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Abstract: A better understanding on the associations between road density (RD), urban forest
structural-taxonomic attributes, and landscape metrics is vital for forest ecological service evaluations
and suitable management in sprawling urban areas with increasing road networks. We chose
Harbin, a fast growing provincial capital city in northeast China, as a case study to address this
issue. We utilized ArcGIS software (Esri, version 10.0; Redlands, CA, USA) and FRAGSTATS
(V4.2.589) to digitize GF-1 images (Gaofen No.1 remote sensing images) to acquire road net
characteristic information and landscape metrics of urban forests in Harbin. Together with forest
structural-taxonomic attributes from a stratified random sampling survey, statistical methods such as
an analysis of variance, a regression analysis, and a redundancy analysis were used to determine the
road-dependent differences and to decouple the associations between them. The results indicated
that road area percentages, road length/imperious surface area (ISA) ratios, road area/ISA ratios,
and road cross-points sharply increased from low to heavy RD areas. This road intensification
was strongly associated with increased urban forest area, patch density, and diverse patch shapes;
smaller tree sizes, lower tree densities, and diverse tree species compositions were generally observed.
Redundancy-based variation partitioning showed that part of the variations in structural-taxonomic
attributes of forests could be explained by road intensity characteristics. In low RD (0–1.5 km/km2)
regions, the road characteristics significantly affected forest characteristics (Shannon Wiener diversity
index, species richness, and evenness index); however, such associations weakened with increasing
forest landscape-related associations in medium to heavy RD (1.5–6 km/km2) regions. Our findings
highlighted that road development is strongly associated with forest characteristics in Harbin city,
and RD-dependent forest landscape regulating management could favor the maximization of forest
ecological services that are related to structural and species identities.

Keywords: landscape metrics; taxonomic attributes; road density fraction

1. Introduction

Road density (RD), commonly used to measure the impact of roads on landscapes [1,2], is strongly
associated with the ecological risks for local ecosystems because road networks run through various
landscapes [3]. Areas with high RD are often characterized by large land areas under construction
and those with low forest coverage [4], leading to a significant decline in landscape structure and
ecosystem health [5]. Linear transportation infrastructure (e.g., roads) and vehicles affect the structure
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of ecosystems and the dynamics of ecosystem functions. In addition, they have several direct or indirect
ecological impacts on ecosystem components, including animal and plant species composition [6],
original habitat fragmentation, changes in the physical-chemical environment and microclimates [1],
invasion of weeds and pest animals, and elevated rates of poaching and wildfires [7]. During the
process of road development in urban regions, the number of original trees decrease and landscape
fragmentation increases [1]. To date, many studies have investigated the impact of road development
on various landscape patterns [4,8,9], but research on the impact of road development on forest
structural or taxonomic attributes is scarce. In China, road-affected areas were 18.37% of the total
terrestrial area [10] and the government has invested 8.91 billion RMB into road greening practices.
The total greening road mileage was over 50 thousand km in 2017 (http://www.ce.cn/xwzx/gnsz/
gdxw/201803/12/t20180312_28436372.shtml). The policy implementation of roadside afforestation
has significantly increased the total forest area in China [11]. These authority regulations on the
greening of road networks might strongly interact with forest characteristics; nevertheless, there are
very limited well-defined researches on their associations to date.

As an important part of urban green infrastructures, forests and trees have certain effects on the
water, heat, carbon, and pollution cycles of a city [12–15]. The fractal dimension index, patch numbers,
and average patch area of forests may decrease with the development of the road network density [16].
The most common conclusion regarding the influence of RD on landscape patterns is that RD could
reduce the average original vegetation patch area and increase the number and distance between
these patches [4,17]. Moreover, there is a negative correlation between the plant species richness and
the intensity of road construction [17]. At the city level within the buildup region, a well-designed
configuration of roads and urban forests could potentially maximize ecological services, and a basis
for such configuration is an exact understanding of their complex associations [18]. Landscape metrics
derived from remote sensing classification results have been used to evaluate temporal and spatial
changes of forests as well as management effectiveness [19–22]. Together with remote sensing methods
and field surveys, urbanization-induced variations of forest structural traits, such as tree height,
diameter at breast height, canopy size, and compositional traits, and their association with carbon
sequestration have been studied [13,15,23]. Furthermore, it is reported that urban forest landscape
metrics (e.g., forest aggregation and patch sizes) are strongly associated with structural-taxonomic
attributes, and these metrics are possible indicators of urban forest characteristics [24]. To date, no
study has simultaneously studied road characteristics (both representation at urbanization levels and
a specific ecological meaning), landscape metrics of forest, and forest characteristics with regards to
species composition and individual sizes. However, the association and decoupling of these metrics
will possibly favor urban greenspace management based on road ecological considerations [6,7,25].

Recent methodological advances dealing with complex associations in the natural environment
gave hints for decoupling relationships between road development, urban forest landscapes, and
structural-taxonomic attributes. The associations between road development and forest landscape
pattern has been explored through correlation analysis and curve fitting [26], as well as association
coefficient and the trend analysis [27]. Principal component analysis (PCA) could quantitatively
analyze the impact of road development on forest landscape patterns [17]. Redundancy ordination
(RDA) and variation partitioning have been used to decouple complex associations among various
ecological factors [23,28,29], such as association between glomalin-related soil carbon sequestration
and climate and soil physiochemical properties [23,30], tree microclimate regulation’s association with
background conditions [28], plant species diversity’s associations with forest community features [29],
and the association between carbon sequestration and forest landscape patterns [31]. Co-utilization
of regression analysis, RDA, and variation partitioning will favor the decoupling of the complex
association among road development, forest landscape, and structural-taxonomic attributes.

Using the city of Harbin (the north-most provincial capital city in China, with a population of
over 9.6 million in the administrative regions) as an example, in this study, we hypothesized that road
development negatively affects forest structural-taxonomic attributes and forest landscape patterns

http://www.ce.cn/xwzx/gnsz/gdxw/201803/12/t20180312_28436372.shtml
http://www.ce.cn/xwzx/gnsz/gdxw/201803/12/t20180312_28436372.shtml


Forests 2019, 10, 58 3 of 23

(e.g., road development would reduce forest structural and taxonomic attributes and drive landscape
fragmentation) and that the decoupling of their associations may favor urban greenspace management.
The main questions addressed in this study are as follows:

(1) What are the changing patterns of urban forest landscape metrics, structural-taxonomic
attributes, and road characteristics at different RDs?

(2) How should the associations among RD, landscape metrics, and forest structural-taxonomic
attributes be ordinated, and which landscape metrics and road characteristics are indicative of forest
structural-taxonomic attributes?

(3) Are there any suggestions for the reasonable planning and management of urban forests that
will optimize the ecological service benefits of urban forests?

To verify our hypothesis, we first obtained urban forest field-survey data and extracted and
calculated road and landscape metrics data. Then, the road-dependent changes of the forest
structural-taxonomic attributes and landscape patterns were studied by heavy, medium, and low road
density classification. Finally, the associations and decoupling between road characteristics, forest
structural-taxonomic attributes, and landscape patterns were explored by ordination and variation
partitioning analysis for possible improvements in road-related landscape planning and management
of urban forests.

2. Methods

2.1. Study Area

This study was conducted in Harbin (45◦45′ N, 126◦38′ E), the capital city of Heilongjiang
Province in Northeastern China. Harbin is a provincial metropolis with the highest latitude and lowest
temperature in China. The climate is typical of a temperate continental monsoon climate with an
average annual rainfall of 569.1 mm and an average annual temperature of 5.2 ◦C [32]. The surveyed
region examined in this study was an area within the four-ring road area of Harbin, with an area of
about 345.31 km2 (Figure 1a). The historical natural vegetation in Harbin is mainly grassland with
sparse elm trees (equivalent to savannahs in temperate regions). The other tree species are willow and
poplar [33]. The urban forest types we investigated included road forests, institutional forest, landscape
forests, and farmland shelterbelts. Harbin has improved its green infrastructure and planted many
trees. The urban forest types we investigated included road forests, institutional forests, landscape
forests, and farmland shelterbelts. In a recent survey, the total forest area in the Harbin buildup area
(within the 4th ring road) is 39.7 km2, a sharp increase from 6.19% to nearly 12% of the total land
area [34].

The reform and opening-up policy is a national top-down economic and governing system reform
in China that has been recognized as the only way for China to achieve modernization and become a
developed country. Since the reform and opening-up policy began in 1978, the pace of construction in
Harbin, the economic development, and the urban population growth increased yearly [35]. In the past
30 years, the buildup area in Harbin increased by 65% (from 200 km2 in the 1980s to 330 km2 in 2010).
During this period, Harbin’s ring road was expanded from a two-ring road to a four-ring road [15].
As the road development of Harbin represents a typical case in China, it has been used to study the
effects of urbanization [23]. Many studies in Harbin have focused on CO2 dynamics [36], remote
sensing tree measurements [37], habitat variability [38], mycorrhizal changes [23,39], soil fertility
mapping [40], forest carbon sequestrations [31], the biodiversity of trees and birds [32,41], microclimate
regulations from urban trees [14,42], and the tree census method development [43]. The associations
between road development and forest characteristics were not reported to date, and new studies will
provide support for urban green infrastructure development.
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2.2. Road Density Identification and Road-Related Traits Computation

The technical route of the urban road and forest landscape extraction road density grading is
shown in Figure 1b. By referencing the Google Roadnet map, the road identification was based on
GF-1 images (full color resolution 2 m and multispectral resolution 8 m) and extracted manually in
the ArcGIS software (Esri, version 10.0; Redlands, CA, USA) (Figure 1b). We mainly extracted urban
first-class roads, second-class roads, and parts of third-class roads within the four-ring road of Harbin
(Figure 2a). RD was calculated as the length of roads divided by the terrestrial area [44]. The RD
fraction ranged from 0 to 6 km/km2 (Figure 2a), and it was used as a proxy for the road network
intensity. We split the study area into multiple 3 km × 3 km grid cells (a total of 80 grid cells), and the
average RD value in each grid was assigned to one of the three levels of RD in each grid by using a
partition statistics method of ArcGIS (Esri, version 10.0; Redlands, CA, USA) (Figure 2b). The three
levels of RD were as follows: low RD region (RD < 1.5 km/km2), medium RD region (1.5 km/km2 ≤
RD ≤ 3 km/km2), and heavy RD region (RD > 3 km/km2). By using Google Roadnet map data as
a reference, a precision check was carried out and we found that the remote sensing extraction data
matched well with the reference data (R2 = 0.72, p < 0.001) (Figure 2b).

We also calculated several road characteristics associated with RD, including road area density
(RAD) and cross point density (CPD), which are equal to road area and the number of road cross points
per unit terrestrial area (3 km × 3 km grid), respectively. GF-1 images were also used to digitize and
acquire imperious surface area (ISA). ISA was acquired using the object-oriented feature extraction
method in the ENVI 5.2 (Exelis Visual Information Solutions, USA) and by manual modification using
the ArcGIS software (Esri, version 10.0; Redlands, CA, USA) to increase accuracy. The ISA data were
subsequently used to compute road characteristic-related parameters, including road length/ISA (RLI)
and road area/ISA (RAI), which are equal to the length and area of roads per unit ISA-impervious
surface area within a 3 km × 3 km grid, respectively.

2.3. Urban Forest Characteristics Survey: Structural-Taxonomic Attributes

We conducted field investigations from August to October 2014 using a stratified random sampling
method for obtaining the structural and compositional attributes of forests in Harbin city (Figure 1b).
Each plot covered at least an area of 400 m2 of urban forests. Regular shaped plots in this study was
20 m × 20 m. For irregular shaped plots, we adjusted the width and length to ensure an area coverage
of at least 400 m2. A total of 194 plots, distributed among 61 grid cells, were field surveyed, including
23 grid cells in low RD regions, 19 grid cells in medium RD regions, and 19 grid cells in heavy RD
regions. We identified every tree species in each sample point during the field survey. We measured six
structural attributes, including tree height, crown size, diameter at breast height (DBH), under branch
height (UBH), tree density (TD), and section area at breast height (DBH section area). Crown size was
measured as the projected size for four directions. A mean value of each tree was used as the radius of
the projection canopy size of the measured trees. DBH was measured at 1.3 m at the aboveground
level, and measurements were recorded only if DBH was over 2 cm.

Three taxonomic attributes were measured in each plot, including woody plant species richness
(SR), Shannon Wiener species diversity index (H’), and evenness index (J’). The relevant formulae are
given below [45–47]:

SR = s (1)

H’ = −
s

∑
i=1

RAi(l nRAi) (2)

J’ =
H’

l n(s)
(3)

where s is the total number of species in each plot, RA is relative abundance, and RAi represents the
number of trees of each species i/total number of trees [47].
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All the field-surveyed data (1–13 plots in each grid) were averaged to single values for structural
attributes (height, DBH, crown size, UBH, DBH section area, and TD) and taxonomic attributes (SR,
H’, and J’) for future data analysis with a good match of road characteristics and landscape patterns.
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2.4. Analysis of Urban Forest Landscape Patterns

We used an object-oriented-based classification method to extract the urban forest of Harbin
according to texture information, spectral information, and spatial attributes of remote sensing images
(Figure 1b). The attribute assignment and manual modifications were performed using the ArcGIS
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software (Esri, version 10.0; Redlands, CA, USA). An object-based validation method was used to
evaluate the accuracy of the road extraction by referencing manually digitalized results from Google
Earth satellite images (resolution, 0.59 m). The overall accuracy of the tree coverage extraction
was >97%, with a miss factor of 0.06 and detection rate and quality percentage of >94%. The details
can be obtained from our previous publication [31]. We used the ArcGIS software (Esri, version 10.0;
Redlands, CA, USA) to cut out the image of Harbin urban forest with a grid of the same size as the
four-ring road area of Harbin, and then imported the forest image of each 3 km × 3 km grid cell into
the FRAGSTATS (V4.2.589) software (University of Massachusetts, Amherst, MA, USA) to calculate
the landscape metrics (a total of 80 grid cells).

Landscape metrics are often used for quantitative analysis of landscape patterns [22,24]. In our
study, the dispersed homogeneous forest region in each grid cell was considered a forest patch. Forest
patch-related landscape metrics were then calculated as 10 frequently used metrics for quantifying
forest landscape variations based on their ecological meanings and research purposes (Table 1).
These 10 metrics include the following: two area-edge metrics (edge density (ED) and total area (TA));
three shape metrics (mean fractal dimension index (FRAC-MN), mean perimeter area ratio (PARA-MN),
and area-weighted mean contiguity index (CONTIG-MN)); and five aggregation metrics (patch density
(PD), mean Euclidian nearest neighbor distance (ENN-MN), interspersion and juxtaposition index (IJI),
landscape shape index (LSI), and patch cohesion index (COHESION)). In this study, raster data and
FRAGSTATS (V4.2.589) software version 4.1 were used to calculate the aforementioned metrics.

Table 1. List of landscape metrics and their descriptions.

Metrics Calculation and Range Description

Total Area (TA)

TA = A
(

1
10000

)
A = total landscape area (m2). TA > 0;
Units, Hectares.

TA equals the total area (m2) of the landscape,
divided by 10,000 (to convert to hectares).

Edge Density (ED)
ED =

E
A
(10000)

E = total length (m) of edge in landscape.
ED ≥ 0; Units, meters per hectare.

ED equals the sum of the lengths (m) of all edge
segments in the landscape, divided by the total
landscape area (m2), and multiplied by 10,000
(to convert to hectares).

Patch Density (PD)
PD =

N
A
(10000)(100)

N = total number of patches in the
landscape. PD > 0; Units, number per
100 hectares.

PD equals the number of patches in the landscape,
divided by total landscape area (m2), and
multiplied by 10,000 and 100 (to convert to
100 hectares). PD is one of the most important
indices to describe landscape heterogeneity.

Landscape Shape Index
(LSI) LSI =

0.25E√
A

LSI ≥ 1

LSI equals 0.25 (adjustment for raster format) times
the sum of the landscape boundary and all edge
segments (m) within the landscape boundary and
divided by the square root of the total landscape
area (m2). LSI measures the aggregation of patches.
A large LSI value indicates a more irregular
landscape.

Mean Fractal
Dimension Index
(FRAC-MN)

FRAC−MN =
∑N

i=1

[
2×ln(0.25pi)

ln(ai)

]
N

N, total number of patches;
1 ≤ FRAC-MN ≤ 2.

FRAC-MN equals the mean value of the sum of
2 times the logarithm of the patch perimeter (m)
divided by the logarithm of the patch area (m2) for
each patch of the corresponding landscape.
It reflects shape complexity. FRAC approaches 1 for
shapes with very simple perimeters such as
squares and approaches 2 for shapes with highly
convoluted, plane-filling perimeters.

Mean Perimeter Area
Ratio (PARA-MN)

PARA−MN =
∑N

i=1
pi
ai

N
PARA-MN > 0

PARA-MN equals the mean value of the ratio of the
patch perimeter (m) to area (m2), and PARA is a
simple measure of shape complexity.
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Table 1. Cont.

Metrics Calculation and Range Description

Mean Contiguity Index
(CONTIG_MN)

CONTIG−MN =
∑N

i=1

[
∑z

r=1 cijr
aij

]
−1

v−1
N

cijr = contiguity value for pixel r in
patch ij; v = sum of the values in a
3-by-3 cell template; aij = area of patch ij
in terms of number of cells.

CONTIG equals the average contiguity value for
the cells in a patch (i.e., sum of the cell values
divided by the total number of pixels in the patch)
minus 1 and divided by the sum of the template
values (13 in this case) minus 1. The contiguity
index assesses the spatial connectedness, or
contiguity, of cells within a grid-cell patch to
provide an index on the patch boundary
configuration and thus the patch shape.

Mean Euclidian
Nearest Neighbor
Distance (ENN_MN)

ENN−MN =
∑m

i=1 ∑n
j=1 hij

N′

hij = distance (m) from patch ij to
nearest neighboring patch of the same
type (class). ENN > 0; Units, meters.

ENN_MN is the mean value of the distance (m) to
the nearest neighboring patch of the landscape,
based on the shortest edge-to-edge distance. Note
that the edge-to-edge distances are from cell center
to cell center. ENN_MN measures the isolation of
the patches of the landscape. The straight line
distance is the shortest path between the patches.

Interspersion and
Juxtaposition Index
(IJI) IJI =

−∑m
i=1 ∑m

k=i+1[(
eik
E )·ln( eik

E )]
ln(0.5[m(m−1)]) (100)

eik = total length of edge in landscape
between patch types i and k;
m = number of patch types present
in the landscape. 1 < IJI ≤ 100;
Units, percent.

IJI equals a negative sum of the length (m) of each
unique edge type divided by the total landscape
edge (m), multiplied by the logarithm of the same
quantity, and summed over each unique edge type;
divided by the logarithm of the number of patch
types, times the number of patch types, minus 1,
and divided by 2; and multiplied by 100 (to convert
to a percentage). IJI provides a measure of isolating
the interspersion or intermixing of patch types.

Patch Cohesion Index
(COHESION) COHESION

=

(
1− ∑m

i=1 ∑n
j=1 pij

∑m
i=1 ∑n

j=1 pij
√aij

)
·
(

1− 1√
Z

)−1
(100)

pij = perimeter of patch ij in terms of
number of cell surfaces; aij = area of
patch ij in terms of number of cells;
Z = total number of cells in the
landscape. 1 < COHESION < 100

COHESION equals 1 minus the sum of the patch
perimeter (in terms of number of cells), divided by
the sum of the patch perimeter, times the square
root of the patch area (in terms of number of cells)
for all patches in the landscape, divided by 1 minus
1 over the square root of the total number of cells in
the landscape, and multiplied by 100 to convert to
a percentage. The patch cohesion increases as the
patch type becomes more clumped or aggregated
in its distribution.

2.5. Statistical Analysis

For finding differences in different RD regions, the analysis of variance (ANOVA) together
with multiple comparisons were performed using the SPSS software (version 19.0, 2010, IBM, USA).
Before ANOVA, the normal distribution and homogeneity of the variance of the experimental data
(all variables) were statistically analyzed. We use QQ-plots to test whether the raw data and the
transformed data conform to the normal distribution and to verify by frequency distribution histograms
(Figures S1–S3). For data that did not conform to the normal distribution or the approximate normal
distribution, we performed logarithmic transformation, reciprocal transformation, and so on, until the
data were in line with the normal distribution (p > 0.05) or approximate normal distribution (p > 0.01)
(Figure S3). Then, ANOVA and multiple comparison tests were used to determine differences in road
characteristics, forest landscape patterns, and forest structural-taxonomic attributes across three RD
regions. When variances were homogeneous, we used Duncan’s tests; Games–Howell tests were
used otherwise.

The associations between road development and forest landscape pattern were generally explored
through correlation analysis and curve fitting [26,27], as well as principal component analysis [17]. These
analyses together with redundancy analysis (RDA) were used in this study to explore the associations
between road intensity and urban forest landscapes as well as structural-taxonomic attributes.

RDA ordination and variation partitioning have been used to decouple complex associations
among various ecological factors [23,28,29]. Moreover, these methods were used in this study to
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identify the relative contributions of road characteristics and urban forest landscape metrics to
forest structural and taxonomic variations, and a two-group analysis (“Var-part-2groups-simple-
effects-tested” in Canoco (v. 5.0; Biometrics, The Netherlands) was conducted. Using structural
attributes and taxonomic attributes as dependent factors, two groups of explanatory factors
(RD attributes and landscape patterns) were used to find their relative contribution to variations
in these dependent factors. In the partial permutation test, the candidate variable was used as the
only explanatory variable, and variables already selected were used as covariates. The effect of the
variable tested in such a context is referred to as its conditional (or partial) term effect. At the start
of the forward selection process, when no explanatory variables had been entered into the selected
subset, each variable was tested separately to estimate its independent, simple (marginal) term effect.
During RDA ordination processes, both simple term effects and conditional term effects were included
in the study to assess the parameters that were most likely responsible for urban forest (structural and
taxonomic) variations in different RD regions (low, medium, and heavy). Canoco (v. 5.0; Biometrics,
The Netherlands) was used for RDA analyses.

Regression analyses were performed using landscape metrics, structural attributes, taxonomic
attributes (dependent variables), and RD (independent variables), and linear or polynomial
relationships were used in the regression. Raw data for each grid is listed in Table S1, and their
quality was checked by the standard error of the mean, standard deviation, and total replicating
measurements in each grid. Stepwise regression was also performed to identify associations between
structural attributes, taxonomic attributes, and landscape metrics in different RDs. The entering
criterion for the selected variables in the regression equations was defined as <0.05 for the F value.
The coefficients of determination (R2), standard coefficient for each entered parameter, and p-values (p)
were determined for each model to compare the relative contribution and best-fitness of the model.
After the equation was established by regression analysis, the model was diagnosed (heteroscedasticity,
independence of the residuals, multicollinearity test, and so on, which has shown in Table S2 and
Figure S5). All statistical analyses were carried out using SPSS version 19.0 (SPSS Inc., Chicago, IL, USA).

3. Results

3.1. Characterization of the Study Object in Road Characteristics

Characterization of road development at 3 RD regions are shown in Table 2. The mean values
of four road characteristics (RAD, RAI, RLI, and CPD) exhibited an increasing trend from low road
RD to heavy RD areas, and these increasing trends were linearly and statistically significant (p < 0.05).
Furthermore, the mean values of the five road characteristics significantly differed at different RDs
(p < 0.05) (Table 2). In contrast with the other five parameters, the ISA percentage in the three road
regions were not statistically significant, and no linear changes were observed (Table 2). In summary,
the roads in Harbin were characterized as the linear increase in road area and road length for both the
total terrestrial land area and the total impervious surface area (Table 2).

Table 2. Characterization of the study object at different density levels.

Parameters (y) Statistical Index
Road Intensity Regions Liner Regression from Low to Heavy RD

Low RD Medium RD Heavy RD Equation R2 p Value

RD (km/km2)
mean value 0.92 2.16 3.96

y = 1.5097x − 0.6714 0.8288 <0.01standard error 0.07 0.10 0.20
Significance c b a

RAD (km2/km2)
mean value 0.019 0.058 0.12

y = 0.049x − 0.0328 0.7289 <0.01standard error 0.0023 0.0052 0.0086
Significance c b a

RAI (km2/km2)
mean value 0.043 0.14 0.32

y = 0.136x − 0.1027 0.3915 <0.01standard error 0.0058 0.028 0.053
Significance c b a
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Table 2. Cont.

Parameters (y) Statistical Index
Road Intensity Regions Liner Regression from Low to Heavy RD

Low RD Medium RD Heavy RD Equation R2 p Value

RLI (km/km2)
mean value 4.97 11.09 21.8

y = 8.357x − 4.0384 0.2964 <0.01standard error 0.89 2.67 3.61
Significance c b a

CPD (point/km2)
mean value 0.54 1.94 4.73

y = 2.1876x − 1.9159 0.6905 <0.01standard error 0.091 0.23 0.51
Significance c b a

ISA (%)
mean value 53.0 55.8 52.5

y = −0.165x + 54.044 0.00003 >0.05standard error 5.8 6.5 6.5
Significance a a a

Abbreviations and notes: road density (RD), road area density (RAD), road area/ISA (RAI), road length/ISA (RLI),
cross point density (CPD), and impervious surface area (ISA). Different letters indicate significant differences at
different intensity levels.

3.2. Landscape Metrics of Urban Forests

Landscape heterogeneities across different RDs are depicted in Figures 3 and 4, and regression
analysis results between road density and landscape metrics are showed in Figure S4. In the case of
the area-edge and shape metrics of urban forests, only TA showed significant changes at low, medium,
and heavy RD regions, with the exception of PARA-MN (Figure 3). Mean values of TA in low RD
regions were approximately 34.85 ha lower than TA in heavy RD regions (98% decline, p < 0.05), and
regression analysis indicated a logarithmic increase in RDs (p < 0.05). This indicates that the high
RD regions in Harbin have a larger total forest landscape area than the low RD regions. Besides this
significant change, an increasing tendency in ED with RDs was also found in the mean values, while a
decreasing tendency was observed in CONTIG-MN (Figure 3). This indicates that the fragmentation
degree of forest landscape edge in the high RD regions in Harbin was higher than that in the low RD
regions, but the complexity degree of the forest patch in the high RD regions was lower than that in
the low RD regions.
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Figure 3. Area-edge and shape metric changes in urban forests across different road densities
(RD). (A) area-weighted mean contiguity index (CONTIG-MN), (B) mean fractal dimension index
(FRAC-MN), (C) mean perimeter area ratio (PARA-MN), (D) edge density (ED), and (E) total area (TA).
Boxplots show the mean (black square), median (black line in the box), inter-quartile range (25%–75%
in the box), and the range of normal values (the whisker). Mean values sharing different letters are
significantly different (p < 0.05), and mean values sharing the same letters are not significantly different
(p > 0.05). Figure insets depict significant regression lines from the raw data. The red line represents
the regression line, and the green lines represent the moving mean value. The dual-shaded shadows
represent the best-fitting and predicted interval ranges.
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Figure 4. Urban forest landscape aggregation changes from low to heavy road density regions. (A) 
patch cohesion index (COHESION), (B) landscape shape index (LSI), (C) patch density (PD), (D) 
interspersion and juxtaposition index (IJI), and (E) mean Euclidian nearest neighbor distance (ENN-
MN). The boxplots show the arithmetic mean (black square), median (black line in the box), inter-
quartile range (25%–75% at the box upper and lower edge), and the normal value range (the whisker). 
The mean values sharing different letters are significantly different (p < 0.05), and different letters at 
different RD regions are significantly different in their arithmetic means (p < 0.05). The figure insets 
depict significant regression lines from the raw data. The red line is the regression line, and the green 
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Figure 4. Urban forest landscape aggregation changes from low to heavy road density regions.
(A) patch cohesion index (COHESION), (B) landscape shape index (LSI), (C) patch density (PD),
(D) interspersion and juxtaposition index (IJI), and (E) mean Euclidian nearest neighbor distance
(ENN-MN). The boxplots show the arithmetic mean (black square), median (black line in the box),
inter-quartile range (25%–75% at the box upper and lower edge), and the normal value range
(the whisker). The mean values sharing different letters are significantly different (p < 0.05), and
different letters at different RD regions are significantly different in their arithmetic means (p < 0.05).
The figure insets depict significant regression lines from the raw data. The red line is the regression
line, and the green lines represent the moving mean value. The dual-shaded shadows represent the
best-fitting and predicted interval ranges.

Compared to the area-edge and shape metrics, the landscape aggregation metrics of urban forests
showed more significant changes among different RDs (Figure 4). LSI and PD significantly differed
across low to heavy densities (Figure 4B,D). Regression analysis results showed that LSI and PD
logarithmically increased along RDs (p < 0.01) (Figure 4B,C). Regression equations indicated that a
rapid increase in LSI and PD appeared in the lower RD region (<1.0 km/km2) while the increase
became much slower at higher RD regions (Figure 4, Table 3). The mean values of ENN-MN showed a
steadily decreasing trend along the RDs. However, this variation did not differ significantly across
different RDs (p > 0.05) (Figure 4).

Overall, road intensification in Harbin urban regions aligned with that of increasing urban
forest areas (TA), and more patch numbers and more diversified patch shapes (LSI) with closer patch
distances (ENN-MN) were observed (Figures 3 and 4; Table 3).

3.3. Structural and Taxonomic Attributes of Urban Trees

Forest structural attributes at different RDs are depicted in Figure 5, and the regression analysis of
the road density with all the forest taxonomic attributes are showed in Figure S4. Among these
structural attributes, only TD significantly differed across different RDs (Figure 5). Tree height
logarithmically decreased with RDs, and the decreased rate was equivalent to 1.10 m per 1 km/km2

increase in RD (Figure 5C and Table 3). DBH section areas linearly decreased from low RD to heavy RD,
and logarithmical regression equations in Table 3 show that a unit increase in RD was accompanied by
a 8.14 cm2/m2 logarithmical decrease in the section area (p < 0.01) (Figure 5D). In addition, DBH and
TD decreased with increased RD (Figure 5E,F); however, regression analyses of the raw data between
RD and these two parameters showed non-significant changing trends (p > 0.05). Overall, the road
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intensification in Harbin was usually accompanied by smaller trees (lower tree height, DBH, and TD),
resulting in smaller wood section areas (DBH section area).
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Figure 5. Structural attributes at different road densities (RD). (A) crown size, (B) under branch height 
(UBH), (C) height, (D) section area at breast height (DBH section area), (E) diameter at breast height 
(DBH), and (F) tree density (TD). The boxplots show the mean (black square), median (black line in 
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Figure 5. Structural attributes at different road densities (RD). (A) crown size, (B) under branch height
(UBH), (C) height, (D) section area at breast height (DBH section area), (E) diameter at breast height
(DBH), and (F) tree density (TD). The boxplots show the mean (black square), median (black line in
the box), inter-quartile range (25%–75% in the box), and the range of normal values (the whisker).
The mean values sharing different letters are significantly different (p < 0.05), and the different letters
in different RD regions are significantly different in their arithmetic means (p < 0.05). The figure
insets depict significant regression lines from the raw data. The red line is the regression line, and the
green lines represent the moving mean value. The dual-shaded shadows represent the best-fitting and
predicted interval ranges.

Table 3. The relationships between landscape metrics, structural-taxonomic attributes, and road
densities (RDs) measured as road density fractions.

Y Items Equations with RDs as X (km/1000 m2) Logarithmic Slope or Exponent R2 p-Value

Landscape metrics

PD (no./grid) y = 0.1379ln(x) + 0.5146 0.1379 0.134 p < 0.01
TA (ha/grid) y = 15.5 × l n(x) + 50.2 15.5 0.073 p < 0.05
LSI y = 0.7415ln(x) + 4.7194 0.7415 0.1501 p < 0.01

Structural attributes

Height (m) y = −1.10ln(x) + 9.171 −1.10 0.094 p < 0.05
Section area (cm2/m2) y = −8.137ln(x) + 28.59 −8.137 0.1160 p < 0.01

Taxonomic attributes

SR y = 2.0703ln(x) + 5.217 2.0703 0.135329 p < 0.01
H’ y = 0.3196 × ln(x) + 0.7097 0.3196 0.1866 p < 0.001
J’ y = 0.1117ln(x) + 0.4083 0.1117 0.1228 p < 0.01

Abbreviations: patch density (PD), landscape shape index (LSI), Shannon Wiener diversity index (H’), species richness
(SR), species evenness index (J’), section area at breast height (DBH section area), and total area in the grid (TA).

Forest taxonomic attributes across different RDs are displayed in Figure 6, and the regression
analysis of the road density with all the forest structural attributes are showed in Figure S4. H’ and SR
values differed significantly across different RDs (p < 0.05). The regression analyses indicated that SR,
H’, and J’ logarithmically increased with RD. The increased logarithmic rates were 2.07, 0.32, and 0.1,
respectively, at one unit increases in the road length density fraction (Figure 6 and Table 3). Overall,
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the road intensification in Harbin was accompanied by smaller tree sizes (particularly in height), lower
TD (both in section area and bole number), and more diversified tree species compositions (SR, H’,
and J’) (Figures 5 and 6; Table 3).
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Figure 6. Taxonomic attributes at different road densities (RD). (A) Shannon Wiener diversity index
(H’), (B) species richness (SR), and (C) evenness index (J’). The boxplots show the mean (black square),
median (black line in the box), inter-quartile range (25%–75% in the box), and the range of normal
values (the whisker). The mean values sharing different letters are significantly different (p < 0.05), and
the different letters at different RD regions are significantly different in their arithmetic means (p < 0.05).
The figure insets depict significant regression lines from the raw data. The red line is the regression
line, and the green lines represent the moving mean value. The dual-shaded shadows represent the
best-fitting and predicted interval ranges.

3.4. Association Decoupling

To determine the relative contributions of the road characteristics and forest landscape metrics
to the variation of the forest structural-taxonomic characteristics, RDA ordination-based variation
partitioning analyses were performed (Figure 7). Regarding structural attribute variations, road
characteristics alone could explain 51.2% of the structural attribute variations, and this was 2.7-fold
higher than those of the unique characteristics that could explain the influence of landscape metrics
alone. The interactions between the RD characteristics and landscape metrics could explain 30.1% of
the variation (Figure 7). In the case of the variations in forest taxonomic attributes, the explanatory
power of the RD characteristics (38.1%) was 1.6-fold higher than that of the unique landscape metrics
(24.2%). Moreover, the interactions between the RD characteristics and forest landscape metrics could
explain 37.6% of the variation (Figure 7).

Overall, RD characteristics could powerfully explain the variation in the forest structural attributes
and taxonomic attributes compared to the forest landscape metrics. Moreover, the influences of urban
forest landscapes on forest characteristics were more likely achieved via their interactions with RD
characteristics. To identify the importance of landscape metrics with regards to the regulation of forest
characteristics, different RD regions should be classified to emphasize the importance of landscape
metrics (Figure 7).
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3.5. Significant Parameters that Explain Forest Variation

Based on all the forest characteristics, the simple term effects and conditional effects from the
RAD ordination were used to identify the significant factors responsible for the variations in the forest
characteristics in different RD regions (Figure 8). In low RD regions, the taxonomic attributes of forests
were negatively related to the forest structure parameters, i.e., a higher diversity of the forest was
associated with smaller tree sizes (TH) and lower wood density (section area). Moreover, several
parameters of landscape metrics (ED, IJI, etc.) and road characteristics (RAD, RLD, and CPD) were
closely and positively related to the species diversity indices (H’, J’, and SR) (Figure 8a). The RDA
axis extracted 50% of the information from raw data. In the case of the simple term effects, three
road characteristics (RAD, RLD, and CPD) were identified as three significant explaining factors for
variations in the forest characteristics (p < 0.05), followed by significant factors related to the landscape
patterns of urban forests (IJI and ED); however, these factors were not statistically significant, (p = 0.076
and 0.06, respectively) (Figure 8b). When excluding the collinear effects (conditional effects), one road
characteristic (RAD) and one forest landscape metrics (PARA_MN) exhibited significant associations
with the forest structural and taxonomic attributes (p < 0.05) (Figure 8).

In the medium and heavy RD regions, much weaker road-related associations with the forest
structural-taxonomic attributes were observed than those in low RD regions. The RDA axis extracted
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27.4% of the information from raw data, which is approximately half of that identified in the low
RD region. The length of the arrows for road attributes (RDA, RLD, and CPD) was similar to
those from forest landscape metrics (IJI, PD, and LSI). However, in the low RD region, the lengths
were much longer than those from the latter, indicating much stronger influences from the former
(Figure 8). Both the simple term effects and the conditional term effects indicated that no parameters
had statistically significant explanatory power with regard to the forest structural-taxonomic variations
in medium and heavy RD regions (Figure 8b).

Overall, road characteristics, particularly RAD, exhibited the most significant associations with
the forest characteristics in low RD regions. However, such associations became weaker with more road
development in medium and heavy RD regions, and the forest landscape-related associations become
stronger based on the close-to-significant explanatory power of PARA-MN (p = 0.062) (Figure 8b).Forests 2019, 10, x FOR PEER REVIEW  16 of 25 
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Stepwise regression analysis showed that landscape metrics and road characteristics had different
associations with regards to the variable structural-taxonomic attributes, and low RD regions usually
had much stronger associations than medium–heavy RD regions (Table 4), indicating a cross-method
validation with the RDA ordination (Figure 8). In low RD regions, seven out of the eight forest
structural-taxonomic attributes (Height, DBH section area, TD, UBH, canopy size, H’, and SR) were
significantly associated with landscape metrics and road characteristics, and r2 ranged from 0.28 to
0.87. However, in medium to heavy RD regions, five out of the eight parameters showed significant
associations, and R2 was generally less than 0.29 (Table 4).

As shown in the multicollinearity diagnosis in Table S2, we used the Eigenvalue and Condition
Index as the indexes to judge multicollinearity. The multidimensional Eigenvalue at about 0 and
the condition index > 10 indicates the existence of multicollinearity (SPSS user manual), and in most
cases of our studies, the endpoints of the stepwise regression is the existence of multicollinearity.
For example, after 6 dimensions in the DBH sections area-related models, both the Eigenvalue and
Condition Index showed an existence of collinearity among the dependent variables, and then the
stepwise regression model ended in the 7 dimensions of the regression. All other variables showed
much lower collinearity than the DBH at the low RD region (Table S2), indicating that our stepwise
model makes sense of excluding multicollinearity.

We also used the Durbin–Watson value as a measure of the residual independent diagnosis of
the stepwise regression models (SPSS user manual). In general, the closer the Durbin–Watson value
is to 2, the less biased residual terms are. The closer the Durbin–Watson value is to 0, the stronger
positive biased residual terms will be. The closer the Durbin–Watson value is to 4, the stronger the
negative biased residual terms will be. As shown in Table S2, the Durbin–Watson values for all the
stepwise models are all around 2, which basically determines that the residuals are independent, and
an unbiased estimation was achieved in our stepwise models. This kind of unbiased estimation can
also be found in Figure S5.

Table 4. Stepwise regressions between forest attributes and road characteristics (structural attributes
and taxonomic attributes) and landscape metrics in the different road density (RD) regions. The
selected variables were selected at a probability of less than 0.05 for the F value. The coefficients of
determination (R2) and p-value (p) are also given for each model, and the data are listed in this table.

Region Dependent Variables Final Model R2 p-Value

Low RD

Height 13.011 − 0.273(IJI) − 153.038(RAD) 0.434 0.004
Section area −2079 − 1.26(IJI) + 2002(FRAC_MN) − 565(ED) − 343(RAI)

+ 0.32(PARA_MN) − 9.67(CPD)
0.865 0.000

DBH 14.12 − 0.12(TA) 0.16 0.067
Tree density 549 + 1659(CPD) 0.325 0.006
UBH 3.43 − 0.003(ENN_MN) − 9.06(ED) 0.281 0.044
Canopy size 133 + 6.72(RLI) − 0.20(ENN_MN) − 39.40(CPD) − 604(ED) 0.672 0.000
H’ −0.04 + 36.13(RAD) 0.432 0.001
SR −0.07 + 243(RAD) 0.472 0.000

Medium and
heavy RDs

Tree height 9.59 − 0.0047(ENN-MN) 0.084 0.088
Section area 27.3 − 96.3(RAD) 0.078 0.099
DBH −52.6 + 0.19(PARA_MN) − 2.28(RLD) 0.191 0.030
Tree density 1655 − 105.1(CPD) − 7.34(ISA%) 0.189 0.032
UBH 1.27 + 0.018(COHESION) + 5.04(RAD) − 2.77(ED) 0.289 0.011
Canopy size 24.4 + 0.39(ISA%) 0.123 0.037
H’ 0.75 + 0.021(IJI) + 0.01(RLI) 0.187 0.033
SR 1.61 + 1.03(LSI) 0.102 0.059

Abbreviations: tree density (TD), Shannon Wiener diversity index (H’), species richness (SR), road area density
(RAD), road area/ISA (RAI), road length/ISA (RLI), cross point density (CPD), interspersion and juxtaposition
Index (IJI), mean Euclidian nearest neighbor distance (ENN-MN), mean fractal dimension index (FRAC-MN), edge
density (ED), patch cohesion index (COHESION), mean perimeter area ratio (PARA-MN), landscape shape index
(LSI), patch density (PD, and impervious surface area percentage (ISA%).
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4. Discussion

4.1. Road Development Associated with Increased Forest Areas Characterized by More Patches, Complex
Shapes, Smaller Tree Sizes, Lower Density, and More Diversified Species Compositions

Contrary to previous studies, our findings highlighted that road intensification increased the forest
area, mainly through increased patch numbers and patch shape complexity. Previous studies found
that road networks have both positive and negative ecological effects, but the majority of these effects
are negative [2]. Increases in RD and urbanization will lead to decreased forest patch areas, increased
quantities, landscape fragmentation, and intensification of landscape heterogeneity [32,48,49]. RD is
a measure of urbanization and connection of various landscapes, which is affected by both forest
landscapes and forest attributes. Moreover, RD impacts most forest structural-taxonomic attributes
compared to landscape metrics, and this result indicated a much stronger explanatory power on the
variations of forests from road attributes. This is consistent with the conclusion of previous studies
and our hypothesis. The fragmented urban forest could affect landscape beautification, recreational
services [50], tree and bird species conservation [32,51], tree and soil carbon stock functions [15], etc.
Our results indicated that long-term plantation practices could increase forest areas during road
development in urban regions (although fragmentation might occur).

Trees play a large role in urban environment regulations because of their large body size-related
vertical regulation in multiple environmental functions [14,28]. In this study, among forest structure
attributes, the tree height and DBH section areas in low RD regions were much larger than those in
heavy RD regions, and the section areas were significantly negatively correlated with RD. This result
is consistent with our hypotheses and the findings of Fahey and Casali [48] who examined forest
ecosystem distributions for over two centuries in heavy urbanization regions. The results of their study
also indicated that remnant forests had higher canopy cover and basal areas than recently established
forests [48]. In areas with convenient transportation and economic development, more exotic tree
species were often afforested for environmental beatification, so the tree height and basal area were
smaller than the forests in areas with fewer transportation facilities [52], where legacy trees could grow
for a long time. Based on our study in Harbin, heavy RD areas should enhance the protection of old
trees (larger tree size), and low RD areas should appropriately increase the planting of trees to achieve
a reasonable urban forest density (basal DBH area per ha).

Regarding forest taxonomic attributes, the H’ and SR values were significantly higher in heavy
RD regions than in low RD regions. However, this is contrary to our hypothesis that road development
leads to a reduction in the urban forest taxonomic attributes. Previous studies in western countries
showed that people prefer to live in medium developed areas [53–55]; therefore, tree species diversity
was highest in these areas. Currently, people in China tend to live in the downtown regions to obtain
convenient daily lives [24,56]. This preference possibly results in the planting of more diverse species
in highly developed areas with more road networks, corresponding to high species diversity, species
richness, and evenness as observed in this study. The species diversity and richness of trees can be
enhanced by strengthening intensive protection and suitable management practices of various urban
forests [24,57,58].

The association between road development and forest characteristics is possibly due to China’s
governance policy. For example, afforestation is highly encouraged because of the shortage of forests
in China, and the harvesting or cutting of trees is strictly inhibited without official permission,
which is regulated by forest laws (https://baike.baidu.com/item/中华人民共和国森林法/719190).
The long-term afforestation policy in China has been implemented for over 40 years, and forest
coverage has increased from 8% to 22% presently. Along-road afforestation is an important part of
afforestation practices [11] and is a must-do action in the process of road construction in China.
In China, a detailed road-side afforestation plan should be proposed before road construction,
be monitored during road development, and be fully checked by administrative authorities after road
construction. The national-guided standards (Code for Planting Planning and Design on Urban Road
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(CJJ75—97) (https://baike.baidu.com/item/《城市道路绿化规划与设计规范》GJJ75-97/14703300))
have been implemented for over 20 years. These regulations and laws in China have potentially
increased the close association between forest attributes, including compositional traits and road
development, as observed in this study. Thus, forest-related studies, evaluation, and management
in China should fully consider road development. Urbanization has become a more worldwide
homogenization [59], and road development are the important infrastructure of urbanization. Other
cities in the world had similar historical backgrounds, geographical locations, climatic conditions, and
economic development statuses. In particular, similar afforestation practices implemented for the long
term may also show similar road-development-related changes and forest (both landscape and tree
community) characteristics. Their applicability in other parts of the world should be investigated in
future studies.

4.2. Road-Dependent Landscape Regulation Could Improve Forest Ecological Services

The existence and expansion of road networks could affect the surrounding landscape ecology,
patterns, and processes, potentially impacting regional ecology security [60]. Landscape metrics
could be used as indicators of forest management effects [19,20]. Moreover, the indicator functions of
landscape metrics in association with ecosystem services are increasingly favored by ecologists [61,62].
Landscape heterogeneity metrics, which are crucial to the configuration of landscape patterns and
ecosystem regulation, are particularly favored [14]. In this study, we found that unique effects of road
attributes as indicators of RD characteristics in Harbin could explain over half (51.2%) of the variation
observed in forest structural attributes as well as 38.1% of the variation in forest taxonomic attributes
(Figure 7). Furthermore, forest landscape metrics and their interactions with road attributes were
responsible for the remaining 48.8%–61.9% of structural attributes and forest taxonomic attributes.
The interaction between urban forest landscapes and RD, rather than landscape alone, provided
better explanatory power with regards to variations in forest structural and taxonomic attributes.
In our study, TA, PD, and LSI had maximum values in the heavy and medium RD areas, indicating a
tendency for landscape fragmentation in urban forests in the most urbanized regions of Harbin. Any
forest–landscape regulation measures should take RD into consideration. Thus, different methods in
different RD regions are potentially the most reliable way to implement landscape-related measures
that can be used to optimize forest structure and composition.

The structural attributes of trees are the basis of the multiple ecological services provided by urban
forests, such as increasing carbon sinks [63,64], reducing air temperature [28,42,65], and decreasing
storm water runoff [66]. In the low RD regions of Harbin, taller and bigger trees were more likely to be
associated with lower patch aggregation (IJI) and lower patch areas (TA), as shown by the stepwise
regression (Table 4) and RDA ordination results (Figure 8). However, road intensification (in medium
and heavy RD regions) largely weakened these associations (Table 4). In the heavy RD regions, larger
trees were not observed, and this was likely the result of road construction, which usually occurs at
the expense of remnant old forests. Alternatively, young trees were usually afforested at roadsides
after road construction, in accordance with local regulations and national laws. In the low RD regions,
the decreasing aggregation of forest landscapes possibly favored the conservation of larger urban trees,
and this coincided with the general observations of tall and large sparse trees in the rural regions and
old parks in Harbin (https://heilongjiang.dbw.cn/system/2017/06/09/057670066.shtml). Therefore,
regarding the management of urban forests, we should pay more attention to RD, and different
RD regions and landscape metrics should be used to regulate and predict urban tree size-related
vertical structures.

Biodiversity had a moderating effect, and it affected all levels of the ecosystem [29,67]. Previous
studies showed that the shapes and sizes of the patches were strongly associated with the ecosystem
service functions, and the degree of landscape fragmentation was negatively correlated with the
species diversity indices [24,68]. Landscape metrics as a significant indicator function of woody plants
and overall species richness [69] were once used in tropical forest research, which concluded that

https://heilongjiang.dbw.cn/system/2017/06/09/057670066.shtml
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patch shape and similarity metrics can be used as indicators to predict species diversity [67]. In this
study, lower species diversity, richness, and evenness values were associated with lower road densities,
patch shape complexities, patch aggregation, and edge densities (p < 0.05); however, these associations
were much weaker in medium to heavy RD regions (Figure 8). Similarly, stepwise regression results
indicated that the RD attributes exhibited a much stronger association with the diversity variation
in low RD regions, while the forest landscape metrics of the interspersion features (IJI) and shape
features (LSI) were included in the regression models of other regions (Table 4). Therefore, in low
RD regions, the forest species compositional traits were most likely regulated by RD. In contrast, in
heavy RD regions, the road-related regulations became weaker, and the forest patch attributes were
associated with the regulation of the tree composition. These results provided hints for the suitable
road-dependent landscape regulation of urban forest species compositions.

4.3. Technical Implications and Uncertainty

Our findings in this study indicate that road intensification parameters (i.e., road intensity related
to road length and road area) in urban regions were closely associated with urban forest characteristics.
In previous studies, urbanization intensity, classified using impervious surface percentage, was used
to study associations between forest structural-taxonomic attributes and forest landscape metrics [24].
In contrast to impervious surface data (extracted using remote sensing), road data are much
more approachable via internet providers, including Google (http://www.google.cn/maps), Baidu
(https://map.baidu.com/), and Tencent (https://map.qq.com/) and via professional road map
providers such as Gaode map (https://www.amap.com/). With these free and available road data
and our findings in this study (i.e., identification of the most indicatable road parameters that predict
urban forest structural and taxonomic traits, RLD, and RAD), it is possible to make a more precise
evaluation of urban forest changes during urbanization processes. Our results strongly suggested that
in the future, this kind of bigdata on the internet could be technically used in ecological studies of
road ecology. Moreover, some stepwise regression models (Table 4) could possibly be used in these
evaluations, and the most probable indicator for each forest characteristic could also be found in the
ordination map (Figure 8).

Decoupling complex associations have challenges in field ecological studies. For instance, in urban
regions, both natural conditions (soil nutrients, climatic conditions, and species competition) and
social development (e.g., road construction and economic development) should be fully considered
to obtain a scientific understanding of the underlying process and mechanisms. The ordination
and stepwise regression analyses have been used in various studies to decouple associations [42,70].
Although statistical analyses were performed in this study, conclusions regarding possible causal
relationships require additional caution (Table 4, Figures 7 and 8). In the future, more advanced
statistical methods (e.g., structural equation models) will require the identification of direct and
indirect effects [23,30,71,72]. Moreover, long-term detailed field-controlled experiments (such as
large plots in natural forest studies [73]) will be useful when testing the hypotheses proposed in this
study [74].

External factors and experimental design should also be considered for the uncertainty
of this study. Besides road development tested in this paper, other factors possibly affecting
forest characteristics include environmental factors (pollution, climate change, soil compaction,
and impervious surface in urban regions) [24] and human disturbances (planting, cutting, and
cultivation) [75]. In the data analysis and discussion, most of the environmental factors, such as
climate and pollution, were assumed as random factors. Furthermore, the experimental design in this
paper utilized a sample size of 400 m2 for the tree census. The larger plot will increase tree species
richness and change species diversity indices as well as tree size parameters. In this paper, this kind
of scale dependence was not investigated. In the future, more detailed experiments are warranted to
clarity this uncertainty.

http://www.google.cn/maps
https://map.baidu.com/
https://map.qq.com/
https://www.amap.com/
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5. Conclusions

RD was closely associated with both the forest landscape metrics and the structural-taxonomic
attributes of the urban forests in Harbin. Any landscape regulation of the forest attributes should
be implemented based on RD data. In low RD regions, more close associations between the
road characteristics and the forest structural-taxonomic attributes were observed, while the forest
attributes in medium to heavy RD regions were co-regulated by the forest landscape metrics and road
characteristics. Our findings demonstrated the importance of road development to forest characteristics,
and the inclusion of road characteristics possibly favored urban forest management, providing a more
exact evaluation of urban forest growth and ecological functions in China.
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this paper, Table S2: Stepwise regression and model diagnosis results in Low RD region and medium to heavy
RD regions.

Author Contributions: W.W. designed the research, provide the research fund, revised the manuscript, supervised
the data analysis, and finalized the manuscript. Y.F. designed the research, provided laboratory support and the
analysis method. X.H. designed the research, provided part of the research fund, and finalized the manuscript.
H.L. collected field data, provided research method guidance and data analysis, and revised the manuscript. Y.Y.
collected indoor data, performed the date fusion analysis, prepared the figures, and wrote the manuscript.

Acknowledgments: This research was funded by [NSFC projects] grant number [31670699&41730641], [the basic
research fund for national universities from the Ministry of Education of China] grant number [2572017DG04,
2572017EA03] and [Longjiang Professor Fund] grant number [T201702].

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Li, Y.; Hu, Y.; Li, X.; Xiao, D. A review on road ecology. Chin. J. Appl. Ecol. 2003, 14, 447–452.
2. Alexander, L.E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 1998, 29, 207–231.
3. Liu, S.; Yang, Z.; Cui, B.; Gan, S. Effects of road on landscape and its ecological risk assessment: A case study

of Lancangjiang river valley. Chin. J. Ecol. 2005, 24, 897–901.
4. Cai, X.; Wu, Z.; Cheng, J. Using kernel density estimation to assess the spatial pattern of road density and its

impact on landscape fragmentation. Int. J. Geogr. Inf. Sci. 2013, 27, 222–230. [CrossRef]
5. Wang, J.; Cui, B.; Liu, S.; Liu, J. Effects of different level road networks on landscape structure health in the

longitudinal range-gorge region. Acta Sci. Circumstantiae 2008, 28, 261–268.
6. Coffin, A. From roadkill to road ecology: A review of the ecological effects of roads. J. Transp. Geogr. 2007, 15,

396–406. [CrossRef]
7. Ree, R.V.D.; Smith, D.J.; Grilo, C. Handbook of Road Ecology; John Wiley & Sons: Hoboken, NJ, USA, 2015;

pp. 1–9.
8. Cao, W.; Luo, F.; Han, J.; Caiyan, W.U.; Xiang, W. The impact of road development on landscape pattern

change in rapidly urbanizing area. J. Geo-Inf. Sci. 2014, 16, 898–906.
9. Huang, R.; Ma, Y.-X.; Li, H.-M.; Liu, W.J. Effect of road development on landscape pattern in Xishuangbanna.

J. Yunnan Univ. 2013, 35, 121–128.
10. Li, S.; Xu, Y.; Zhou, Q.; Wang, L. Statistical analysis on the relationship between road network and ecosystem

fragmentation in China. Prog. Geogr. 2004, 23, 78–85.
11. Peng, Z. Forest networking and waterchannel networking—China urban forest construction idea.

China Urban For. 2003, 1, 4–12.
12. Livesley, S.J.; Mcpherson, G.M.; Calfapietra, C. The urban forest and ecosystem services: Impacts on urban

water, heat, and pollution cycles at the tree, street, and city scale. J. Environ. Qual. 2016, 45, 119–124.
[CrossRef] [PubMed]

13. Zhai, C.; Wang, W.; He, X.; Zhou, W.; Xiao, L.; Zhang, B. Urbanization drives soc accumulation, its
temperature stability and turnover in forests, northeastern China. Forests 2017, 8, 130. [CrossRef]

http://www.mdpi.com/1999-4907/10/1/58/s1
http://dx.doi.org/10.1080/13658816.2012.663918
http://dx.doi.org/10.1016/j.jtrangeo.2006.11.006
http://dx.doi.org/10.2134/jeq2015.11.0567
http://www.ncbi.nlm.nih.gov/pubmed/26828167
http://dx.doi.org/10.3390/f8040130


Forests 2019, 10, 58 21 of 23

14. Zhang, B.; Wang, W.; He, X.; Zhou, W.; Xiao, L.; Lv, H.; Wei, C. Shading, cooling and humidifying effects of
urban forests in harbin city and possible association with various factors. Chin. J. Ecol. 2017, 36, 951–961.

15. Lv, H.; Wang, W.; He, X.; Xiao, L.; Zhou, W.; Zhang, B. Quantifying tree and soil carbon stocks in a temperate
urban forest in northeast China. Forests 2016, 7, 200. [CrossRef]

16. Liu, S.L.; Cui, B.S.; Dong, S.K.; Yang, Z.F.; Yang, M.; Holt, K. Evaluating the influence of road networks on
landscape and regional ecological risk—A case study in lancang river valley of southwest China. Ecol. Eng.
2008, 34, 91–99. [CrossRef]

17. Li, Y.-H.; Wu, Z.-F.; Chen, H.W.; Li, N.-N.; Hu, Y.-M.; Chang, Y. Impacts of road network on forest landscape
pattern in great Xing’an mountains of northeast China. Chin. J. Appl. Ecol. 2012, 23, 2087–2092.

18. He, X.; Ren, Z.; Zheng, H.; Wang, W. Urban forest research in China: Review and perspective. In Urban Forest
Sustainability; Ning, Z., Novak, D., Watson, G., Eds.; International Society of Arboriculture: Champaign, IL,
USA, 2017; pp. 12–37.

19. Etheridge, D.A.; MacLean, D.A.; Wagner, R.G.; Wilson, J.S. Effects of intensive forest management on stand
and landscape characteristics in northern New Brunswick, Canada (1945–2027). Landsc. Ecol. 2006, 21,
509–524. [CrossRef]

20. Ribeiro, S.C.; Lovett, A. Associations between forest characteristics and socio-economic development: A case
study from Portugal. J. Environ. Manag. 2009, 90, 2873–2881. [CrossRef]

21. Sano, M.; Miyamoto, A.; Furuya, N.; Kogi, K. Using landscape metrics and topographic analysis to examine
forest management in a mixed forest, Hokkaido, Japan: Guidelines for management interventions and
evaluation of cover changes. For. Ecol. Manag. 2009, 257, 1208–1218. [CrossRef]

22. Uuemaa, E.; Mander, Ü.; Marja, R. Trends in the use of landscape spatial metrics as landscape indicators:
A review. Ecol. Indic. 2013, 28, 100–106. [CrossRef]

23. Wang, W.; Wang, Q.; Zhou, W.; Xiao, L.; Wang, H.; He, X. Glomalin changes in urban-rural gradients and
their possible associations with forest characteristics and soil properties in Harbin city, northeastern China.
J. Environ. Manag. 2018, 224, 225–234. [CrossRef] [PubMed]

24. Zhang, D.; Wang, W.; Zheng, H.; Ren, Z.; Zhai, C.; Tang, Z.; Shen, G.; He, X. Effects of urbanization intensity
on forest structural-taxonomic attributes, landscape patterns and their associations in Changchun, northeast
China: Implications for urban green infrastructure planning. Ecol. Indic. 2017, 80, 286–296. [CrossRef]

25. Wang, X.-J. Analysis of problems in urban green space system planning in China. J. For. Res. 2009, 20, 79–82.
[CrossRef]

26. Pan, L.; Zhang, H.; Liu, A. Analysis of threshold of road networks effecting landscape fragmentation in
Chongqing. Ecol. Sci. 2015, 34, 45–51.

27. Wang, L.; Zeng, H. The principle of road network structures and its ecological effects on landscape in
Shenzhen. Geogr. Res. 2012, 31, 853–862.

28. Wang, W.; Wang, H.; Xiao, L.; He, X.; Zhou, W.; Wang, Q.; Wei, C. Microclimate regulating functions of urban
forests in Changchun city (north-east China) and their associations with different factors. iFor.-Biogeosci. For.
2018, 11, 140–147. [CrossRef]

29. Zhang, J.; Wang, W.; Du, H.; Zhong, Z.; Xiao, L.; Zhou, W.; Zhang, B.; Wang, H. Differences in community
characteristics, species diversity, and their coupling associations among three forest types in the Huzhong
area, Daxinganling mts. Acta Ecol. Sin. 2018, 38, 4684–4693.

30. Zhong, Z.; Wang, W.; Wang, Q.; Wu, Y.; Wang, H.; Pei, Z. Glomalin amount and compositional variation,
and their associations with soil properties in farmland, northeastern China. J. Plant Nutr. Soil Sci. 2017, 180,
563–575. [CrossRef]

31. Lv, H.; Wang, W.; He, X.; Wei, C.; Xiao, L.; Zhang, B.; Zhou, W. Association of urban forest landscape
characteristics with biomass and soil carbon stocks in Harbin city, northeastern China. PeerJ 2018, 6, e5825.
[CrossRef]

32. Xiao, L.; Wang, W.; He, X.; Lv, H.; Wei, C.; Zhou, W.; Zhang, B. Urban-rural and temporal differences of
woody plants and bird species in Harbin city, northeastern China. Urban For. Urban Green. 2016, 20, 20–31.
[CrossRef]

33. Wu, Y.; Wang, W. Poplar forests in NE China and possible influences on soil properties: Ecological importance
and sustainable development. In Poplars & Willows, Cultivation, Applications & Environmental Benefits;
Desmond, M., Ed.; Novapublishers: Hauppauge, NY, USA, 2016; pp. 1–28.

http://dx.doi.org/10.3390/f7090200
http://dx.doi.org/10.1016/j.ecoleng.2008.07.006
http://dx.doi.org/10.1007/s10980-005-2378-9
http://dx.doi.org/10.1016/j.jenvman.2008.02.014
http://dx.doi.org/10.1016/j.foreco.2008.10.005
http://dx.doi.org/10.1016/j.ecolind.2012.07.018
http://dx.doi.org/10.1016/j.jenvman.2018.07.047
http://www.ncbi.nlm.nih.gov/pubmed/30055455
http://dx.doi.org/10.1016/j.ecolind.2017.05.042
http://dx.doi.org/10.1007/s11676-009-0014-2
http://dx.doi.org/10.3832/ifor2466-010
http://dx.doi.org/10.1002/jpln.201600579
http://dx.doi.org/10.7717/peerj.5825
http://dx.doi.org/10.1016/j.ufug.2016.07.013


Forests 2019, 10, 58 22 of 23

34. Wang, W. Harbin Urban Forest Characteristics and Ecological Service Functions; Science Press: Beijing, China,
2019; p. 207.

35. Qin, Y. Study in Harbin: The development and tendency of population growth. J. Nanjing Coll. Popul.
Programme Manag. 2006, 22, 5–8.

36. Zheng, W.; Zhou, Y.; Gu, H.; Tian, Z. Seasonal dynamics and impact factors of urban forest CO2 concentration
in Harbin, China. J. For. Res. 2017, 28, 125–132. [CrossRef]

37. Ren, Z.; Du, Y.; He, X.; Pu, R.; Zheng, H.; Hu, H. Spatiotemporal pattern of urban forest leaf area index in
response to rapid urbanization and urban greening. J. For. Res. 2018, 29, 785–796. [CrossRef]

38. Dai, L.; Li, S.; Lewis, B.J.; Wu, J.; Yu, D.; Zhou, W.; Zhou, L.; Wu, S. The influence of land use change on the
spatial–temporal variability of habitat quality between 1990 and 2010 in northeast China. J. For. Res. 2018.
[CrossRef]

39. Cui, L.; Mu, L. Ectomycorrhizal communities associated with tilia amurensis trees in natural versus urban
forests of Heilongjiang in northeast China. J. For. Res. 2016, 27, 401–406. [CrossRef]

40. Zhou, W.; Wang, W.; He, X.; Zhang, B.; Xiao, L.; Wang, Q.; Lv, H.; Wei, C. Soil fertility and its spatial
heterogeneity of urban green land in Harbin, NE China. Sci. Silvae Sin. 2018, 54, 9–17.

41. Xiao, L.; Wang, W.; Zhang, D.; He, X.; Wei, C.; Lv, H.; Zhou, W.; Zhang, B. Urban forest tree species
composition and arrangement reasonability in Harbin, northeast China. Chin. J. Ecol. 2016, 35, 2074–2081.

42. Wang, W.; Zhang, B.; Xiao, L.; Zhou, W.; Wang, H.; He, X. Decoupling forest characteristics and background
conditions to explain urban-rural variations of multiple microclimate regulation from urban trees. PeerJ
2018, 6, e5450. [CrossRef]

43. Wang, W.; Xiao, L.; Zhang, J.; Yang, Y.; Tian, P.; Wang, H.; He, X. Potential of internet street-view images for
measuring tree sizes in roadside forests. Urban For. Urban Green. 2018, 35, 211–220. [CrossRef]

44. Hawbaker, T.J.; Radeloff, V.C.; Hammer, R.B.; Clayton, M.K. Road density and landscape pattern in relation
to housing density, and ownership, land cover, and soils. Landsc. Ecol. 2005, 20, 609–625. [CrossRef]

45. Shannon, C.E. The mathematical theory of communication. 1963. M.D. Comput. Comput. Med. Pract. 1997, 14,
306–317.

46. Magurran, A.E. Ecological Diversity and Its Measurement; Princeton University Press: Princeton, NJ, USA,
1988; pp. 81–99.

47. Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13,
131–144. [CrossRef]

48. Fahey, R.T.; Casali, M. Distribution of forest ecosystems over two centuries in a highly urbanized landscape.
Landsc. Urban Plan. 2017, 164, 13–24. [CrossRef]

49. Zhang, J.; Sta, P. Effects of urbanization on forest vegetation, soils and landscape. Acta Ecol. Sin. 1999, 19,
654–658.

50. Tuffery, L. The recreational services value of the nearby periurban forest versus the regional forest
environment. J. For. Econ. 2017, 28, 33–41. [CrossRef]

51. Jim, C.Y.; Zhang, H. Species diversity and spatial differentiation of old-valuable trees in urban Hong Kong.
Urban For. Urban Green. 2013, 12, 171–182. [CrossRef]

52. Riley, C.B.; Herms, D.A.; Gardiner, M.M. Exotic trees contribute to urban forest diversity and ecosystem
services in inner-city Cleveland, OH. Urban For. Urban Green. 2017, 29, 367–376. [CrossRef]

53. Jokimäki, J.; Suhonen, J.; Inki, K.; Jokinen, S. Biogeographical comparison of winter bird assemblages in
urban environments in Finland. J. Biogeogr. 1996, 23, 379–386. [CrossRef]

54. Morelli, F.; Benedetti, Y.; Ibáñez-Álamo, J.D.; Jokimäki, J.; Mänd, R.; Tryjanowski, P.; Møller, A.P. Evidence of
evolutionary homogenization of bird communities in urban environments across Europe. Glob. Ecol. Biogeogr.
2016, 25, 1284–1293. [CrossRef]

55. Schmidt, K.J.; Poppendieck, H.H.; Kai, J. Effects of urban structure on plant species richness in a large
European city. Urban Ecosyst. 2014, 17, 427–444. [CrossRef]

56. Wang, H.F.; Qureshi, S.; Qureshi, B.A.; Qiu, J.X.; Friedman, C.R.; Breuste, J.; Wang, X.K. A multivariate
analysis integrating ecological, socioeconomic and physical characteristics to investigate urban forest cover
and plant diversity in Beijing, China. Ecol. Indic. 2016, 60, 921–929. [CrossRef]

57. Lindenmayer, D.B.; Franklin, J.F.; Fischer, J. General management principles and a checklist of strategies to
guide forest biodiversity conservation. Biol. Conserv. 2006, 131, 433–445. [CrossRef]

http://dx.doi.org/10.1007/s11676-016-0300-8
http://dx.doi.org/10.1007/s11676-017-0480-x
http://dx.doi.org/10.1007/s11676-018-0771-x
http://dx.doi.org/10.1007/s11676-015-0158-1
http://dx.doi.org/10.7717/peerj.5450
http://dx.doi.org/10.1016/j.ufug.2018.09.008
http://dx.doi.org/10.1007/s10980-004-5647-0
http://dx.doi.org/10.1016/0022-5193(66)90013-0
http://dx.doi.org/10.1016/j.landurbplan.2017.03.008
http://dx.doi.org/10.1016/j.jfe.2017.04.004
http://dx.doi.org/10.1016/j.ufug.2013.02.001
http://dx.doi.org/10.1016/j.ufug.2017.01.004
http://dx.doi.org/10.1046/j.1365-2699.1996.00033.x
http://dx.doi.org/10.1111/geb.12486
http://dx.doi.org/10.1007/s11252-013-0319-y
http://dx.doi.org/10.1016/j.ecolind.2015.08.015
http://dx.doi.org/10.1016/j.biocon.2006.02.019


Forests 2019, 10, 58 23 of 23

58. Kuuluvainen, T. Forest management and biodiversity conservation based on natural ecosystem dynamics in
northern Europe: The complexity challenge. Ambio 2009, 38, 309–315. [CrossRef] [PubMed]

59. Groffman, P.M.; Cavender-Bares, J.; Bettez, N.D.; Grove, J.M.; Hall, S.J.; Heffernan, J.B.; Hobbie, S.E.;
Larson, K.L.; Morse, J.L.; Neill, C. Ecological homogenization of urban USA. Front. Ecol. Environ. 2014, 12,
74–81. [CrossRef]

60. Liu, S.L.; Wen, M.X.; Cui, B.S.; Dong, S.K. Effects of road networks on regional ecosystems in southwest
mountain area:A case study in Jinhong of longitudinal range-gorge region. Acta Ecol. Sin. 2006, 26, 3018–3024.

61. Bailey, D.; Herzog, F.; Augenstein, I.; Aviron, S.; Billeter, R.; Szerencsits, E.; Baudry, J. Thematic resolution
matters: Indicators of landscape pattern for European agro-ecosystems. Ecol. Indic. 2007, 7, 692–709.
[CrossRef]

62. Albert, C.; Galler, C.; Hermes, J.; Neuendorf, F.; Haaren, C.V.; Lovett, A. Applying ecosystem services
indicators in landscape planning and management: The es-in-planning framework. Ecol. Indic. 2015, 61,
100–113. [CrossRef]

63. Nowak, D.J.; Crane, D.E. Carbon storage and sequestration by urban trees in the USA. Environ. Pollut. 2002,
116, 381–389. [CrossRef]

64. Ren, Z.; Zheng, H.; He, X.; Zhang, D.; Yu, X.; Shen, G. Spatial estimation of urban forest structures with
landsat tm data and field measurements. Urban For. Urban Green. 2015, 14, 336–344. [CrossRef]

65. Lanza, K.; Stone, B., Jr. Climate adaptation in cities: What trees are suitable for urban heat management?
Landsc. Urban Plan. 2016, 153, 74–82. [CrossRef]

66. Inkiläinen, E.N.M.; Mchale, M.R.; Blank, G.B.; James, A.L.; Nikinmaa, E. The role of the residential urban
forest in regulating throughfall: A case study in Raleigh, North Carolina, USA. Landsc. Urban Plan. 2013, 119,
91–103. [CrossRef]

67. Hernandez-Stefanoni, J.L. The role of landscape patterns of habitat types on plant species diversity of a
tropical forest in Mexico. Biodivers. Conserv. 2006, 15, 1441–1457. [CrossRef]

68. Dobbs, C.; Kendal, D.; Nitschke, C.R. Multiple ecosystem services and disservices of the urban forest
establishing their connections with landscape structure and sociodemographics. Ecol. Indic. 2014, 43, 44–55.
[CrossRef]

69. Schindler, S.; Wehrden, H.V.; Poirazidis, K.; Wrbka, T.; Kati, V. Multiscale performance of landscape metrics
as indicators of species richness of plants, insects and vertebrates. Ecol. Indic. 2013, 31, 41–48. [CrossRef]

70. Wu, Y.; Wang, W.; Wang, Q.; Zhong, Z.; Pei, Z.; Wang, H.; Yao, Y. Impact of poplar shelterbelt plantations on
surface soil properties in northeast China. Can. J. For. Res. 2018, 48, 559–567. [CrossRef]

71. Wang, W.; Zhong, Z.; Wang, Q.; Wang, H.; Fu, Y.; He, X. Glomalin contributed more to carbon, nutrients in
deeper soils, and differently associated with climates and soil properties in vertical profiles. Sci. Rep. 2017, 7,
e13003. [CrossRef]

72. Eisenhauer, N.; Bowker, M.A.; Grace, J.B.; Powell, J.R. From patterns to causal understanding: Structural
equation modeling (SEM) in soil ecology. Pedobiologia 2015, 58, 65–72. [CrossRef]

73. Ma, K. Forest dynamics plot is a crosscutting research platform for biodiversity science. Biodivers. Sci. 2017,
25, 227–228. [CrossRef]

74. Wang, W.J.; Qiu, L.; Zu, Y.G.; Su, D.X.; An, J.; Wang, H.Y.; Zheng, G.Y.; Sun, W.; Chen, X.Q. Changes in soil
organic carbon, nitrogen, pH and bulk density with the development of larch (Larix gmelinii) plantations in
China. Glob. Chang. Biol. 2011, 17, 2657–2676.

75. Wang, C.; Peng, Z.; Tao, K. Characteristic and development of urban forest in China. Chin. J. Ecol. 2004, 23,
88–92.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1579/08-A-490.1
http://www.ncbi.nlm.nih.gov/pubmed/19860154
http://dx.doi.org/10.1890/120374
http://dx.doi.org/10.1016/j.ecolind.2006.08.001
http://dx.doi.org/10.1016/j.ecolind.2015.03.029
http://dx.doi.org/10.1016/S0269-7491(01)00214-7
http://dx.doi.org/10.1016/j.ufug.2015.03.008
http://dx.doi.org/10.1016/j.landurbplan.2015.12.002
http://dx.doi.org/10.1016/j.landurbplan.2013.07.002
http://dx.doi.org/10.1007/s10531-005-0598-6
http://dx.doi.org/10.1016/j.ecolind.2014.02.007
http://dx.doi.org/10.1016/j.ecolind.2012.04.012
http://dx.doi.org/10.1139/cjfr-2017-0294
http://dx.doi.org/10.1038/s41598-017-12731-7
http://dx.doi.org/10.1016/j.pedobi.2015.03.002
http://dx.doi.org/10.17520/biods.2017113
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Study Area 
	Road Density Identification and Road-Related Traits Computation 
	Urban Forest Characteristics Survey: Structural-Taxonomic Attributes 
	Analysis of Urban Forest Landscape Patterns 
	Statistical Analysis 

	Results 
	Characterization of the Study Object in Road Characteristics 
	Landscape Metrics of Urban Forests 
	Structural and Taxonomic Attributes of Urban Trees 
	Association Decoupling 
	Significant Parameters that Explain Forest Variation 

	Discussion 
	Road Development Associated with Increased Forest Areas Characterized by More Patches, Complex Shapes, Smaller Tree Sizes, Lower Density, and More Diversified Species Compositions 
	Road-Dependent Landscape Regulation Could Improve Forest Ecological Services 
	Technical Implications and Uncertainty 

	Conclusions 
	References

