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Abstract: In this study, the effects of tree species, tissue types, and tree size on the carbon concentration
were studied, and the two additive systems, one with tree diameter (D), and the other with both D
and tree height (H), were developed to estimate the stem, root, branch, and foliage carbon content of
10 broadleaf species in northeast China. The coefficients of the two systems were estimated with the
nonlinear seemingly unrelated regression (NSUR), while the heteroscedasticity of the model residual
was solved with the weight function. Our results showed that carbon concentrations varied along
with tree species and size; the tissues and foliage contained higher carbon concentration than other
observed tissues. The two additive carbon equation systems exhibited good predictive and fitting
performance, with Ra

2 > 0.87, average prediction error of approximately 0, and small average absolute
error and absolute error percentage. The carbon equation system constructed with D and H exhibited
better fit and performance, particularly for the stem and total carbon. Thus, the additive carbon
equation systems estimated the tree carbon of 10 broadleaf species more accurately. These carbon
equations can be used to monitor the carbon pool sizes for natural forests in the Chinese National
Forest Inventory.

Keywords: broadleaf species; carbon concentration; additive carbon equations; carbon partitioning;
quantifying carbon stock

1. Introduction

According to the reports from the Food and Agriculture Organization [1], forestry occupies
approximately 31% of the earth’s land area, meaning it has an indispensable role in the global carbon
cycle. Almost 33.3% of the atmospheric CO2 concentration is reduced by forests, because of their carbon
storage ability (approximately 2.4 Pg) and emission sequestration of CO2 (approximately 30%) [2,3].
Nowadays, more studies are underlining non-timber forest ecosystem services, such as natural hazards
and biodiversity protection, and air and water cleaning. Globally, temperate mixed forests are mainly
located in northeastern Europe, North America, and eastern Asia. In Asia, the majority of the temperate
forests are distributed in the northeastern part of China, particularly in Heilongjiang province, which is
a vital province in the climatic system and national carbon budget in China [4,5].

Among the studies on global climate change and carbon cycles, the quantity, distribution,
and dynamics of forest carbon stocks are the hotspots and also remain a high priority for the prediction
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of forest growth and yield [3,6,7]. The main essential task for successfully implementing the initiatives
of Reducing Emissions from Deforestation and Forest Degradation (REDD+), as well as for the
conservation and enhancement of forest carbon stocks and sustainable management of forests is
the development of allometric models for carbon accounting across different tree species. By doing
this, those developing countries can receive financial bonuses for decreased carbon emissions [8,9].
However, few literature studies have been conducted on predictive models for quantifying the total
and tissue carbon of broadleaf species.

To date, indirect and direct methods have been used to estimate individual tree carbon [10]. For the
indirect methods, the individual tree carbon is calculated by multiplying the carbon concentration by the
tree biomass, where the biomass is estimated using biomass equations [11,12]. When estimating forest
carbon, 50% or 45% is generally used as the average carbon concentration for all species and forest types
at regional and national scales; however, some others have used other carbon concentrations [10,13].
In general, the commonly accepted carbon concentrations are 50% for woody tissues, or 45%–50%
for nonwoody tissues [14,15]. However, more and more studies have shown that the commonly
used 45% or 50% carbon concentrations lead to certain errors [16–20], because of the various carbon
concentrations among forest regions, tissue types, species, and sizes of trees [10,16,21]. For the direct
methods, the carbon allometric equations are constructed using data obtained from a carbon analyzer
when burning trees [10,22,23]. In summary, carbon allometric equations are essential and necessary if
accurate fluxes and carbon stocks of natural forests are required.

It is common to use the diameter at breast height (D) as the only reliable predictor of the total
and tissue biomass or carbon in most cases [4,9,10,24,25]. The tree height (H), another variable of the
tree, can also be used as a predictor [9,25,26]. Adding H into biomass or carbon equations as another
predictor notably improves the model performance by explaining the divergences and avoiding the
potential limitations [25,27–29]. Thus, the regression with D and H was more reliable for prediction of
the carbon in a forest.

The estimating equations for the total and tissue carbon of trees are categorized as nonadditive or
additive models. The nonadditive equations cannot suit the total and tissue carbon data synchronously,
leading to unequal total tissue carbon derived from the tissue and the total carbon model. The additive
carbon equations fit the total and tissue carbon data simultaneously, which explicates the instinctive
correlations among carbon tissues of the same sample [25,27–29], where the sum of carbon predictions
from the tissue carbon model and from the total carbon models are the same [30,31]. For the additive
carbon equations, various parameter estimation methods and model specifications were used in
linear and nonlinear models [30–33]. Among these, nonlinear seemingly unrelated regression (NSUR)
and seemingly unrelated regression (SUR) are more widely used. An advantage of using SUR and
NSUR is the low variance of the total tree carbon model because of their own predictor variables
and weighting functions for heteroscedasticity, which make SUR and NSUR the popular methods
of parameter estimation in nonlinear and linear carbon and biomass equations [10,24,25,29,33,34].
Although additivity is included in this property by most researchers, additivity is still ignored in most
carbon equations.

To overcome the heteroscedastic model residuals of the tree carbon data, logarithmic transformation
or weighted regression should be performed before each carbon model construction. Regarding the
logarithmic regression, to acquire an ideal result, a correction is necessary after the antilog transformation
(i.e., by multiplying a correction factor by the predicted values). In recent decades, several correction
factors have been used, especially for those with relatively large model errors [35–39]. When determining
the total and tissue carbon equations of trees, after applying the correction factor to the logarithmic
equations of the additive system, realizing this additivity is difficult [39]. Thus, the weighted regression
overcomes the heteroscedasticity of tissue and total carbon model residuals in the additive system
successfully [24,25,29].

To improve individual tree carbon estimation, species-specific carbon models must be developed
urgently [10]. To date, all attempts to sustainably manage woodland and forest ecosystems have
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included carbon models, which describe and predict the changes in forest carbon stocks at national and
regional scales over time and are essential in implementing the newly emerged carbon credit market
mechanisms, such as REDD+. While some studies have focused on tree biomass models of broadleaf
species in northeast China, tree carbon models are scarce [4,40]. Although these available biomass
models can be used to indirectly estimate tree carbon, there are some obvious shortcomings, such as
having been developed with few selected trees, limited tree size classes, few tree species, and limited
geographic areas [9,10,22,23]. Furthermore, the currently available aboveground and belowground
tree carbon models are constructed using 10–30 sample trees per species [9,10,22,23], leading to the
inaccuracy of these models in predicting individual tree carbon [41].

The aim of this study was to: (1) examine the variation of carbon concentration and analyze the
effects of species, tree sizes, and tissues on the carbon concentration of the 10 broadleaf species in
northeast China; (2) construct two additive carbon equations, with both D and H or only D, along with
NSUR; (3) verify the performance of the carbon models with jackknife resampling and explore the
prediction errors of the tissue and total carbon equations of the 10 broadleaf species.

2. Materials and Methods

2.1. Study Sites

This study was carried out in Heilongjiang province (Figure 1), one of the largest forestry provinces
in northeast China. This province has a continental monsoon climate, with an average rainfall of
between 400 and 650 mm per year, and an average annual temperature between −5 ◦C and +5 ◦C.
The altitude is 300 to 1500 m above sea level, with mainly Eutroboralfs and Haplumbrepts soils.

The trees were taken destructively from 15 sites (Figure 1), where the 10 broadleaf species are
widely distributed in Heilongjiang province. A total of 72 plots of Chinese temperate forests were
selected, with a size of 20 m × 30 m or 30 m × 30 m, which were dominated with Dahurian birch (Betula
davurica), Mongolian oak (Quercus mongolica), aspen (Populus davidiana), white birch (Betula platyphylla),
and other broadleaf mixed forest trees. For each plot, the suppressed, intermediate, and dominant
trees were selected, with the sample trees being selected from outside of the plots.
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Figure 1. Geographical position of study area and sampling plots in Heilongjiang province.

2.2. Biomass Measurements in the Field

The data for this study was derived from a tree biomass large dataset. The species of the trees were
Manchurian walnut (Juglans mandshurica), Amur linden (Tilia amurensis), Mongolian oak, Manchurian
elm (Ulmus laciniata), Manchurian ash (Fraxinus mandshurica), aspen, Dahurian birch, white birch,
Amur cork tree (Phellodendron amurense), and maple (Acer mono) in the secondary forests. Biomass
measurements for the 10 broadleaf species were conducted in August of 2009, 2011, 2012, and 2015.

The 432 trees were destructively taken in natural forests, as previous described. Data for H, D,
and length of live crown were recorded immediately after the stems were cut. Then, a 1 m section
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of the stem was weighed. For the terminus end of the stem, the weight and moisture content of the
2–3 cm thick disk were recorded. Three layers, namely the bottom, middle, and top, were evenly
marked in the live crown, which is the part from the beginning of the live branch to the base of the
terminal bud. After cutting all live branches of each layer of the crown, the 3–5 foliage and branches
were weighed and sampled. Approximately 50–100 g was used to measure the moisture. For the roots,
a radius of the circular zone of approximately 3 m was excavated, excluding the fine roots with radii
larger than 5 mm because of the intense workload and difficulty of root excavation. Three classes of
roots were classified: small roots (diameter smaller than 2 cm), medium roots (diameter ranging from
2–5 cm), and large roots (diameter larger than 5 cm). Approximately 100–200 g of the root from each
class was sampled, weighed, and used for moisture content determination.

Before measuring the carbon concentration, all roots, branches, foliage, and stems were dried
at 80 ◦C in an oven before weighing. The fresh weight was multiplied by the dry/fresh ratio of each
component to calculate the dry biomass. The total dry biomass of each tree was the gross of that of
foliage, branch, root, and stem. The statistic description of H (m), D (cm), and total biomass (kg) is
shown in Figure 2.
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10 tree species. Numbers on the right-hand side indicate the number of sample trees. FM: Fraxinus
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2.3. Measurements of the Carbon Concentration and Carbon Stock

Approximately 50 mg of the oven-dried samples of foliage, branch, root, and stem was used to
measure the carbon concentration, using a Multi N/C 3000 analyzer with a 1500 Solid Module (Analytik
Jena AG, Thuringia, Germany). When the samples were burned completely in a vial containing pure
oxygen at 1200 ◦C, the emitted CO2 concentration was measured with a non-dispersion infrared ray
(NDIR) analyzer. The carbon stock of each tissue equaled the carbon concentration multiplied by its
respective biomass. The gross of the tissue estimates was regarded as the carbon stock of the individual
tree. The models of the 10 broadleaf species were constructed with the carbon stock of the individual
trees. The statistic description of total carbon (kg) is shown in Figure 2.

2.4. Effects of Species, Tree Sizes, and Tissues on Carbon Concentration

The analysis of variance (ANOVA) was used to examine the effect of species and sizes of tree (D)
as well as tissue types on the carbon concentration. The general linear model was used to analyze:

Yi jk = µ+ αi + β j + γk + (αβ)i j + (βγ) jk + (αγ)ik + (αβγ)i jk + εi jk (1)
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where Yijk is the measured carbon concentration, µ is the average number, αi is the effect of tree species
on Yijk, βj shows the role of tissue types on Yijk, γk presents the effects of D on Yijk, (αβ)ij is the interaction
between tree species and tissues, (βγ)jk shows the effect of the interaction between tissues and D, (αγ)ik
is the effect of the interaction of tree species and D, (αβγ)ijk represents the effect of the interaction
between the three variables, and εijk is the error term.

To eliminate the effect of allocation on the carbon concentration of interspecies, the average
weighted carbon concentration (WMCC) of each species was calculated as follows:

WMCC =
n∑

i=1

CCi × Pi (2)

where CCi is the carbon concentration of each tissue i, Pi is the ratio of tissue i to the total biomass,
and n is the biomass of tissues.

The general linear model (GLM) procedure in statistical analysis system (SAS) software (Version 9.3,
SAS Institute Inc., Cary, NC, USA) was applied to examine the variation in the carbon concentration [42].

2.5. Additive Carbon Equations

According to the data for the visual inspection of carbon of the foliage, branch, root, and stem, a
multivariable allometric model of tree variables was used to construct the carbon equation of these tree
tissues. The nonlinear model with an additive error in this study is as follows:

Ci = βi0Xβi1
1 Xβi2

2 · · ·X
βi j

j + εi (3)

where Ci represents the weight (in kilograms) of the branch, foliage, stem, root, and total tree carbon
(i = branch (b), foliage (f), root (r), stem (s), and total (t)); εi is the additive error term of the model;
Xj represents the variables of the tree, such as H and D; and βij represents the estimated parameters of
the model. Based on D and H, the following carbon equations derived from Equation (1) are proposed:

Ci = βi0Dβi1 + εi (4)

Ci = βi0Dβi1Hβi2 + εi (5)

According to the description of Parresol [31], five additive equations with cross-equation error
correlations of branch, foliage, stem, root, and total carbon are listed as follows:

Cr = eβr0 ×Dβr1 + εr

Cs = eβs0 ×Dβs1 + εs

Cb = eβb0 ×Dβb1 + εb
C f = eβ f 0 ×Dβ f 1 + ε f
Ct = Cr + Cs + Cb + C f + εt

(6)

Cr = eβr0 ×Dβr1 ×Hβr2 + εr

Cs = eβs0 ×Dβs1 ×Hβs2 + εs

Cb = eβb0 ×Dβb1 ×Hβb2 + εb
C f = eβ f 0 ×Dβ f 1 ×Hβ f 2 + ε f
Ct = Cr + Cs + Cb + C f + εt

(7)

Because of the heteroscedasticity in the model residuals shown by the tree carbon data, a weighting
function was defined and applied for each carbon model. Following previous applications for
modeling residual heteroscedasticity, the variances and the squares of residuals (ε2) in the ith
observation functionally relate to other predicative variables, such as εi

2 = σ2(xi)p, where εi is the
unweighted model residual. In this study, the comparison between the weight functions, x = D only
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and x = D × H, showed no significant difference. Therefore, the heteroscedastic weighting function,
1/Dp, was programmed in the PROC MODEL [42], where 1/Dp was chosen as the weight and p was
confirmed based on each carbon model.

The two additive systems of carbon, Equations (4) and (5), fit the data of each species with NSUR
under the econometrics and time series (ETS)/SAS model [42].

2.6. Assessment and Validation of the Model

The two additive carbon equations suit the entire dataset, and were tested with the jackknife
technique. All of the observations except one (sample size N-1) were used to construct the carbon
equation, whose dependent variable was predicted with the fitting model. The five statistics of each
equation system based on jackknifing were used to evaluate the fitting performance (adjusted coefficient
of determination (Rα

2) and root mean square error (RMSE)) and the predictive performance (mean
prediction error (MPE), mean absolute error (MAE), and mean absolute percent error (MAE%)) of each
tree carbon prediction equation. The mathematical expressions of the five statistics are as follows:

R2
a = 1−

∑N
i=1 (Ci − Ĉi)

2∑N
i=1 (Ci −C)

2

(
N − 1
N − p

)
(8)

RMSE =

√∑N
i=1 (Ci − Ĉi)

2

N − p
(9)

MPE =

∑N
i=1

(
Ci − Ĉi,−i

)
N

(10)

MAE =

∑N
i=1

∣∣∣Ci − Ĉi,−i
∣∣∣

N
(11)

MAE% =

∑N
i=1

∣∣∣∣∣Ci−Ĉi,−i
Ci

∣∣∣∣∣
N

× 100 (12)

where Ci is the value of ith observed biomass; Ĉi is the ith biomass prediction from the model fitting
the whole data (sample size N); C is the average value of the biomass; Ĉi,−i is the prediction of the ith
observation of the model fitting N-1 observations, excluding the usage of the ith observation; and p is
the total number of model parameters.

3. Results

3.1. Variation of Carbon Concentration

The type and size of the tree, the types of tissue, and the interaction between the size and tissue
of the tree significantly affect the carbon concentration (p < 0.05) (Table 1). Significantly different
carbon concentrations were detected among the tissues across all tree species. Overall, the carbon
concentrations of the tissues are ranked in the following order: foliage > stem > branch > root.
The average carbon concentrations for the roots and foliage of the 10 species were 43.93 ± 2.27%
(mean ± standard deviation) and 45.90 ± 2.66% (Table 2), respectively. The types of tissues with the
lowest carbon concentrations for all species were roots (ranging from 42.47% to 45.46%), but the types
of tissues with the highest carbon concentrations varied with species (Table 2). The highest carbon
concentrations were in the foliage of Juglans mandshurica, Tilia amurensis, Quercus mongolica, Acer mono,
Betula platyphylla, Betula davurica, and Populus davidiana; in the branches of Fraxinus mandshurica and
Ulmus laciniata; and in the stem of the Phellodendron amurense (Table 2).
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Table 1. The effects of tree size (D), tree species, and tissue on tissue-specific carbon concentrations of
the 10 tree species. The columns give the degrees of freedom (DF), type III sum of squares, and mean
square, F values, and p values.

Source DF Type III SS Mean Square F Value p Value

Tree size (D) 1 24.16 24.16 5.42 0.0200
Tree species 9 603.19 67.02 15.05 <0.0001

Tissue 3 854.96 284.99 63.99 <0.0001
Tree size × Tissue 9 273.65 30.41 6.83 <0.0001

Table 2. Means and standard deviation (SD) of tissue-specific carbon concentration of the 10 tree species.

Tree Species N Branch Foliage Root Stem WMCC

FM 24 45.70 ± 2.83 44.49 ± 1.91 44.11 ± 2.92 44.82 ± 3.06 44.75 ± 2.93
JM 30 45.05 ± 1.90 46.85 ± 1.93 42.89 ± 1.69 44.95 ± 2.46 44.58 ± 2.04
PA 18 43.63 ± 2.31 43.67 ± 1.76 42.47 ± 2.88 44.16 ± 2.22 43.70 ± 2.25
TA 38 43.97 ± 2.43 45.24 ± 2.30 43.57 ± 2.39 45.18 ± 2.25 44.73 ± 2.06
QM 64 44.91 ± 2.10 46.70 ± 2.12 44.06 ± 2.36 45.68 ± 2.13 45.25 ± 2.02
UL 40 44.26 ± 1.53 42.87 ± 1.54 43.07 ± 1.69 43.85 ± 1.91 43.67 ± 1.62
AM 46 44.07 ± 2.27 44.37 ± 2.02 43.19 ± 1.89 44.20 ± 2.25 43.94 ± 2.01
BP 66 46.17 ± 1.77 48.68 ± 2.09 45.46 ± 1.77 46.35 ± 1.87 46.18 ± 1.64
BD 52 45.92 ± 1.85 46.43 ± 2.04 44.99 ± 1.94 45.70 ± 2.09 45.56 ± 1.91
PD 54 44.53 ± 1.99 45.92 ± 2.46 43.37 ± 2.03 44.40 ± 1.88 44.28 ± 1.81

All species 432 44.94 ± 2.20 45.90 ± 2.66 43.93 ± 2.27 45.09 ± 2.28 44.84 ± 2.11

Note: FM: Fraxinus manshuric; JM: Juglans mandshurica; PA: Phellodendron amurense; QM: Quercus mongolica; TA: Tilia
amurensis; UL: Ulmus laciniata; AM: Acer mono; BP: Betula platyphylla; BD: Betula davuria; PD: Populus davidiana.

Besides the effect of tissue on carbon concentration, significantly different carbon concentrations
were observed among the tree species. Betula platyphylla had the highest WMCC (46.18 ± 1.64%)
among all the species, which was largely driven by the relatively high carbon concentrations in
foliage (48.68 ± 2.09%). Ulmus laciniata had the lowest WMCC of 43.67 ± 1.62% (Table 2). The carbon
concentrations of the tree species are ranked in the following order: Betula platyphylla > Betula davurica
> Quercus mongolica > Fraxinus mandshurica > Juglans mandshurica > Tilia amurensis > Populus davidiana
> Acer mono > Phellodendron amurense > Ulmus laciniata (Table 2).

3.2. Allometric Equations of Carbon and Validation of Models

Under the NSUR method, two additive systems of carbon equations, one with D (Equation (6),
namely MS-1) and the other with both D and H (Equation (7), namely MS-2) fit the carbon data of
the 10 broadleaf species. The goodness-of-fit statistics (Ra

2 and RMSE) for each carbon equation
suggested that all equations of MS-1 fit the carbon data well, with a Ra

2 > 87% and an RMSE < 17.5.
The models fit the carbon data of the total and stem better, while a relatively smaller model Ra

2 value
was observed in the root, branch, and foliage equations. Among the 10 broadleaf species, higher
Ra

2 was detected in Phellodendron amurense and Betula platyphylla under the additive system with D
(Table 3). The carbon equation MS-2 was constructed with both D and H when the height of the tree
was available. Compared with equation MS-1, equation MS-2 had a greater Ra

2 and smaller RMSE for
most of the total, root, stem, branch, and foliage values (Table 4).

Based on jackknifing residuals of the two carbon equation systems (MS-1 and MS-2), the model
validations for Equations (10)–(12) were computed. For the total carbon, relatively small model
prediction errors were reported for the two systems (−0.50 < MPE < 0.90, MAE < 9.0 kg, and MAB% <

19.0%), except for Fraxinus mandshurica and Juglans mandshurica. MS-2 seemed to perform better than
MS-1, which was also true for the stem carbon (Figure 3). On the other hand, compared to the total
and stem carbon, less accurate predictions were observed in the carbon equations for root, branch, and
foliage (MAE% > 16%). The model performance was improved by adding H into the additive system
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of carbon equations for most of the 10 broadleaf species, but there were nonsignificant differences
among the branches, foliage, and roots of some species (e.g., Ulmus laciniata, Phellodendron amurense,
and Betula davurica) (Figure 3).

Table 3. Model coefficient estimates, standard errors (SE), goodness-of-fit statistics, and weight
functions for the additive system of biomass equations based on one predictor (D only, namely MS-1).

Tree
Species

Carbon
Components

βi0 βi1
R2

a RMSE Weight
FunctionEstimate SE Estimate SE

FM

Root −4.3993 0.3836 2.5020 0.1221 0.9268 4.5548 D2.4537

Stem −2.2940 0.2322 2.1752 0.0753 0.9150 12.9900 D2.2577

Branch −6.2638 0.3550 2.9343 0.1114 0.9385 2.7533 D2.8112

Foliage −5.3096 0.4059 2.1160 0.1308 0.9307 0.5116 D2.1436

Total - - - - 0.9431 17.4863 D2.2123

JM

Root −3.4686 0.3393 2.0564 0.1068 0.8948 5.5046 D2.9440

Stem −3.6363 0.1651 2.5117 0.0547 0.9539 13.9442 D3.8552

Branch −4.2657 0.2768 2.2587 0.0839 0.9549 3.0605 D1.9283

Foliage −5.5766 0.2931 2.1833 0.0930 0.9677 0.5337 D3.2885

Total - - - - 0.9808 13.4931 D3.4722

PA

Root −6.4318 0.4733 3.0452 0.1441 0.9766 2.9545 D2.0757

Stem −3.3025 0.1385 2.3845 0.0417 0.9756 7.1162 D2.8811

Branch −6.2062 0.4173 2.8708 0.1273 0.9806 1.8019 D2.0720

Foliage −5.7706 0.4033 2.2266 0.1265 0.9644 0.4015 D2.7516

Total - - - - 0.9895 8.1229 D2.9551

TA

Root −3.2098 0.2114 1.9424 0.0721 0.9720 1.7613 D2.8887

Stem −3.5676 0.1580 2.4640 0.0501 0.9686 8.2212 D2.4344

Branch −5.7017 0.2577 2.5094 0.0853 0.9663 1.3210 D3.6814

Foliage −5.1279 0.3364 1.8247 0.1125 0.8780 0.3153 D2.3317

Total - - - - 0.9870 7.3417 D1.9310

QM

Root −4.1592 0.1892 2.3883 0.0621 0.9555 4.3850 D3.6476

Stem −3.0136 0.1422 2.3729 0.0451 0.9785 8.5595 D2.7019

Branch −6.6852 0.2577 3.1627 0.0797 0.9759 3.8246 D3.7733

Foliage −6.6988 0.2607 2.5843 0.0802 0.9489 0.7517 D2.1625

Total - - - - 0.9922 9.3531 D2.5420

UL

Root −3.2591 0.1909 2.0468 0.0643 0.9446 3.3534 D2.8270

Stem −2.6275 0.1185 2.1730 0.0374 0.9703 7.2734 D2.7464

Branch −3.2156 0.1607 1.8316 0.0535 0.9567 1.3939 D2.6379

Foliage −3.9191 0.2446 1.6018 0.0844 0.8991 0.4876 D2.6514

Total - - - - 0.9805 8.9256 D2.8154

AM

Root −4.8306 0.3060 2.6609 0.0965 0.9558 4.0845 D2.1791

Stem −2.8834 0.1263 2.3046 0.0409 0.9817 5.3065 D2.1708

Branch −4.2090 0.2139 2.3003 0.0724 0.9483 2.2505 D2.8763

Foliage −4.2266 0.1870 1.7472 0.0663 0.9218 0.4071 D2.9753

Total - - - - 0.9905 6.7462 D2.4949

BP

Root −4.0412 0.1659 2.3718 0.0583 0.9637 2.9315 D3.6368

Stem −2.7296 0.1158 2.2856 0.0407 0.9644 6.9291 D2.8397

Branch −6.0092 0.2256 2.8747 0.0760 0.9798 1.5945 D3.6122

Foliage −6.3597 0.1641 2.4766 0.0566 0.9714 0.3290 D3.0989

Total - - - - 0.9876 7.1944 D2.3971

BD

Root −3.8799 0.1525 2.2312 0.0518 0.9108 3.2188 D2.2107

Stem −3.1879 0.1703 2.4001 0.0599 0.9603 6.8378 D3.6068

Branch −8.3881 0.3189 3.6647 0.1025 0.9659 2.5285 D3.6079

Foliage −8.0584 0.2529 3.0287 0.0799 0.9793 0.3108 D1.4856

Total - - - - 0.9715 10.1206 D3.6981

PD

Root −4.3300 0.2395 2.2614 0.0762 0.9606 1.8136 D2.2476

Stem −2.8292 0.1402 2.2754 0.0463 0.9563 8.8689 D2.9923

Branch −7.5074 0.3793 3.1670 0.1185 0.9420 2.2657 D3.9500

Foliage −6.8948 0.2619 2.4573 0.0824 0.9300 0.3662 D2.2230

Total - - - - 0.9673 11.1664 D2.5572

Note: FM: Fraxinus manshuric; JM: Juglans mandshurica; PA: Phellodendron amurense; QM: Quercus mongolica; TA: Tilia
amurensis; UL: Ulmus laciniata; AM: Acer mono; BP: Betula platyphylla; BD: Betula davuria; PD: Populus davidiana.
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Table 4. Model coefficient estimates, standard errors, goodness-of-fit statistics, and weight functions
for the additive system of biomass equations based on two predictors (D and H, namely MS-2).

Tree
Species

Carbon
Components

βi0 βi1 βi2
R2

a RMSE Weight
FunctionEstimate SE Estimate SE Estimate SE

FM

Root −3.9956 0.6335 2.2747 0.1376 0.1004 0.2629 0.9443 3.9741 D2.0463

Stem −3.2245 0.3059 1.6765 0.0607 0.8291 0.1256 0.9706 7.6390 D1.9876

Branch −7.3358 0.5465 2.8620 0.1254 0.4330 0.2388 0.9372 2.7832 D2.7448

Foliage −4.5477 0.6954 2.0263 0.1575 −0.1628 0.2959 0.9344 0.4978 D1.8113

Total - - - - - - 0.9804 10.2714 D2.1491

JM

Root −3.0664 0.4009 2.5876 0.1889 −0.7066 0.2311 0.9097 5.0990 D2.6508

Stem −3.9598 0.1280 1.8806 0.0593 0.7856 0.0707 0.9899 6.5391 D2.8925

Branch −3.8308 0.2301 2.2356 0.1147 −0.1199 0.1394 0.9585 2.9341 D1.7883

Foliage −5.4919 0.3287 2.3766 0.1565 −0.2361 0.1906 0.9679 0.5322 D2.7763

Total - - - - - - 0.9915 8.9693 D2.6857

PA

Root −6.2320 0.6971 2.9456 0.2139 0.0434 0.3526 0.9764 2.9710 D2.2485

Stem −3.0940 0.2925 2.4544 0.0915 −0.1513 0.1472 0.9755 7.1248 D2.2018

Branch −5.6096 0.6007 2.7677 0.1845 −0.0899 0.3022 0.9829 1.6899 D1.8890

Foliage −4.8826 0.4613 2.3390 0.2023 −0.4366 0.3015 0.9702 0.3678 D1.9366

Total - - - - - - 0.9880 8.6846 D2.3215

TA

Root −3.3346 0.3365 1.8780 0.1274 0.1138 0.2220 0.9699 1.8267 D3.0437

Stem −4.5319 0.2987 2.1628 0.0888 0.6881 0.1772 0.9774 6.9783 D2.4724

Branch −5.6928 0.4856 2.5542 0.1647 −0.0513 0.3005 0.9686 1.2752 D3.2538

Foliage −5.0719 0.5696 1.8170 0.2026 −0.0126 0.3619 0.8808 0.3117 D2.2758

Total - - - - - - 0.9906 6.2356 D2.0373

QM

Root −3.8662 0.2290 2.5715 0.0990 −0.3216 0.1586 0.9561 4.3558 D2.9477

Stem −3.9306 0.1226 2.0347 0.0426 0.7199 0.0695 0.9894 6.0027 D2.7199

Branch −6.6321 0.3426 3.1306 0.1060 0.0172 0.1639 0.9756 3.8468 D2.7882

Foliage −6.6655 0.3530 2.6626 0.1117 −0.1021 0.1702 0.9507 0.7381 D1.8370

Total - - - - - - 0.9943 7.9764 D2.5228

UL

Root −3.4129 0.2592 2.1852 0.1136 −0.0981 0.1772 0.9414 3.4469 D2.5519

Stem −3.8518 0.1737 1.9719 0.0592 0.6701 0.0903 0.9834 5.4327 D2.3251

Branch −3.2943 0.2284 1.9281 0.0923 −0.0789 0.1423 0.9503 1.4939 D2.2346

Foliage −3.8016 0.3880 1.7543 0.1647 −0.2134 0.2565 0.8935 0.5008 D2.1660

Total - - - - - - 0.9838 8.1408 D2.2144

AM

Root −3.9510 0.2955 2.7922 0.0853 −0.4747 0.1223 0.9641 3.6834 D1.7510

Stem −3.6194 0.1403 2.1589 0.0486 0.4375 0.0827 0.9867 4.5312 D2.6590

Branch −3.9286 0.3449 2.2380 0.1104 −0.0329 0.1789 0.9530 2.1452 D2.0332

Foliage −4.2369 0.3343 1.6296 0.1183 0.1351 0.2048 0.9270 0.3935 D2.2499

Total - - - - - - 0.9906 6.7104 D2.3593

BP

Root −4.0713 0.4800 2.3894 0.1698 −0.0005 0.2997 0.9668 2.8031 D3.2843

Stem −4.1802 0.1955 1.7812 0.0583 1.0230 0.1105 0.9902 3.6256 D2.5802

Branch −5.9972 0.7607 2.9277 0.2163 −0.0561 0.4189 0.9788 1.6346 D3.5408

Foliage −6.1326 0.3590 2.4996 0.0978 −0.1040 0.1938 0.9727 0.3215 D2.2578

Total - - - - - - 0.9953 4.4225 D2.1757

BD

Root −4.0287 0.2430 2.2069 0.1334 0.0778 0.1857 0.9122 3.1936 D2.3814

Stem −4.1736 0.1466 1.8585 0.0614 0.9411 0.0871 0.9864 3.9996 D3.1062

Branch −8.6425 0.4104 3.7298 0.1669 0.0178 0.2210 0.9692 2.4030 D3.3696

Foliage −8.1679 0.3071 3.0751 0.1215 −0.0133 0.1593 0.9799 0.3064 D1.2775

Total - - - - - - 0.9826 7.9073 D3.3496

PD

Root −4.3908 0.4537 2.1979 0.1090 0.0875 0.2109 0.9607 1.8118 D2.1666

Stem −4.1757 0.2161 1.9245 0.0594 0.8179 0.1128 0.9687 7.5064 D2.9923

Branch −7.0421 0.8779 3.3141 0.2075 −0.3094 0.4057 0.9426 2.2546 D3.2213

Foliage −6.1852 0.4526 2.5739 0.1114 −0.3613 0.2111 0.9338 0.3562 D2.1713

Total - - - - - - 0.9722 10.3088 D2.1058

Note: FM: Fraxinus manshuric; JM: Juglans mandshurica; PA: Phellodendron amurense; QM: Quercus mongolica; TA: Tilia
amurensis; UL: Ulmus laciniata; AM: Acer mono; BP: Betula platyphylla; BD: Betula davuria; PD: Populus davidiana.

To quantify the spread of the observations of carbon, the residual and approximate confident
bands of the observed data, containing approximately 90% of the average curve, were derived from
all additive carbon equations. The specific methods for calculating the approximate confidence band
were described by Bi et al. [28]. Compared to MS-1, the incorporation of H in MS-2 led to a slightly
smaller confidence interval for carbon (Figure 4). In total, the carbon concentrations of all tissues from
the 10 species of trees were predicted well with the equation systems, MS-1 and MS-2.
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Figure 3. Mean prediction error (MPE), mean absolute error (MAE), and mean absolute percent error
(MAE%) among the total and component biomass for the 10 tree species. FM: Fraxinus manshuric; JM:
Juglans mandshurica; PA: Phellodendron amurense; QM: Quercus mongolica; TA: Tilia amurensis; UL: Ulmus
laciniata; AM: Acer mono; BP: Betula platyphylla; BD: Betula davuria; PD: Populus davidiana.

3.3. Carbon Partitioning

The relative ratio of stem to total tree carbon (Figure 5) was the largest in Populus davidiana (72.63
± 2.92% (mean ± SD), followed by Fraxinus mandshurica (65.95 ± 4.51%) and Tilia amurensis (65.29 ±
5.21%), while the smallest was found in Acer mono (57.44 ± 2.29%). The largest proportion of root carbon
was Tilia amurensis (23.37 ± 7.45%), followed by Ulmus laciniata (23.18 ± 1.82%) and Acer mono (22.90 ±
2.76%), where the smallest was for Populus davidiana (15.82 ± 1.45%). Compared with other tissues,
the largest proportion of branch carbon was that of Acer mono (16.02 ± 2.94%), with the smallest in Tilia
amurensis (8.78 ± 0.95%). The proportion of foliage carbon was the largest for Phellodendron amurense
(3.77 ± 0.94%), and the smallest was for the Populus davidiana (2.16 ± 0.27%) (Figure 5). In general,
the mean proportion of each carbon tissue was 63.68% for the stems, 20.79% for the roots, 12.50% for
the branches, and 3.03% for the foliage. The carbon in the aboveground part (i.e., the sum of stem,
foliage, and branch carbon) was approximately 79% of the total carbon, while that of the belowground
(i.e., the roots) part was approximately 21.0% (Figure 5).
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Figure 4. Multi-panel display of observed total, stem, and root carbon for 10 tree species plotted against
their predicted values from MS-1 and MS-2. The diagonal line of unity is shown together with the
90% upper and lower confidence limits of prediction error in each panel. FM: Fraxinus manshuric; JM:
Juglans mandshurica; PA: Phellodendron amurense; QM: Quercus mongolica; TA: Tilia amurensis; UL: Ulmus
laciniata; AM: Acer mono; BP: Betula platyphylla; BD: Betula davuria; PD: Populus davidiana.
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Figure 5. Distribution of aboveground and belowground carbon among different tree tissues (root,
stem, branch, and foliage) for 432 trees from 10 tree species. FM: Fraxinus manshuric; JM: Juglans
mandshurica; PA: Phellodendron amurense; QM: Quercus mongolica; TA: Tilia amurensis; UL: Ulmus laciniata;
AM: Acer mono; BP: Betula platyphylla; BD: Betula davuria; PD: Populus davidiana.

4. Discussion

The stability of biomass models is generally affected by factors related to tree growth, such as
temperature and rainfall [7,43–45], which was also observed in the carbon model. Therefore, adding a
wide range of natural variation to such factors is necessary when constructing the carbon model. In this
study, the carbon concentrations of various tissue types of 10 broadleaf species and their variation
with tree size were examined. When predicting individual tree carbon for the 10 broadleaf species in
northeast China, the carbon concentrations and allometric equations were constructed from a dataset
with a wide range of diameters and geographical locations, which made the prediction more accurate.

The carbon concentrations were significantly affected by the types and sizes of trees, along with
the tissue types, which ranged from 42.47% in the root of Phellodendron amurense to 48.68% in the
foliage of Betula platyphylla. The carbon concentration of the foliage was the highest, followed by that
of the stem, branch, and root. The WMCC was the highest in Betula platyphylla and the lowest in Ulmus
laciniata. This range of carbon concentration was more stable and narrower than that of the 11 Chinese
temperate broadleaf species (48.36%–50.55%) [46], 8 other Chinese temperate broadleaf species in
northeast China (43.70%–55.10%) [16], 41 tree species from North America (46.30%–55.20%) [47], and 32
tree species in tropical forests (44.40%–49.40%) [21]. Although the carbon was estimated by assuming
the biomass carbon as a constant 50% (or other values) [48–50], the average carbon concentration
of all tissues of all 10 broadleaf species (44.84%) in this study was smaller than the generic carbon
concentration of 50%. Thus, it is inappropriate to calculate the carbon concentrations of the 10 broadleaf
tree species in northeast China at 50%, and species-specific mean carbon concentrations of tissues
or the WMCC should be used [10,16]. As tree sizes affected the carbon concentrations, the carbon
concentrations of the branch, foliage, stem, and root samples of different tree sizes were also taken into
consideration when calculating accurate individual tree carbon results [10]. In this study, the carbon of
each tissue was the product of the multiplication of the carbon concentration by the biomass of each
tissue. The sum of branch, foliage, stem, and root carbon produced the total tree carbon.

To predict the individual tree carbon, only those variables of the tree that were easy to measure in
the field were used. Based on power-law models, the introduction of the typical allometric equations is
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used to increase carbon estimation accuracy in most studies. Concerning the allometric equations,
D is an indispensable predictor of carbon models and forest growth. In practice, individual tree
carbon models constructed with only D are simple and only require basic forest inventory data for
the application [4,24,29,51]. Our results showed that D was the primary explanatory variable in the
allometry model, resulting in the discrepancy between the total and tissue carbon. This may originate
from the intimate correlations between tissues and diameter, which constitutes the overwhelming
majority of total carbon in stems [4,9,29]. Nevertheless, relatively large variations appeared among the
tissue types and the total carbon values with a given D, which reminded us that it was insufficient to
predict the total or tissue carbon of the trees with the carbon model only constructed with D. To improve
the predictive accuracy of the carbon equations, another variable was added. In order to reduce the
biased estimates of carbon or biomass, the height of the tree is considered as another commonly used
predictor variable by many scholars [24,25,29,33]. Dong et al. [24] also considered the tree height at
different sites as a vital predictor variable to improve the carbon estimates of forests. This was the
first study on the carbon equations of 10 broadleaf species in northeast China. In this study, the tree
carbon data of a relatively large geographical area in northeast China were collected, and C = β0Dβ

1

and C = β0Dβ
1Hβ

2 were selected to construct the basic equations that simulate the carbon allometric
relationships of individual trees. Two carbon equation systems, MS-1 and MS-2, were constructed and
tested with a jackknifing technique. The addition of H to the carbon equation improved the accuracy of
the carbon equations of the 10 broadleaf species, which was reported in previous studies [24,25,29,33].
Overall, to acquire accurate carbon measurements of individual trees, the carbon allometric equation
constructed with the whole, detailed data on the biomass and carbon concentration was the best [10,22].

Parresol [31] pointed out that the aggregation approach is the standard method for ensuring the
additivity of carbon estimates, which can be used with various types of tree tissue. In the Parresol
method, a nonlinear model is assigned to each of the N carbon tissues before aggregating these tissue
models into the total tree carbon. Considering the intrinsic correlation among the tree tissues from the
same sample tree, these aggregate models are typically estimated by weighted NSUR jointly to fit all N
+ 1 equations [29–31,33,34]. However, some nonadditive carbon equations are still published because
of the use of least squares regression (OLS) of estimation [9,22,23].

Carbon partitioning plays a vital role in the future. In this study, there were strikingly noticeable
differences in the carbon proportions of different tree tissues. According to the previous reports,
the proportion of stem carbon is the largest, and branch and foliage carbon constitute a small amount
of the total [10,22,23]. The average proportion of stem carbon of the 10 broadleaf species remained
steady among the tree species, while the average proportion of branch carbon varied significantly.
The phenomenon that some species, such as Populus davidiana, distributed more carbon to the stems
(72.63%) than the roots (15.82%) mainly resulted from a small crown in the canopy and shallow lateral
roots. In summary, the percentage of branch carbon varied across species, which probably resulted
from the thickness of the branches and the formation of the forks. In the same way, the partitioning
profiles of roots might also be linked with morphology of the tree root (e.g., deep or shallow roots),
soil conditions, and growth processes [4,52,53]. The partitioning variation of the total carbon for
tree tissues across the tree species has been reported in many studies, indicating that aboveground
carbon generally occupies approximately 80% with the remaining 20% attributed to belowground
carbon [10,22,23]. In this study, the proportions of stem and root carbon of the 10 broadleaf species
exhibited approximately 64% and 21%, respectively, of the total carbon for an average tree.

The difficulty in measuring the carbon in roots leads to scarce reports on root carbon. The difficulty
in excavating tree roots was mainly because of the morphology of the tree roots and soil conditions.
For some species, the usage of a chain (i.e., lifting equipment) can pull out coarse roots (diameter ≥
2 cm) successfully. In our study, the prediction accuracy of the branch and leaf carbon equations was
relatively low, probably because the 3–5 randomly selected branches of each crown layer led to a large
variation. Therefore, increasing the number of separated branch samples in the future may improve
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the prediction accuracy of the branch and foliage carbon equations, as separating and weighing all the
branches is time-consuming and hard to accomplish.

In summary, accurately estimating the carbon of large trees is critical for the estimation of forest
carbon, because large trees usually retain a high proportion of the carbon in forests. The maximum
diameters of the 10 species in this study ranged from 30.0 cm to 41.1 cm, which made the prediction of
the carbon in the forest of northeast China feasible. However, if the carbon equations of this study
are used to estimate individual tree carbon outside of this data, the models may produce uncertain
prediction errors.

5. Conclusions

When estimating individual tree carbon, the significance of variation in carbon concentration was
addressed in this study, and meant a lot in validating the global carbon accounting and the model used.
The carbon concentration of the foliage was notably higher than that of the other tissues, which varied
among the 10 broadleaf species. The carbon models constructed with the predictor variables D and H
explained the variation of the 10 broadleaf species. As expected, different accuracies of the two additive
carbon equations of the 10 broadleaf species were detected, and MS-2 had better goodness-of-fit and
validation statistics than MS-1. For the carbon equations of total tissue and stem, the RMSE of the
model was relatively larger than that for the roots, branches, and foliage. Overall, adding H to the
carbon equations strikingly improved the performance and model fit.

The carbon partitioning of aboveground and belowground tissues of the 10 broadleaf species
conforms with the other reports, in which stem carbon contains the majority of the total carbon.
The tree carbon data of this study were in a wide range of geographical locations and diameter grades.
Therefore, the species-specific allometric models of this study enhance the prediction of aboveground
and belowground carbon of the same tree species in different locations and supplies basic information
to the Chinese National Forest Inventory.
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