Supplementary materials
 Supplementary material 1 (S1)

Table I. Description of the topographic attributes.

Type		Equation	Description	Reference
	Elevation Slope	Value at each point of the DEM $\arctan \left[\left(\mathrm{G}^{2}+\mathrm{H}^{2}\right)^{\frac{1}{2}}\right]$	Above sea level (a.s.l) in meters. Steepness in degrees.	(Speight, 1980; Travis et al., 1975) (Moore et al., 1991; Speight, 1980; Travis et al., 1975)
WEE00000000	Curvature	$C V=2 E-2 D$	Higher value = convex surface Lower value $=$ concave surface	(Heerdegen \& Beran, 1982; Zaslavsky \& Sinai, 1981; Zevenbergen \& Thorne, 1987)
	Profile curvature	$\mathrm{CVPRO}=-2 \frac{\mathrm{DH}^{2}+\mathrm{EH}^{2}+\mathrm{FGH}}{\mathrm{G}^{2}+\mathrm{H}^{2}}$	$\begin{aligned} & \text { Higher value = vertical surface convexity } \\ & \text { Lower value = vertical surface concavity } \end{aligned}$	(Heerdegen \& Beran, 1982; Zaslavsky \& Sinai, 1981; Zevenbergen \& Thorne, 1987)
	Plan curvature	$\mathrm{CVPLA}=2 \frac{\mathrm{DH}^{2}+\mathrm{EH}^{2}-\mathrm{FGH}}{\mathrm{G}^{2}+\mathrm{H}^{2}}$	$\begin{aligned} & \text { Higher value = horizontal surface convexity } \\ & \text { Lower value = horizontal surface concavity } \end{aligned}$	(Heerdegen \& Beran, 1982; Zaslavsky \& Sinai, 1981; Zevenbergen \& Thorne, 1987)
	Ruggedness index	$\text { TRI }=Y\left[\sum\left(\mathrm{X}_{\mathrm{ij}}-\mathrm{X}_{00}\right)^{2}\right]^{1 / 2}$	Terrain heterogeneity. Higher values represent more heterogenous surface.	(Shawn J Riley et al., 1999)
	Topographic Position index	TPI<scalefactor>=int(DEM- focalmean(DEM,annulus,irad,orad)+0.5)	Higher value = overall convexity	(Weiss, 2001)

Lower value = overall concavity

Wetness index

$$
T W I=W=q a / b T \sin \theta
$$

$$
\begin{array}{r}
W E I=\frac{\sum_{i=1}^{n} \frac{1}{d_{W H i}} \cdot \tan ^{-1}\left(\frac{d_{W Z i}}{d_{W H i}}\right)}{\sum_{i-1}^{n} \frac{1}{d_{L H i}}} \\
+\frac{\sum_{i=1}^{n} \frac{1}{d_{L H i}} \cdot \tan ^{-1}\left(\frac{d_{L Z i}}{d_{L H i}}\right)}{\sum_{i=1}^{n} \frac{1}{d_{L H i}}}
\end{array}
$$

Morphometric protection index

$$
\begin{aligned}
& \mathrm{D} \phi \mathrm{~L}=90-\mathrm{D} \beta \mathrm{~L} \\
& \mathrm{D} \psi \mathrm{~L}=90+\mathrm{D} \delta \mathrm{~L}
\end{aligned}
$$

$$
\begin{aligned}
& \phi_{L}=(0 \phi L+45 \phi L+\cdots+315 \phi L) / 8 \\
& \psi_{L}=(0 \psi L+45 \psi L+\cdots+315 \psi L) / 8
\end{aligned}
$$

Distance from Linear distance to every plot centre from

Value increases with distance from nearest ridge line

Higher value $=$ Less protected by surroundings
Lower value $=$ More protected from surroundings.
(Beven \& Kirkby, 1979;
Montgomery \& Dietrich, 1994)
(Böhner \& Antonić, 2009; Gerlitz et al., 2015)
(Yokoyama et al., 2005)

Supplementary material 2 (S2)

Temperature model

A Pearson correlation test was performed to check the degree of association between calculated temperature differences and primary topographic attributes. As temperature differences were captured for different topographic strata through a repeated time series measurement, a linear mixed-effect regression model (Verbeke \& Lesaffre, 1996) was applied to explain these differences by using random and fixed effects. In this case, the primary topographic attributes were the fixed effects, whereas the sensors, site and different months were random effects. Once the relationship was established,
$\mathrm{Y}_{\mathrm{ij}}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}_{\mathrm{ij}}+\mathrm{V}_{\mathrm{i} 0}+\mathrm{V}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{ij}}+\varepsilon_{\mathrm{ij}}$
where, $Y_{i j}=$ the response variables, $b_{0}=$ fixed intercept, $b_{1}=$ fixed slope, $X_{i j}=$ predictor variable of j-th measurement of the i-th subject, $V_{i 0}=$ random intercept of the i-th subject, $V_{i 1}=$ random slope of the i-th subject, $\varepsilon_{i j}=$ error term.

The full temperature difference mixed effect model indicated that primary topographic attributes (aspect, slope and elevation) had a significant effect on air temperature difference within sites $(\mathrm{p}=2.306 \mathrm{e}-09$ and AICc $=1506.06)$. Temperature difference increased significantly from Southerly to Northerly aspects. Slope was inversely correlated with temperature differences, while elevation was directly correlated with temperature difference (Table 6).

Table S2i. Coefficients for final full linear mixed models for air temperature difference within site.

Fixed effects	Est.	SE	t	Sig
Intercept	-1.870177	1.145	-1.633	NS
Aspect	-0.321877	0.162	-1.984	$*$
Slope	-0.108914	0.024	-4.400	$* * *$
Elevation	0.026662	0.006	3.964	$* * *$
Random effect	Var.	SD		
Month	0.328	0.573		
Site	0.800	0.894		
Sensor	0.720	0.8488		
Residual	1.500	1.225		

Note: Est. = Estimate; SE = Standard error; Sig. = Significance level, Var. = Variance, SD = Standard deviation $\left({ }^{* * *}=\mathrm{p}<0.001,{ }^{* *}=\mathrm{p}<0.05\right.$; NS $=\mathrm{p} \geq 0.05$)

Supplementary material 3 (S3)

Residual distribution plots

Figure I. Residuals (m) for the E. globoidea juvenile height model for site A. A) Final model residuals; B) validation residuals with loess line (blue). C) and D) represent the residual distributions for model fitting and validation datasets, respectively.

Figure II. Residuals (m) for the E. bosistoana juvenile height model for site B. A) Final model residuals; B) validation residuals with loess line (blue). C) and D) represent the residual distributions for model fitting and validation datasets, respectively.

Figure III. Residuals (m) for the E. bosistoana juvenile height model for site C. A) Final model residuals; B) validation residuals with loess line (blue). C) and D) represent the residual distributions for model fitting and validation datasets, respectively.

Figure IV. Residuals for the E. globoidea juvenile survival model for site A. A) Final model residuals. B) validation residuals with loess line (blue). C) and D) Residual distributions for model fitting and validation datasets, respectively.

Figure V. Residuals for the E. bosistoana juvenile survival models for site C; A) Final model residuals; B) validation residuals with loess line (blue); C) and D) Residual distributions for model fitting and validation datasets, respectively.

Supplementary material 4 (S4)

Observed height and survival variability

Figure I. E. globoidea height growth and survival variability at site A.

Figure II. Observed height at different plots A) Eucalyptus globoidea at site A, B) E. bosistoana at site B, and C) E. bosistoana at site C.

Figure III. Observed survival proportion in different plot A) Eucalyptus globoidea at site A and C) E. bosistoana at site C.

Supplementary material 5 (S5)

Model parameters

List I. Height yield Models
$\mathrm{h}_{\mathrm{EGT}_{\mathrm{A}}}=\mathrm{h}_{\mathrm{EG} 0}+\left(\alpha_{0}+\alpha_{1} * \mathrm{WEI}+\alpha_{2} * \mathrm{DIST}\right) * \mathrm{~T}_{\mathrm{EGT}}{ }^{\left(\beta_{0}+\beta_{1} * \mathrm{DIST}+\beta_{2} * \mathrm{WEI}+\beta_{3} * \mathrm{MPI}\right)}$
$\mathrm{h}_{\mathrm{EBT}_{\mathrm{B}}}=\mathrm{h}_{\mathrm{EB} 0}+\left(\alpha_{0}+\alpha_{1} *\right.$ CVPLA $\left.+\alpha_{2} * \mathrm{TPI}+\alpha_{3} * \mathrm{WEI}+\alpha_{4} * \mathrm{MPI}\right) *$
$\mathrm{T}_{\mathrm{EBT}}{ }^{\left(\beta_{0}+\beta_{1} * \text { CVPLA }+\beta_{2} * \text { WEI }+\beta_{3} * \text { MPI }+\beta_{4} * \text { TPI }+\beta_{5} * \text { DIST }+\beta_{6} * \text { WEI:DIST }\right) ~}$
$\mathrm{h}_{\mathrm{EBT}_{\mathrm{c}}}=\mathrm{h}_{\mathrm{EB} 0}+\left(\alpha_{0}+\alpha_{1} * \mathrm{WEI}+\alpha_{2} * \mathrm{WTI}+\alpha_{3} * \mathrm{TPI}+\alpha_{4} * \mathrm{MPI}+\alpha_{5} * \mathrm{DIST}\right) * \mathrm{~T}_{\mathrm{EBT}}{ }^{\left(\beta_{0}+\beta_{1} * \mathrm{TPI}+\beta_{2} * \mathrm{DIST}\right)}$
Table I. Final juvenile height model summaries with parameters

Specie s	Site	Sat	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	β_{0}	β_{1}	β_{2}	β_{3}	β_{4}	β_{5}	β_{6}
$\begin{aligned} & \stackrel{0}{0} \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { in } \end{aligned}$	A	Est	-2.051	2.010	0.0043	-	-	-	$\begin{gathered} 1.871 \mathrm{e}+01 \\ 6 \end{gathered}$	-1.398e-02	$-1.584 \mathrm{e}+01$	$\begin{gathered} -2.829 \mathrm{e}+ \\ 0 \end{gathered}$	-	-	-
		SE	0.525	0.517	0.0005	-	-	-	1.656	$9.245 \mathrm{e}-04$	$1.652 \mathrm{e}+00$	$\begin{gathered} 8.838 \mathrm{e}-0 \\ 1 \end{gathered}$	-	-	-
		p	0.001	0.0001	$2.59 \mathrm{e}-1$	-	-	-	< 0.000002	<2e-16	<2e-16	0.001607	-	-	-
$\begin{aligned} & \text { I } \\ & \text { Ey } \\ & 0 \\ & 0.3 \\ & 0 \\ & 0 \\ & \text { Hi } \end{aligned}$	B	Est	0.53609	-0.0977	0.01260	1.25919	$\begin{gathered} -8.44549 \\ 3 \end{gathered}$	-	1.478807	0.042378	-1.04705	-0.01461	-0.01276	6.573568	0.015729
		SE	0.16774	0.00936	0.00216	0.19244	0.430181	-	0.141687	0.008319	0.154006	0.001257	0.002026	0.337177	0.001469
		p	0.00144	$<2 \mathrm{e}-16$	6.84e-1	$9.58 \mathrm{e}-11$	<2e-16	-	$<2 \mathrm{e}-16$	4.18e-07	$1.81 \mathrm{e}-11$	$<2 \mathrm{e}-16$	4.39e-10	<2e-16	< $2 \mathrm{e}-16$
	C	Est	3.34557	$\begin{gathered} -2.44734 \\ 8 \end{gathered}$	0.00245	-0.0086	$\begin{gathered} -0.01651 \\ 2 \end{gathered}$	-1.36	0.537881	0.0199025	0.0447812	-	-	-	-
		SE	0.73907	0.627552	0.00095	0.00152	0.004243	0.268	0.1293038	0.0015926	0.0046178	-	-	-	-
		p	8.43e-06	0.000117	0.01022	3.83e-08	0.00012	6.62e-07	4.09e-05	<2e-16	<2e-16	-	-	-	-

List II. Survival Models

$S_{E_{G T}}=-e^{\left(\alpha_{0}+\alpha_{1} * \text { CVPLA }+\alpha_{2} * \text { CVPRO }\right) * T\left(\beta_{0}+\beta_{1} * \text { WEI }+\beta_{2} * \text { DIST }+\beta_{3} * \text { CVPLA }\right)}$
$S_{E_{B T}}=-\mathrm{e}^{\alpha_{0} * \mathrm{~T}^{\left(\beta_{0}+\beta_{1} * \text { CVPRO }\right)}}$

Table II. Final juvenile survival model summary with parameters

Species	Site	Stat.	α_{0}	α_{1}	α_{2}	β_{0}	β_{1}	β_{2}	β_{3}
		Est	0.292	0.0465	-0.04293	-3.2431	3.1882	0.00359	-0.10117
E. globoidea	A	SE	0.015	0.0187	0.0121	1.1201	1.0708	0.00057	0.04987
		p	$<2 \mathrm{e}-16$	0.0130	0.00043	0.0038	0.0029	$5.48 \mathrm{e}-10$	0.04286
		Est	0.01036	-	-	0.51373	0.1154	-	-
E. bosistoana	C	SE	0.0120	-	-	0.8424	0.0519	-	-
		p	0.3907	-	-	0.542	0.0272	-	-

