume ratio (S:R) of styro-8 (S8), styro-15 (S15), and styro-
60 (S60) Douglas-fir seedlings. Values after ± represent standard error. Within a column, variables that 
share a letter are not significantly different at α = 0.05 (n = 40). 

Stock H 
(cm) 

RCD 
(mm) 

H:D 
(cm cm−1) 

Shoot 
Volume (cm3) 

Root Volume 
(cm3) S:R 

S8 24.0 ± 0.5 a 3.3 ± 0.1 a 74.7 ± 2.0 a 6.5 ± 0.3 a 6.1 ± 0.3 a 1.11 ± 0.05 b 
S15 29.9 ± 0.6 b 3.7 ± 0.1 b 82.7 ± 2.1 b 12.0 ± 0.6 b 9.6 ± 0.5 a 1.32 ± 0.06 a 
S60 68.0 ± 1.2 c 8.9 ± 0.1 c 76.8 ± 1.7 a 56.1 ± 1.8 c 51.5 ± 3.4 b 1.25 ± 0.07 ab 

Allometric equations were created utilizing the pre-planting seedling dataset to calculate shoot 
volume and root volume as a function of seedling diameter and height, as these measurements are easier 
to make in a field setting. The resulting equations were:  ln(𝑠ℎ𝑜𝑜𝑡 𝑣𝑜𝑙𝑢𝑚𝑒) =  −0.121 + 1.014 · ln (𝐷ଶ𝐻) (4)ln(𝑟𝑜𝑜𝑡 𝑣𝑜𝑙𝑢𝑚𝑒) =  −0.168 + 0.977 · ln (𝐷ଶ𝐻) (5)

where D represents seedling root collar diameter (cm), H represents seedling height (cm), and shoot 
volume and root volume are expressed as cm3. The coefficient of determination (R2) of the shoot and root 
volume equations were 0.94 and 0.86, respectively.  

Table 3 provides a summary of the year 10 tree measurements and a summary of treatment effects 
is provided in Table 4. Covariance analysis showed that initial seedling size was not significant for DBH 
(p = 0.620) and height (p = 0.435) response at year 10. Initial seedling size was therefore not included in 
the ANOVA models. Seedling height and DBH were affected by both FVM regime and stock type after 
ten growing seasons, but the interaction of these two main effects was not significant (Table 4). Mean tree 
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height was significantly affected by both FVM (p < 0.001) and stock size (p = 0.004) such that trees in the 
FTO and FTT regimes were, on average, 1.1 m taller than the OOO treatment and the S60 seedlings had 
a mean height 0.6 m greater than the other two stock types (Figure 4 a and b). There was a trend for the 
mean height of FTT plots to be greater than FTO plots (6.7 m vs 6.3 m), however this effect was marginally 
non-significant (p = 0.067). Mean height did not differ between the S8 and S15 stock types (p = 0.994). 

Table 3. Mean height (m), diameter at breast height (DBH, cm), mean tree volume (Tree Vol, m3), stocking 
(TPH, trees ha−1) and stand volume (Stand Vol, m3 ha−1) at year 10 for Douglas-fir seedlings growing under 
different forest vegetation management (FVM) and stock type treatments. Values after ± represent 
standard error. Within a column, values that share a letter are not significantly different at α = 0.05. 
Treatment descriptions are provided in Table 1.    

Stock FVM 
Treatment 

Height  
M 

DBH cm Tree Vol 
dm3 

TPH 
trees ha−1 

Stand Vol  
m3 ha−1 

S8 OOO 5.0 ± 0.5 a 5.5 ± 0.5 a 9.4 ± 2.0 a 770 ± 58 ab 7.5 ± 1.7 a 
S8 FTO 6.2 ± 0.5 bc  7.8 ± 0.9 cd 20.5 ± 5.3 ab 837 ± 48 b 17.4 ± 4.9 abcd 
S8 FTT 6.5 ± 0.6 bc 8.7 ± 1.2 cd 25.9 ± 7.9 b 896 ± 33 b 23.0 ± 6.6 cd 

S15 OOO 5.1 ± 0.4 a 5.9 ± 0.6 ab 11.0 ± 2.5 a 789 ± 60 ab  8.4 ± 2.1 ab 
S15 FTO 6.2 ± 0.7 bc 8.0 ± 1.0 cd 21.7 ± 7.6 ab 883 ± 37 b 18.6 ± 5.5 abcd 
S15 FTT 6.5 ± 0.5 bc 8.7 ± 1.0 cd 25.5 ± 6.7 b 841 ± 46 b 21.3 ± 5.5 cd 
S60 OOO 6.0 ± 0.7 ab 7.3 ± 0.9 bc 18.0 ± 5.4 ab 621 ± 73 a 11.9 ± 5.1 abc 
S60 FTO 6.4 ± 0.7 bc 8.4 ± 1.3 cd 25.0 ± 9.3 b 837 ± 52 b 20.4 ± 7.3 bcd 
S60 FTT 7.1 ± 0.6 c 9.2 ± 0.7 d 29.3 ± 5.9 b 879 ± 53 b 25.4 ± 4.4 cd 

When examining the individual treatment combinations, the S8 OOO and S15 OOO treatments were 
shorter than all other plots where these stock types received more intense vegetation control (p < 0.023; 
5.1 m vs 6.3 m). The mean height of the S60 OOO treatment was 0.9 m taller than the other stock types in 
the OOO FVM regime, but this effect was marginally non-significant (p > 0.068). The height of the S60 
FTT treatment, however, was 2.0 m taller than the S8 OOO and S15 OOO treatments (p < 0.001). 

Table 4. Results of ANOVA tests for the effects of vegetation management regimes (FVM) and seedling 
stock type on Douglas-fir mean height, diameter at breast height (DBH), individual tree volume, trees per 
hectare (TPH), and stand volume atyear 10. Significant effects are denoted in bold. Treatment descriptions 
are provided in Table 1. 

Variable FVM  Stock Type Stock Type x FVM  
Height < 0.001 0.004 0.438 
DBH < 0.001 0.001 0.413 

Tree Volume < 0.001 0.051 0.889 
TPH < 0.001 0.222 0.195 

Stand Volume < 0.001 0.217 0.965 
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Figure 4. Effect of stock type and vegetation management regime on Douglas-fir: (a) mean height over 
time, (b) mean height at year 10, (c) mean diameter at breast height (DBH) over time, and (d) mean DBH 
at year 10. Treatment descriptions are provided in Table 1 and treatment comparisons are provided in 
Table 3.     

Treatment response patterns for DBH were similar to that of height (Figure 4). The FTO and FTT 
regimes had mean DBHs 2.2 cm larger than the control (p < 0.001) and the S60 stock type had DBHs that 
were 1.1 cm larger than the S8 (p = 0.011) and S15 stock types (p = 0.048). Again, there was a trend for the 
mean DBH of the FTT regime to be larger than the FTO (8.9 vs 8.1 cm), but this effect was marginally 
non-significant (p = 0.054). Similar to height, the S8 OOO and S15 OOO treatments had smaller DBHs 
than all other plots of these stock types that received at least one spring release (p < 0.035; 5.7 cm vs 8.3 
cm). The mean DBH of the S60 OOO treatment was 1.9 cm larger than the S8 OOO treatment (p = 0.048). 
The S60 FTT treatment had a significantly larger mean DBH than all stock types growing under the OOO 
FVM regime (p < 0.039) and averaged 9.2 cm.  

There was a significant FVM regime by stock type interaction for seedling survival during the first 
growing season (p = 0.003), such that the survival of the S60 OOO treatment was less than all other 
treatments (67% vs 91%; p < 0.001; Figure 5c). The significant Stock Type by FVM regime interaction 
persisted through year 4 (p < 0.011) but had dissipated by year 5 (p =0.067) due to the lower survival rate 
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of the S8 OOO and S15 OOO treatments during years 2–5 (Figure 5c). By year 5, survival was not different 
among the stock types (p > 0.124), but there was a significant effect of FVM regime (p < 0.001). Survival 
in the OOO plots was lower than FTO and FTT plots. Survival of the FTO and FTT treatments did not 
differ in year 5 (p =0.995). This trend continued through year 10 when seedling survival averaged 68, 79, 
and 81% for the OOO, FTO, and FTT regimes, respectively. While not statistically significant, it is 
noteworthy that the survival of the S60 OOO treatment was lower than all other treatments throughout 
the study averaging only 58% in year 10. 

 

Figure 5. Effect of stock type and vegetation management regime on Douglas-fir: (a) mean stand volume 
over time, (b) stand volume in year 10, (c) mean trees per hectare over time, and (d) mean trees per hectare 
in year 10. Treatment descriptions are provided in Table 1 and treatment comparisons are provided in 
Table 3.    

The lower survival rate of larger seedlings in the OOO treatment during the first growing season 
was correlated (p =0.006; R2 = 0.54) with shoot volume at the time of planting, but this relationship was 
not observed for seedlings in the FTO or FTT treatments (Figure 6).  

Stock Type
S8 S15 S60

Tr
ee

s p
er

 h
ec

ta
re

500

600

700

800

900

1000

St
an

d 
V

ol
um

e (
m

3  h
a-1

)

0

5

10

15

20

25

30
OOO 
FTO
FTT

Age (years)
0 2 4 6 8 10

Tr
ee

s p
er

 h
ec

ta
re

500

600

700

800

900

1000

St
an

d 
V

ol
um

e (
m

3  h
a-1

)

0

5

10

15

20

25

30
S8-OOO 
S8-FTO 
S8-FTT 
S15-OOO 
S15-FTO 
S15-FTT 
S60-OOO 
S60-FTO 
S60-FTT 

a b

c d



Forests 2019, 10, 1002 12 of 17 

 

 

Figure 6. Relationship between seedling shoot volume at the time of planting and survival rate (%) after 
the first growing season for Douglas-fir seedlings growing under different forest vegetation management 
regimes. Lines represent linear model fit. Treatment descriptions are provided in Table 1. 

Year 10 stand volume was significantly affected by the FVM regimes (p < 0.001, Table 4) but was not 
influenced by stock type (p = 0.217) or the interaction of these two treatment levels (p = 0.965). Similar to 
height and DBH, year 10 stand volume in the FTO and FTT regimes was greater than the no-action control 
(p < 0.001). The FTT regime tended to have higher stand volumes than the FTO, however, this effect was 
marginal (p = 0.098). Stand volumes at year 10 averaged 9.3, 18.8, and 23.2 m3 ha−1 for the OOO, FTO, and 
FTT regimes, respectively. When comparing the individual treatment combinations, the S8 OOO and S15 
OOO treatments had less stand volume than all stock types with the FTT regime (8.0 vs 23.2 m3 ha−1; p < 
0.031). The S60 OOO treatment had 13.5 m3 ha−1 less stand volume than the S60 FTT treatment (p = 0.020), 
but did not differ from the S8 FTT (p = 0.221) or S15 FTT (p = 0.086) treatments. Stand volume (m3 hectare−1) 
in year 10 was well-correlated with the cumulative shrub cover during the first and second growing 
seasons (Figure 7; p = 0.016; R2=0.60). The resulting equation was: 𝑆𝑡𝑎𝑛𝑑 𝑉𝑜𝑙𝑢𝑚𝑒 (𝑎𝑡 𝑎𝑔𝑒 10) =  6.572 + 40.368 · exp (−0.067 · 𝑆ℎ𝑟𝑢𝑏 𝐶𝑜𝑣𝑒𝑟%) (6)

where Shrub Cover% is the cumulative shrub cover of years 1 and 2.  

 
Figure 7. Relationship between cumulative shrub cover (%) during the first and second year (year 1 + year 
2) and year 10 stand volume of Douglas-fir. Treatment descriptions are provided in Table 1.  
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4. Discussion 

This study demonstrates that decisions made during the early years of stand establishment can have 
long-term consequences on the growth of Douglas-fir plantations. Decisions about forest vegetation 
management regime (FVM) and stock type selection significantly influenced tree size after ten growing 
seasons. The effect of FVM regime on tree size was more pronounced when compared to stock type and 
the interaction of these two treatment levels. This result suggests that all the stock types responded 
similarly to the FVM treatments in terms of seedling growth. There was, however, a significant FVM 
regime x stock type interaction for seedling survival during the first four years of the study, indicating 
that the stock types tested had different levels of competition tolerance during the vulnerable time of 
establishment.   

The positive effects of FVM on Douglas-fir seedling growth has been observed in several previous 
studies [3,7,10–13]. The higher survival and growth of plots treated with chemical vegetation control can 
be attributed to reduced competition with vegetation and associated increases in soil moisture during 
seedling establishment. The reduced vegetation cover in the FTO and FTT treatments increased soil 
moisture (expressed as ASW) during the dry summer season of the treatment year when compared to 
the no-action control. Increases in ASW associated with FVM have been shown to reduce drought stress 
and increase growth rate for newly planted Douglas-fir seedlings [7,8,22]. Results from this study extend 
these findings to a coarse-textured glacial soil type demonstrating the importance of preserving adequate 
soil moisture in the Mediterranean climate of the PNW through the use of judicious FVM regimes. 

Soil water availability also influences drought stress and hence survival as demonstrated by the 
significant FVM regime x stock type interaction during the first four years of this study. It is proposed that 
the S60 seedlings growing in the OOO regime experienced elevated drought stress produced by the 
combined effects of intense competition for soil water and larger evaporative surface area, as leaf area has 
been shown to be well-correlated with water loss [23]. At the time of planting, the S60 stock type had a 
shoot volume that was four times that of the other stock types, potentially indicating an increased 
evaporative demand that the roots may not have been able to support. The strong relationship between 
seedling shoot volume and survival rate observed for the OOO regime (Figure 6) supports the conclusion 
that larger seedlings can be more vulnerable to mortality under moisture stress conditions. This relationship 
was not observed for the FTO or FTT regimes, indicating that maintaining less than 20% cover in the first 
year can be sufficient to reduce moisture stress and increase the survival of larger seedlings. In contrast to 
this, Wightman et al. (2018) [14] observed that S60 seedlings had higher mortality rates than S8 or S15 
seedlings on two sites in the Oregon Coast Range treated with a fall site preparation combined with a spring 
release. The varying results of these studies may be due to site-specific conditions, the unique plant 
communities, higher water deficit in Oregon, or a combination of these factors. It is worth noting that the 
survival of seedlings in the S8 OOO and S15 OOO treatments decreased slowly throughout the study 
(especially during year 2) such that year 5 survival was only impacted by FVM regime.        

In addition to effects on ASW, the FVM regimes applied in this study reduced vegetation cover 
through year 5. Reductions in vegetation cover in response to FVM have been observed in several studies 
throughout the PNW [12,13,22], however the magnitude and duration of this reduction often varies from 
site to site. The persistent effect of FVM regime on vegetation cover in this study was governed by 
differences in the cover of shrubs, especially salal. This species is a vigorous native perennial evergreen 
shrub which competes strongly with regenerating conifer seedlings for soil water and, to a lesser extent, 
nutrients [24–27]. Salal can re-occupy a site following timber harvest through vegetative propagation 
utilizing the established root system of the parent plant. Price et al. (1986) [28] reported that removing 
the salal understory surrounding 32-year-old Douglas-fir trees on Vancouver Island increased soil water 
potential which produced increases in both tree photosynthetic rate and stomatal conductance.  

The strong relationship between cumulative shrub cover during the first two growing seasons and 
stand volume in year 10 demonstrates the long-term influence of woody plant control. Using the 
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presented equation for this relationship, increasing cumulative shrub cover during the first two growing 
seasons from 10% to 30% would reduce stand volume in year 10 by 79% (12.0 vs 27.2 m3 ha−1).  

Despite salal representing 74% of all shrub cover at the study site during the second growing season, 
none of the FVM regimes completely eradicated it from the landscape. By year 3, there were no differences 
in the average number of species per plot among the FVM regimes. In year 10, there were no longer 
differences among the FVM regimes in vegetation cover, even when analyzed by growth habit. These 
results indicate that the effects of FVM on the vegetation community tend to disappear over time. The 
recovery of vegetation abundance and diversity following FVM has also been observed by others [29–32]. 
Further analysis of region-wide datasets may permit plot-level species abundance to be expanded to the 
landscape scale.   

Initial seedling size was not a significant covariate, indicating that morphologic differences in year 
10 developed under field conditions rather than a product of nursery cultural regimes. The larger S60 
stock type can outperform smaller seedlings when FVM regimes reduce early competition. These larger 
seedlings can, however, have reduced survivorship in the presence of increased plant competition. 
Larger stock types have also been reported to outperform smaller stock types for several conifer species 
including Douglas-fir in the PNW [16,17], Scots pine (Pinus sylvestris L.), and Norway spruce (Picea abies 
(L.) H. Karst.) in Sweden [33], and western white pine (Pinus monticola Douglas ex D. Don) in Idaho [34]. 
Conversely, there is evidence that tree size of different stock types can converge over time. Specific 
comparisons in this study (i.e, FTO regime across the stock types) as well as results presented by 
Wightman et al. (2018) [14] and Van der Driessche (1992) [15] demonstrate that it is possible for initial 
size differences to disappear at the planting site. 

The largest stock type (S60) had strong field performance but may not be worth the financial 
investment. Logistical constraints from seedling storage, transportation, and the act of planting the largest 
stock type are imbedded in the costs presented in Table 5. To illustrate one aspect of these logistical 
constraints, S60 come packaged as 25 trees per bag whereas S8 seedlings come as 250 trees per box. Given 
the full suite of reforestation activities as well as their associated costs, forest managers will need to carefully 
consider the significant investment in the largest stock types (i.e., S60). It should be reiterated that the 
production of S60 Douglas-fir seedlings was experimental at the time this study was initiated and is not 
common for PNW nurseries. It is possible, however, that continued nursery development coupled with 
outside demand for larger stock types could decrease the cost of the S60 stock type.     

Table 5. Establishment costs (in 2008 USD) per hectare for different combinations of stock type and forest 
vegetation management (FVM) regimes. Seedling and planting cots assume a planting density of 1074 tree 
ha−1. Planting crew and FVM costs were taken from Dinger and Rose 2009 [35].   

Stock Type FVM Regime Seedlings Planting Crew FVM Total Establishment Cost 

S8 OOO $269 $120 - $389 

S8 FTO $269 $120 $270 $659 

S8 FTT $269 $120 $405 $794 

S15 OOO $376 $120 - $496 

S15 FTO $376 $120 $270 $766 

S15 FTT $376 $120 $405 $901 

S60 OOO $1343 $140 - $1483 

S60 FTO $1343 $140 $270 $1753 

S60 FTT $1343 $140 $405 $1888 

5. Conclusions 
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The results of this study provide important insights into the interactions between FVM and seedling 
stock type. FVM increased ASW during the application year creating a more favorable growing 
environment for the newly planted seedlings during the region’s Mediterranean summers. The FVM 
treatment applied in this study had a persistent effect on reducing vegetation cover early in the 
establishment phase. Competitive shrub cover during the first two growing seasons was well-correlated 
with stand volume in year 10, illustrating the importance of judicious vegetation control on sites with 
perennial shrub species, specifically salal. Increases in growth associated with FVM regime were found 
to be more pronounced than the effect of stock type.   

Larger stock types, such as S60, have the potential to rapidly establish on a site when adequate 
vegetation control is applied, however, these larger seedlings were also more sensitive to competition 
during the early years of stand establishment. The smaller stock types tested (S8 and S15) were more 
tolerant to competition but were smaller than the largest stock type (S60) after 10 growing seasons. Under 
moderate levels of weed control, the survival of containerized stock types improves, but initial size 
differences disappeared over time calling into question the significant financial investment of the largest 
stock type tested.    

Our results demonstrate that stock type selection and silvicultural prescriptions at the planting site 
have profound impacts on the long-term success of reforestation efforts. Forest managers must take into 
account information on site conditions (soil water holding capacity, climate, and vegetation community), 
seedling stock type performance, silvicultural treatment responses, and financial constraints when 
developing reforestation prescriptions. This study, along with future research across a range of site 
conditions and silvicultural treatments, represents the continual process of refining the Target Plant 
Concept.  
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