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Abstract: Tree allometric models that are used to predict the biomass of individual tree are critical to
forest carbon accounting and ecosystem service modeling. To enhance the accuracy of such predictions,
the development of site-specific, rather than generalized, allometric models is advised whenever
possible. Subtropical forests are important carbon sinks and have a huge potential for mitigating
climate change. However, few biomass models compared to the diversity of forest ecosystems are
currently available for the subtropical forests of China. This study developed site-specific allometric
models to estimate the aboveground and the belowground biomass for south subtropical humid
forest in Guangzhou, Southern China. Destructive methods were used to measure the aboveground
biomass with a sample of 144 trees from 26 species, and the belowground biomass was measured with
a subsample of 116 of them. Linear regression with logarithmic transformation was used to model
biomass according to dendrometric parameters. The mixed-species regressions with diameter at
breast height (DBH) as a single predictor were able to adequately estimate aboveground, belowground
and total biomass. The coefficients of determination (R2) were 0.955, 0.914 and 0.954, respectively,
and the mean prediction errors were −1.96, −5.84 and 2.26%, respectively. Adding tree height (H)
compounded with DBH as one variable (DBH2H) did not improve model performance. Using H as a
second variable in the equation can improve the model fitness in estimation of belowground biomass,
but there are collinearity effects, resulting in an increased standard error of regression coefficients.
Therefore, it is not recommended to add H in the allometric models. Adding wood density (WD)
compounded with DBH as one variable (DBH2WD) slightly improved model fitness for prediction of
belowground biomass, but there was no positive effect on the prediction of aboveground and total
biomass. Using WD as a second variable in the equation, the best-fitting allometric relationship for
biomass estimation of the aboveground, belowground, and total biomass was given, indicating that
WD is a crucial factor in biomass models of subtropical forest. Root-shoot ratio of subtropical forest in
this study varies with species and tree size, and it is not suitable to apply it to estimate belowground
biomass. These findings are of great significance for accurately measuring regional forest carbon
sinks, and having reference value for forest management.

Keywords: allometric equation; mixed-species regression; aboveground biomass; belowground
biomass; root-shoot ratio; subtropical forest

1. Introduction

The carbon cycle of the earth has been massively altered by anthropogenic activities [1]. Forests
represent a major reservoir of global carbon, and the carbon sequestration function is important for
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mitigation of climate change. Thus, quantification of amounts of carbon stored at scales ranging from
local to global levels is crucial for accurately predicting future changes in atmospheric carbon dioxide
and climate, and to help define management options for the global carbon cycle [2]. An accurate
estimation of the magnitude of carbon stocks in various vegetation types is therefore essential for
understanding global and regional carbon budgets [1], and is the basis for reporting changes in carbon
stock as required in the emerging Reducing Emissions from Deforestation and Forest Degradation in
developing countries (REDD+) mechanism.

Forest biomass and carbon stock can be estimated by using direct or indirect methods [3]. Direct
methods are the most accurate, but require destructive sampling, making this method costly and time
consuming, and unsuitable for large forest areas. Remote sensing techniques are ideal indirect methods
for quantifying the forest biomass over vast areas, but are limited by technology, cloud cover and
fly-over frequency [4]. An indirect approach using allometric models is the most appropriate option in
biomass estimation. The allometric technique initially requires an extensive destructive sampling to
establish allometric models, and the models can be used as a non-destructive method to estimate the
whole or partial weight of a tree from measurable tree dimensions (e.g., stem diameter and height) [5,6].
The allometric method is so far the most widely used method today, where individual tree data are
available from a forest inventory, and it is also considered the most accurate method [7,8].

Allometric models are based on correlations between biomass and morphological characteristics,
such as stem diameter and plant height [9]. The choice of an appropriate allometric model is often
the most critical step towards minimizing the errors and increasing the accuracy in the estimation
of forest biomass [10]. There exists a very large literature on the development and use of allometric
models for estimating forest biomass [11], and many researchers have tried to develop generalized
allometric models for different forests and tree species [12]. However, the biomass might differ due to
variations in topography, environmental conditions, stand age, species composition, and natural and
anthropogenic disturbances, therefore, the use of generalized equations can lead to a bias in estimating
biomass for a particular species [13]. To reduce this uncertainty in the estimation of biomass, it is
generally best to use species- and site-specific allometric models [6,14]. However, in practical operation,
species-specific allometric models may be suitable for temperate and cold regions, where relatively few
tree species are found, but not suitable for tropical and subtropical forest, where hundreds of species
can coexist in a given area [15,16].

The East Asian monsoon region includes the eastern part of China and the southern parts of Japan
and Korea [17], and is characterized by wet, warm summers and dry, mild winters. Forest in this
region is typically composed of subtropical evergreen broad-leaved species with high biodiversity,
and the dominant species are Fagaceae, Lauraceae and Theaceae on canopy [18]. This forest type
has considerable net ecosystem productivity (NEP), and is higher than that of Asian tropical and
temperate forests, and is also higher than that of forests in Europe–Africa and North America at the
same latitude [2]. The total NEP of East Asian monsoon subtropical forests accounts for 8% of the global
forest NEP, and its role in the current global carbon cycle cannot be ignored [2]. In China, this forest
type covers approximately a quarter of the area and plays a critical role in regional carbon storage and
cycling [19,20]. This forest is unique in terms of its climate characteristics, forest structure and species
composition; therefore, predictions of biomass based on data from temperate and tropical forests in
the world may not provide a reliable estimate of this region [21]. A limited number of allometric
equations are available for subtropical tree species, and the applicability of these equations has not
been tested [22,23]. Therefore, biomass and carbon budgets of subtropical forests remain uncertain.

In general, most allometric equations have been developed specifically for aboveground
biomass [24–26], while the below-ground root biomass has rarely been studied [27,28]. As a nonnegligible
part of forest biomass, tree roots account for approximately 30% of the total tree biomass, and may yet
reveal both an additional and a greater role in carbon storage capacity [15,29]. It is difficult to quantify
root biomass in the field because of the large size of the portion hidden in soil and the estimates needed
to harvest the whole root system. Unlike the aboveground component, studies of belowground biomass



Forests 2019, 10, 862 3 of 16

estimates are seldom documented, and models of belowground biomass are lacking. Of the 373 forest
biomass models in Sub-Saharan Africa reviewed by Henry et al. (2011) [7], only 16 were developed for
belowground biomass. Due to the lack of allometric data pertaining to the belowground root biomass,
many investigators have to use root-shoot ratios to estimate root biomass [30]. These ratios vary among
forest types, which may lead to extremely biased estimates of total biomass [23]. Estimating root biomass
using allometric equations could provide a better understanding of biomass and carbon allocation and
ultimately help to accurately assess forest carbon sequestration potential [23]. To date, only a few studies
have developed belowground allometric equations for subtropical tree species in China [27,28].

Diameter at breast height (DBH) is generally the most common independent variable found in the
available allometric models, and using DBH as a single variable in biomass equation can provide high
accuracy in estimating tree biomass. Tree height (H) is often added to the biomass equation to improve
the model accuracy, which can be used as the second variable in the equation [9,31] or combined
with DBH, in the form of DBH2H, as one variable [28]. However, there is considerable divergence
in previous research on the effect of adding H and its form of addition in allometric models for the
prediction of tree biomass [27,32]. Wood density (WD) is a basic characteristic of trees and has been
considered as important variable in allometric models for biomass estimation [24], but its performance
in biomass prediction of subtropical evergreen broadleaved forest needs more examination.

The objectives of the present study were to (1) develop site-specific allometric models to estimate
above and belowground biomass of subtropical forest in Guanzhou; (2) reveal the variation of root-shoot
ratio between species and with tree size class, and assess the suitability of using root-shoot ratio to
predict belowground biomass; (3) examine the fitness of models adding H and WD as a second variable
following with DBH or combined with DBH as one variable.

2. Materials and Methods

2.1. The Experimental Site

The study site was located at a latitude of 23◦16′35.67”–23◦17′12.85” N and a longitude of 113◦30′

15.65”~113◦30′52.65” E, close to the village of Fushan, approximately 26 km to the northeast of
Guangzhou City, southern China (Figure 1). The climate is classified as humid a subtropical climate
(Cfa in Köppen climate classification system), with an average annual temperature of 21.4~21.9 ◦C.
The average annual rainfall ranges from 1612 to1909 mm, and the rainy season (April to September)
contributes about 80% of the annual rainfall, while the dry season contributes about 20%. The soils are
classified as red soils (Humic Planosol, FAO) that developed from granite. The elevations of sample
site are between 128 m and 153 m above sea level. The region was covered with subtropical evergreen
broadleaf forests that were naturally regenerated from a forest selective logging about 40 years ago.
The experimental area was about 0.4 km2 and had been approved to change land use from forest to
industry by government in 2015, so the destructive sampling was allowed.
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Figure 1. Location of the sample area in Guangzhou, Southern China.

2.2. Sample Tree Selection

Systematic sample plot inventories based on a kilometer grid for the purpose of carbon sink
estimation were carried out in 2015 in Guangzhou city. There were 312 standard plant plots with
a format of 30 × 40 m in total, and we selected 23 plots in a radius of 30 km from the study
site and used the inventory data to select the most common tree species and diameter classes for
destructive measurements. Finally, a total of 144 sampled trees, including the four most dominant
species—Castanopsis fissa (30 trees), Aleurites montana (18 trees), Castanopsis chinensis (17 trees), Machilus
chinensis (14 trees)—as well as the other most common companion species (65 trees, 22 species),
were selected. The diameter distributions of sampled trees are listed in Table 1. Prior to the destructive
procedure, all sample trees were recorded by species. DBH was measured with diameter tape, and H
was measured with graduated pole. Belowground biomass was measured on a subsample of the
sampled trees, and the representative species and DBH distributions were again selected, for a total of
116 trees, including 24 species and 7 diameter classes.

Table 1. The dendrometric characteristics and the number distribution in DBH classes of sampled
tree species.

Species Min
DBH (cm)

Max
DBH (cm)

<10 cm 10–15 cm 15–20 cm 20–25 cm 25–30 cm >30 cm

A B A B A B A B A B A B

Castanopsis fissa 7.4 61.2 3 3 4 3 5 5 6 6 4 3 8 6
Aleurites montana 5.6 44.9 3 2 2 2 2 2 4 2 3 2 4 4

Castanopsis chinensis 6.9 28.1 1 1 4 3 4 3 5 4 3 2 0 0
Machilus chinensis 6.3 33.2 2 2 3 1 2 1 3 3 1 1 3 3

Ormosia semicastrata 5.9 27.7 2 0 2 0 4 1 1 1 2 2 0 0
Canarium pimela 7.2 48.0 1 1 1 1 2 1 0 0 1 1 4 4
Sapium discolor 7.2 29.2 2 2 2 2 2 2 1 1 1 0 0 0

Euodia meliaefolia 19.4 38.5 0 0 0 0 1 1 1 1 1 0 2 2
Cratoxylum cochinchinense 7.6 20.3 2 2 0 0 1 1 1 1 0 0 0 0

Sterculia lanceolata 4.2 11.3 3 3 1 1 0 0 0 0 0 0 0 0
Erythrina variegata 12.4 15.6 0 0 2 2 1 1 0 0 0 0 0 0
Schefflera octophylla 16.9 22.4 0 0 0 0 2 2 1 1 0 0 0 0

Archidendron lucidum 8.5 37.8 1 1 0 0 0 0 0 0 0 0 1 1
Cinnamomum camphora 11.5 18.5 0 0 1 1 1 0 0 0 0 0 0 0
Cinnamomum porrectum 11.4 29.1 0 0 1 1 0 0 0 0 1 1 0 0

Schima superba 8.4 18.0 1 1 0 0 1 1 0 0 0 0 0 0
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Table 1. Cont.

Species Min
DBH (cm)

Max
DBH (cm)

<10 cm 10–15 cm 15–20 cm 20–25 cm 25–30 cm >30 cm

A B A B A B A B A B A B

Altingia chinensis 34.0 34.0 0 0 0 0 0 0 0 0 0 0 1 0
Cyclobalanopsis myrsinifolia 22.6 22.6 0 0 0 0 0 0 1 1 0 0 0 0

Diospyros morrisiana 4.5 4.5 1 1 0 0 0 0 0 0 0 0 0 0
Elaeocarpus japonicus 15.8 15.8 0 0 0 0 1 1 0 0 0 0 0 0

Engelhardtia roxburghiana 38.0 38.0 0 0 0 0 0 0 0 0 0 0 1 0
Eurya Thunb 4.9 4.9 1 1 0 0 0 0 0 0 0 0 0 0
Evodia lepta 5.3 5.3 1 1 0 0 0 0 0 0 0 0 0 0

Machilus breviflora 14.3 14.3 0 0 1 1 0 0 0 0 0 0 0 0
Sinosideroxylon pedunculatum 54.7 54.7 0 0 0 0 0 0 0 0 0 0 1 1

Wikstroemia nutans 7.7 7.7 1 1 0 0 0 0 0 0 0 0 0 0
Total 4.2 61.2 25 22 24 18 29 22 24 21 17 12 25 21

Note: Capital letter A represent the number of sampled trees that measured aboveground biomass and capital letter
B represent the number of sampled trees that measured belowground biomass.

2.3. Tree Biomass Measurement

Tree biomass measurement was taken from September to October in 2015. Firstly, the sample trees
were divided into two main parts: the part above a stump height of 10 cm is the aboveground part,
and the root system and stump part comprise the belowground part. After cutting the sample trees on
the ground using a chainsaw, the branches and leaves were separated from the main stem, and then
the main stem was divided into three sections, large branches (diameter at the small end ≥2 cm), small
branches (diameter at the large end <2 cm), and leaves. The stems were cut at 1.3 m and at 2 m intervals
thereafter up to the apex of the crown. The branches were trimmed and cross-cut into manageable
billets ranging from 1 m to 2.5 m in length. All these tree components were directly weighed in the
field to determine their fresh weight using an electronic hanging balance with an accuracy of 0.01 kg.
Three disks with a thickness of 5 cm were collected from stem at the height of 1.3 m, 3.3 m and 5.3 m as
the subsamples of stem. Three cylinders with a length of 5–10 cm and diameter of 5 cm, 2 cm and 1 cm,
respectively, were collected from branches as the subsamples of branch. Subsamples of leaves with
a weight of about 300 g were collected from different parts of branch. The subsamples were given
identification codes and measured for their fresh weight with an electronic balance with an accuracy
of 0.1 g. All samples were placed in cloth bags and then taken to the laboratory. All samples were
oven-dried at 65 ◦C until constant weight, and their dry weight was measured. The dry and fresh
weights were used for the determination of moisture content of each tree section. The fresh mass of
all aboveground components was converted to a dry mass by way of its respective moisture content.
Aboveground biomass was the sum of the stem, branch and leaf components. For wood density
determination, the fresh volume of the stem was measured by the water displacement method. The
stem disks were saturated in a container of water for 30 min and then immersed in glassware with
volumetric scales and partially filled with water. The volume of stem disk could be directly read from
the displacement of water. The wood density of the stem was computed by the ratio of the dry weight
to its fresh volume.

Excavation was used to determine the biomass of belowground part. All of the trees at the study
site were cleared, making it relatively easy to excavate entire roots. We first used a backhoe to dig a
1.5–3.0 m cylindrical trench extending from the tree stump and dig it to a depth of 1.5–2.5 m according
to the stump size. Then the soil in the hole was excavated and sifted through a wire sieve (20 mm
mesh) to separate the roots. Finally, stumps and the attached taproots were pulled out. Using this
approach, most of the root systems were extracted intact, but not all of the fine roots. All harvested
roots were shaken, brushed and washed to remove the attached soil and were divided into four classes:
root crown, big roots (2.0–5.0 cm), middle roots (0.5–2.0 cm), and small roots (<0.5 cm). The total
fresh weight of each category was measured, and the subsamples were brought to the laboratory to
determine the moisture content for the calculation of dry mass. Total root biomass was the sum of the
dry masses of all root categories.
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2.4. Allometric Model Development and Evaluation

The form of a power function or its logarithmic form is commonly used for allometric equations
in biomass studies [26,28]. DBH is the most frequently used variable for predicting biomass. Other
variables, such as H, WD, and crown area, have also often been used as additional variables, or have
been combined with DBH as a single variable in allometric models in previous studies [27,31].

In this study, we developed 5 allometric equations to estimate tree aboveground and belowground
biomass to test the performance of models with H and WD as additional variables. Model 1 used DBH
alone as the predictor variable, Model 2 and Model 3 used DBH and H in combination or separately as
the predictor variables, and Model 4 and Model 5 used DBH and WD in combination or separately as
the predictor variables.

ln(B) = a + bln(DBH2) (1)

ln(B) = a + bln(DBH2
× H) (2)

ln(B) = a + bln(DBH2) + cln(H) (3)

ln(B) = a + bln(DBH2
×WD) (4)

ln(B) = a + bln(DBH2) + cln(WD) (5)

where B represents the biomass of the tree, a, b and c are the estimated parameters of the fitted models,
DBH is the diameter at breast height (cm), H is the tree height (m), and WD is the wood density (g·cm−3)
of a given tree. The data were analyzed using R version 3.3.0, package ‘nlme’ (Linear and Nonlinear
Mixed Effects Models).

For multivariate predictive models, in order to avoid the effect of multi-collinearity, analysis of
the variance inflation factor (VIF) was added to assess the collinearity of two variables (ln(DBH2) and
ln(H), ln(DBH2) and ln(WD)) in predicting biomass, following the methods of Zuur (2010) [33].

The criteria for evaluating the performance and fitness of the 5 models were the coefficient of
determination (R2), root mean square error (RMSE), coefficient of variation (CV), and systematic errors
(Bias) [24,34].

R2 = 1−
∑n

i=1

(
Yi − Ŷi

)2
/
∑n

i=1

(
Yi −Y

)2
(6)

RMSE =

√
1
n
×

∑n

i=1

(
Yi − Ŷi

)2
(7)

CV =

√
1

n− p
×

∑n

i=1

(
Yi − Ŷi

)2
/Y (8)

Bias =
1
n

∑n

i=1

Yi − Ŷi
Yi

(9)

where n is the number of sampled trees, Yi is the observed biomass, Ŷi is the predicted biomass and Y
is the mean observed biomass of trees, p is the number of parameters.

3. Results

3.1. Biomass Allocation Patterns and Correlations with DBH

The biomass allocation was different in different tree compartments between species and varied
with the size of tree (DBH) (Figure 2). Castanopsis fissa had the largest fraction of biomass in leaves
(7.3%), significantly higher than Machilus chinensis (5.3%) and companion trees (6.0%). The fraction of
biomass stored in leaves of total biomass had a significant positive correlation with DBH of Castanopsis
chinensis, while there was an extremely significant negative correlation of Aleurites montana and Machilus
chinensis, but when using all species data for statistics, the relation was negligible (Table 2). There
was no significant difference in the proportion of branches between species except Machilus chinensis,
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and the proportion of branches was lower than in other species. For all species, the branch fraction of
total biomass had significantly positive correlations with DBH. The stem consistently accounted for the
largest part of the total tree biomass, and its proportion in the total biomass was negatively correlated
with DBH in all species. The root proportion of total biomass of different species was different, among
which the root proportion of Machilus chinensis was the largest (22.2%), and the root proportion of
Castanopsis fissa was the smallest (14.3%). In all species except Machilus chinensis, the root proportion
decreased with the increase of DBH, and the correlation between companion trees and all species
was significant.
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Figure 2. Distribution of biomass among different tree compartments (leaves, branches, stem, root).
The percentages within the sections of each bar indicate the mean values for trees while the different
lowercase letters follow the number indicate significant differences between species tested by one-way
ANOVA LSD.

Table 2. Correlations between biomass proportion of different tree compartments and DBH of different
species tested by Pearson Correlation Coefficients. * means significant at level α = 0.05 and ** means
significant at level α = 0.01.

Species Leaves
Proportion

Branches
Proportion

Stem
Proportion

Roots
Proportion

Castanopsis fissa 0.177 0.460 * −0.464 * −0.017
Castanopsis chinensis 0.587 * 0.823 ** −0.657 * −0.406

Aleurites montana −0.795 ** 0.764 ** −0.383 −0.371
Machilus chinensis −0.743 ** 0.502 −0.267 0.059

Companion species −0.124 0.539 ** −0.389 ** −0.278 *
All species −0.091 0.501 ** −0.314 ** −0.303 **

3.2. Wood Density and Correlation with DBH

The wood density ranged from 0.403 to 0.531 g·cm−3 depending on the species. There was no
significant difference in stem wood density between species except Aleurites montana, and the wood
density was significantly lower than that of other species (p < 0.05) (Figure 3). The wood density of
Castanopsis fissa and Aleurites montana was higher, but Castanopsis chinensis was lower than the wood
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density reported in the Global Wood Density Database [35]. Of all species, only the wood density of
Castanopsis fissa had a positive correlation with DBH (r = 0.486, p < 0.01).
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Figure 3. The average wood density measured in the stems of different species. The different lowercase
letters at the top of each bar represent significant differences between species tested by one-way
ANOVA LSD.

3.3. Allometric Models for Biomass Estimation with Different Variables

The estimated parameters of 5 allometric models for estimations of biomass of aboveground,
belowground, total tree, stem, branch, leaf and the evaluated results of the model performance are
listed in Tables 3 and A1. Allometric equations including DBH as a single predictor (Equation (1))
fitted well with our data for the estimation of aboveground, belowground and total biomass (Figure 4)
with high R2 (0.914~0.955) and low CV (29.81~38.49%) and Bias (−1.96~−5.84%). This equation had its
highest accuracy in estimation of aboveground biomass, followed by total and belowground biomass.

The addition of tree height as an explanatory variable as the compound variable DBH2H in the
equations (Equation (2)) resulted in a lower R2, and a higher RMSE, CV and Bias, than using DBH as a
single variable in the equations of all biomass components, which means that combining H with DBH
can decrease the model’s accuracy. The alternative equations (Equation (3)) in which H was allowed
to vary with its own exponent slightly improved the model fitness in the estimation of belowground
biomass, but had similar accuracy in the estimation of aboveground and total biomass compared to the
equations using DBH as a single variable (Table 3).

Because DBH and H were highly correlated (Pearson r = 0.747), these variables were tested for
collinearity effects using the variance inflation factor (VIF). The VIF values obtained were 3.114 when
predicting aboveground biomass and 3.145 when predicting belowground and total biomass. These
values indicated that DBH and tree height were highly collinear and exhibited redundancy with
respect to explaining the distribution of the dependent variable. This collinearity resulted in increased
standard errors of the coefficient for Equation (3).

When using WD compounded with DBH as a single variable DBH2WD (Equation (4)) in the
equations, the model fitness in prediction of belowground biomass was slightly improved, but the
model fitness in prediction of aboveground and total biomass was decreased compared with the
equations using DBH as a single variable. When using WD as the second variable to follow DBH in the
equation (Equation (5)), the result was the highest R2 and the lowest RMSE, CV and Bias among all
of the equations (Table 3). Additionally, there was no significant correlation between DBH and WD
(r = 0.037), and the obtained VIF values close to 1.0 indicated no collinearity. This result indicates that
adding WD can improve the model fitness, and Equation (5) has the best accuracy.
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Table 3. Allometric models for estimations of biomass of aboveground, belowground and total tree.

Components Regression
Model

Coefficient Symbol
VIF SEE R2 RMSE CV (%) Bias (%)

a b c

Aboveground

(1) −2.081 ± 0.086 1.195 ± 0.015 0.197 0.955 76.7 29.81 −1.96
(2) −3.225 ± 0.122 0.965 ± 0.015 0.242 0.902 112.5 43.72 −2.82
(3) −2.275 ± 0.148 1.161 ± 0.026 0.152 ± 0.095 3.114 0.196 0.952 78.7 30.58 −1.91
(4) −1.350 ± 0.074 1.216 ± 0.014 0.190 0.942 86.5 33.59 −1.83
(5) −1.712 ± 0.093 1.212 ± 0.013 0.662 ± 0.100 1.036 0.173 0.964 68.7 26.68 −1.48

Belowground

(1) −3.151 ± 0.159 1.111 ± 0.027 0.341 0.914 19.5 38.49 −5.84
(2) −4.248 ± 0.197 0.900 ± 0.023 0.359 0.892 21.9 43.24 −6.43
(3) −3.440 ± 0.284 1.062 ± 0.048 0.223 ± 0.181 3.145 0.340 0.917 19.2 37.89 −5.74
(4) −2.514 ± 0.130 1.137 ± 0.025 0.310 0.920 18.8 37.10 −4.72
(5) −2.644 ± 0.178 1.136 ± 0.025 0.936 ± 0.189 1.041 0.310 0.928 17.8 35.21 −4.67

Total

(1) −1.768 ± 0.099 1.176 ± 0.017 0.211 0.954 94.9 30.42 −2.26
(2) −2.928 ± 0.134 0.953 ± 0.016 0.245 0.905 136.6 43.79 −2.89
(3) −2.052 ± 0.174 1.128 ± 0.030 0.218 ± 0.111 3.145 0.208 0.951 98.4 31.56 −2.15
(4) −1.073 ± 0.080 1.200 ± 0.016 0.190 0.947 101.7 32.62 −1.84
(5) −1.365 ± 0.102 1.196 ± 0.015 0.746 ± 0.108 1.041 0.178 0.966 82.1 26.32 −1.57

Note: (1) ln(B) = a + bln(DBH2), (2) ln(B) = a + bln(DBH2
× H), (3) ln(B) = a + bln(DBH2) + cln(H), (4) ln(B) = a + bln(DBH2

×WD), (5) ln(B) = a + bln(DBH2) + cln(WD); Letters a, b and c are
the coefficient symbol of regression model; The number is unstandardized coefficients ± standard error, VIF is variance inflation factor; SEE is the standard error of estimate, R2 is the
coefficient of determination; RMSE is root mean square error; CV (%) is coefficient of variation, Bias (%) is systematic error.
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Figure 4. The distributions of aboveground (A), underground (B) and total (C) biomass at different
diameter classes. The black line is the allometric model regressed based on the DBH as single variables.

4. Discussion

Since we considered it important to develop precise biomass models that can be used to make
predictions for specific area estimations of biomass and carbon in REDD+ projects, or as inputs to forest
decision-support management generally, we aimed to collect data with much variation. The selection
of sample trees was guided by systematic sample plot inventories, and trees were selected based on
their species-specific proportions according to their basal area. The selected sample trees in our dataset
were the most common species, and approximately represented the proportion of community species
distribution. The applied sampling strategy, however, also meant that many species in the sample plot
inventories were not represented, because there were identical family or genus trees in the dataset,
or these species constitute too little of the total basal area. Therefore, the absence of some species will
have little impact on the accuracy of biomass estimation.

4.1. Effect of Adding Tree Height on Biomass Estimation

There has considerable divergence in the previous research on the effect of adding H to the
biomass models to predict tree biomass: while some studies reported no improvement—or even
deterioration [12,22,27]—other studies reported improvement [32,36]. Many workers suggest that
including height in models will offset the site effect [37,38], but Dutcă et al. reported that height
inclusion reduces model site specificity only for stem biomass and increases site specificity for total
trees and total aboveground biomass [39]. Our results show that the use of DBH as a predictor variable
provided a highly significant fit (p < 0.001), which indicated that DBH was a strong predictor of tree
biomass. This result is consistent with the previous reports [22,40]. Although the difference was
small, the model with the compound variable DBH2H resulted in a worse model than the DBH alone.
Similar findings have been reported by many other studies [27]. Adding H as the second predictor
variable was slightly better than the single DBH variable model, which was consistent with previous
findings [25,41].

Although the use of two independent variables (DBH and H) in the equation has a better fit
than the equation using DBH alone and combining DBH and H, there is a collinearity matter in
allometric models. Collinearity is a phenomenon in which there is a strong linear relationship between
two or more independent variables in multiple regressions [42]. This is clearly relevant to biomass
allometric models, as DBH and H are always correlated. When highly correlated, DBH and H will
inevitably exceed or repeat a certain proportion of biomass variation. Dutcă (2018) pointed out that
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in the biomass allometric models, collinearity increases the standard error of regression coefficients,
extending the range of confidence intervals, and increases the uncertainty of model [39]. Furthermore,
collinearity makes the regression coefficients sensitive to small changes in the dataset, such that the
changes alter the coefficients and profoundly affect biomass prediction. The collinearity affects model
prediction seriously when the predictors are highly correlated (r > 0.7) [42]. In our study, DBH and
H were also found to be highly correlated (r = 0.747), the VIF of aboveground biomass was 3.114,
and the underground biomass and total biomass were 3.145, confirming that the predictors were
highly collinear.

Additionally, tree height data is difficult to obtain in the field, especially in dense forests, because
treetops may hide in the forest canopy. Therefore, we do not recommend adding H as a second variable
or combining with DBH as a variable to predict biomass.

4.2. Effect of Adding Wood Density on Biomass Estimation

Wood density is the basic characteristic of special trees, which has great differences in geographical
regions, climate gradients, and correlated with forest structure, tree architecture [24,43]. Wood density
is considered to be an important variable in allometric model for biomass estimation, especially for
general biomass models covering many tree species [24]. Some studies indicate that taking wood
density as variables in allometric models can greatly improve accuracies of biomass model in tropical
forests and subtropical evergreen broadleaved forest [23,32], but others demonstrated that adding
wood density did not improve model performance [28]. In this study, combining WD and DBH as a
single variable (DBH2WD) did not improve model fitness, but adding WD as a second variable to DBH
could reduce the CV and Bias and increase the R2 and perform the best fitness among all of the models.
Unlike tree height, wood density has less correlation with DBH. In this study, the correlation between
DBH and H of the total dataset (r = 0.037) was not obvious, and the VIF of aboveground biomass and
underground biomass was 1.036 and 1.041, respectively, indicating that the two predictors were not
collinear. Therefore, we recommend adding WD as the second variable after DBH to predict biomass if
there is wood density data available.

4.3. Belowground Biomass

In this study, the contribution of individual root biomass to total tree biomass ranged from
10.4% to 31.8%. The average contribution of belowground biomass (17.9%) is close to that of other
subtropical species reported by Xiang et al. [22]. The root-shoot ratio measured as 0.221 was between
the value of subtropical humid forest with above-ground biomass <125 tons ha−1 (0.20) and with
above-ground biomass >125 tons ha−1 (0.24) documented by the IPCC [44]. The between-species
difference in root proportion may be explained by differences in tree species rooting structures, with, e.g.,
Koala et al. (2017) reporting root-shoot ratios ranging from 0.3 to 2.9, depending on tree species [45].
The finding in this study that root proportion has a negative correlation with tree size is consistent
with those reported in other studies [15,46]. The low correlation coefficient (r = −0.301) indicated a
weak relationship between aboveground and belowground biomass, and the high variation coefficient
(0.326) indicated an unstable root-shoot ratio in this study. The unstable root-shoot ration means that
the average root-shoot ration is not suitable for estimating belowground biomass.

Root structure and biomass are species dependent [47]. In the development of belowground
biomass allometric equations, especially for mixtures of tropical or subtropical forests, abundant
sample trees are required, with as many species and diameter classes as possible. Due to the high
cost and labor requirements needed to excavate whole root systems, the number of sampled trees
and their sizes were often limited although there is a critical need to reduce uncertainty in parameter
estimates [23,34]. Some scientists did not fully excavate the root system but excavate few for sampling.
For example, Kuyah et al. [48] did not excavate roots to depths below 2 m, estimate the missing weights
by regression equations and then add them to the observed data. In this study, a total of 116 trees
contained most of the sampling species and diameter classes were selected from 144 sampling trees,
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and the root systems were excavated, which can ensure that the developed allometric models were
more accurate for belowground biomass estimation.

5. Conclusions

This study developed allometric models for quantifying the aboveground, belowground and total
biomass in south subtropical humid forest of Southern China. The models were based on destructive
and regression methods, with samples of 144 trees for aboveground biomass and 116 subsamples
for belowground biomass. The models with only DBH as a predictor could adequately estimate
aboveground, belowground and total biomass. Adding H or WD compounded with DBH as one
variable (DBH2H or DBH2WD) did not improve model performance. Using H as the second variable in
the equation could improve the model fitness in the estimation of belowground biomass, but there was
a collinearity effect, which resulted in an increased standard error of the regression coefficients. Using
WD as the second variable in the equation, the best-fitting allometric relationship for aboveground,
belowground and total biomass estimation was given, indicating that WD is a crucial factor in the
biomass models of subtropical forest. Root-shoot ratio of subtropical forest in this study varies between
species and tree size, indicating that it is not suitable for estimating belowground biomass.
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Appendix A

Table A1. Allometric models for estimations of biomass of stem, branch and leaf.

Components Regression
Model

Coefficient Symbol
VIF SEE R2 RMSE CV (%) Bias (%)

a b c

Stem

(1) −2.202 ± 0.1 1.138 ± 0.017 0.529 0.933 53.8 35.02 −2.65
(2) −3.364 ± 0.1 0.927 ± 0.012 0.195 0.932 54.2 35.32 −1.91
(3) −3.112 ± 0.147 0.979 ± 0.025 0.712 ± 0.094 3.114 0.501 0.940 51.0 33.22 −1.85
(4) −1.494 ± 0.094 1.155 ± 0.018 0.403 0.939 51.3 33.43 −2.98
(5) −1.933 ± 0.119 1.15 ± 0.017 0.483 ± 0.127 1.036 0.240 0.948 47.1 30.67 −2.40

Branch

(1) −4.342 ± 0.187 1.352 ± 0.032 0.000 0.881 45.3 53.35 −9.93
(2) −5.499 ± 0.268 1.075 ± 0.032 0.000 0.771 62.9 74.11 −15.13
(3) −3.202 ± 0.305 1.551 ± 0.053 −0.891 ± 0.195 3.114 0.000 0.898 41.9 49.41 −8.74
(4) −3.528 ± 0.162 1.378 ± 0.031 0.000 0.810 57.3 67.59 −9.10
(5) −3.846 ± 0.223 1.374 ± 0.031 0.891 ± 0.238 1.036 0.000 0.854 50.3 59.25 −8.92

Leaf

(1) −4.156 ± 0.226 1.092 ± 0.039 0.491 0.689 17.1 89.84 −15.92
(2) −5.075 ± 0.295 0.866 ± 0.035 0.417 0.574 20.0 105.10 −19.48
(3) −3.078 ± 0.378 1.28 ± 0.066 −0.843 ± 0.242 3.114 0.220 0.756 15.1 79.61 −14.88
(4) −3.54 ± 0.191 1.121 ± 0.037 0.492 0.781 14.3 75.30 −14.16
(5) −3.493 ± 0.266 1.121 ± 0.037 1.192 ± 0.285 1.036 0.412 0.785 14.2 74.67 −14.14

Note: (1) ln(B) = a + bln(DBH2), (2) ln(B) = a + bln(DBH2
× H), (3) ln(B) = a+bln(DBH2) + cln(H), (4) ln(B) = a + bln(DBH2

×WD), (5) ln(B) = a + bln(DBH2) + cln(WD); Letters a, b and c are
the coefficient symbol of regression model; The number is unstandardized coefficients ± standard error, VIF is variance inflation factor; SEE is the standard error of estimate, R2 is the
coefficient of determination; RMSE is root mean square error; CV (%) is coefficient of variation, Bias (%) is systematic error.
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