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Abstract: Wood supply predictions from forest inventories involve two steps. First, it is predicted
whether harvests occur on a plot in a given time period. Second, for plots on which harvests
are predicted to occur, the harvested volume is predicted. This research addresses this second
step. For forests with more than one species and/or forests with trees of varying dimensions,
overall harvested volume predictions are not satisfactory and more detailed predictions are required.
The study focuses on southwest Germany where diverse forest types are found. Predictions are
conducted for plots on which harvests occurred in the 2002–2012 period. For each plot, harvest
probabilities of sample trees are predicted and used to derive the harvested volume (m3 over bark in
10 years) per hectare. Random forests (RFs) have become popular prediction models as they define
the interactions and relationships of variables in an automatized way. However, their suitability
for predicting harvest probabilities for inventory sample trees is questionable and has not yet been
examined. Generalized linear mixed models (GLMMs) are suitable in this context as they can account
for the nested structure of tree-level data sets (trees nested in plots). It is unclear if RFs can cope
with this data structure. This research aims to clarify this question by comparing two RFs—an RF
based on conditional inference trees (CTree-RF), and an RF based on classification and regression
trees (CART-RF)—with a GLMM. For this purpose, the models were fitted on training data and
evaluated on an independent test set. Both RFs achieved better prediction results than the GLMM.
Regarding plot-level harvested volumes per ha, they achieved higher variances explained (VEs) and
significantly (p < 0.05) lower mean absolute residuals when compared to the GLMM. VEs were 0.38
(CTree-RF), 0.37 (CART-RF), and 0.31 (GLMM). Root means squared errors were 138.3, 139.9 and
145.5, respectively. The research demonstrates the suitability and advantages of RFs for predicting
harvest decisions on the level of inventory sample trees. RFs can become important components
within the generation of business-as-usual wood supply scenarios worldwide as they are able to
learn and predict harvest decisions from NFIs in an automatized and self-adapting way. The applied
approach is not restricted to specific forests or harvest regimes and delivers detailed species and
dimension information for the harvested volumes.
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1. Introduction

National forest inventories (NFIs) are conducted worldwide—some using angle-count sample
methods [1,2]. Based on these inventories, forest growth and wood supply modeling is used to
highlight consequences of potential management decisions and to show future prospects as well as
limitations of the status quo [3–5].
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With regard to the generation of business-as-usual (BAU) scenarios, there is an increasing trend
of learning harvest decisions—and also tree mortality—from past inter-inventory periods using
data-driven models [6–8]. Data-driven tree-level harvest decision models must deal with three
important issues: (a) the integration of two-step harvest decisions on plot and tree level; (b) the
fact that sample trees of the tree-level data set are nested within inventory plots; and (c) the potential
presence of nonlinear relationships and interactions.

NFI plots are often not representative for the decision area (e.g., forest stand) in which they are
located. Instead, NFI data becomes representative for higher aggregations of inventory plots. For this
reason, the fact that no harvests occurred on the plot cannot be taken as evidence that no harvests
occurred in the stand [4]. In the following, an NFI plot is considered as harvested if a minimum of
one tree is removed from the plot in the period of interest. Two binary outcomes are involved in
harvest decision predictions in the context of NFIs: the question of whether a specific inventory plot is
harvested, and the question of whether an individual tree on a harvested plot is cut down [9,10]. BAU
scenarios for forest growth and wood supply modeling must account for the fact that a considerable
number of plots might be spared from harvest interventions within a given time span [6]. Eid [11],
for example, stated that assumed thinning operations were often not conducted. One consequence is
that the extracted timber is harvested from a lower number of plots treated with higher intensities than
average figures would suggest. Neglecting this phenomenon would result in inventory predictions
clearly different from BAU [4].

An option for dealing with this issue is to first predict the binary harvest decisions on plot level.
Subsequently, tree-level harvest decision models are trained on sample trees from harvested plots. Trees
from plots predicted as not-harvested are spared and tree-level prediction models are applied only to
plots predicted as harvested. Here, deterministic and random approaches can be differentiated [6].
In a deterministic approach, a clear yes-no decision is applied to each plot for every predicted period.
In this context, Kilham et al. [4] demonstrated that the replication of NFI harvest patterns on plot
level can be improved with a stratified procedure based on a classification and regression tree (CART)
introduced by Breiman et al. [12] and random forest (RF) algorithms [13]. Antón-Fernández and
Astrup [6] used harvest probabilities to select plots randomly in numerous repetitions.

Complementing a prediction on plot level with a detailed tree-level prediction—as compared to
an overall harvested volume prediction—offers the advantage that more specific information about
tree species and dimensions of the harvested timber can be generated. This is of particular importance
for predicting harvests for forests with more than one species and/or forests with trees of varying
age and dimension. Here, it increases possibilities to derive timber assortments from predictions.
As probabilities are learned from the inventory, a tree-level prediction method can replicate different
harvest regimes when these are evident in the inventory and indicated by the predictor variables.

Further issues need to be addressed when predicting tree-level harvest decisions. The first is
the multilevel structure of the tree-level data set, which results from the arrangement of sample trees
within inventory plots. Neglecting this interrelation can result in an underestimation of the variance of
variable estimates [9,14]. As a consequence, tree-level predicting attributes cannot be selected based
on their significance levels [15].

Grégoire et al. [14] have addressed this issue with generalized linear mixed models (GLMMs).
Here, the dependency can be considered in the form of random effects on the model intercept [15].
An alternative approach is the use of copulas as applied in Fortin et al. [15] and Delisle-Boulianne et
al. [16]. Inspired by zero-inflated distributions, Manso et al. [9] presented a single mixed-effects model
for predicting plot- and tree-level harvest decisions simultaneously. They pointed out that a separate
prediction of plot and tree level impedes the covariance estimation between the random effects of the
two models.

Another issue is that the underlying relationships linked to harvest decision are not necessarily
linear or monotonic. Relationships might be relevant for some subsets of the data, but not others.
For example, different harvest regimes apply in different ownership and forest structure settings.
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In each of these settings, different indicators might become relevant for determining the harvest
probability of a specific sample tree. In linear models, the inclusion of interaction terms requires
specifications based on the pre-knowledge of the researcher. Typically, interactions are included
on the base level only because the inclusion of high order interactions is too complex to be done
manually. Nonlinear recursive partitioning (RP)—which includes CART and RF—offers the advantage
that nonlinear, nonmonotonic, and partial relationships as well as interactions can be detected and
accommodated by the algorithm in a data-driven way [17,18].

In RP, several approaches were designed to deal with multilevel data structures. These include
random effect regression trees [19], exploratory regression analysis with hierarchically clustered
data [20], and mixed-effects RF [21]. To date, only few mixed-effects RP models have been extended
to generalized versions. Hajjem et al. [22] presented generalized mixed-effects regression trees.
The GLMM tree, as introduced by Fokkema et al. [23], is another approach. However, this method
is computationally expensive and often produces convergence issues depending on the specific data
subset. Consequently, the integration in an RF algorithm in the context of large data sets is difficult.

However, RP methods that do not include random effects should not be discounted prematurely.
Previous research suggested that a clustered structure of the data does not affect the prediction accuracy
of the algorithms. Thus, it is important that classification errors and variable importance are calculated
from an independent test set [17,24,25].

Martin [25] points towards the different implications of multilevel data for different RP procedures.
Conditional inference tree (CTree) [26] is a major competitor of CART given an identified bias of the
latter towards numeric variables and categorical variables with many categories [18]. Consequently,
CTree was found to improve predictions in comparison to CART [27]. However, the CTree algorithm
assumes independence between instances and is more likely to select a split in correlated data.
In multilevel data sets this can lead to complex trees that can overfit the training data. CART is
considered to be more robust against these data correlations but has also been found to exhibit bias
in multilevel data sets. Another question is whether the model includes only tree-level attributes or
uses a mix of tree- and plot-level variables. In the second case, the splitting procedure in CTrees can
be biased. Finally, the mentioned shortcomings might become less relevant within an RF application
because CTrees are grown to maximum depth—and CARTs are left unpruned—and the generated
complexity is addressed within the averaging procedure [25].

This research focuses on the tree-level harvest prediction. The plot-level harvest decision
prediction is excluded by testing models only on NFI plots harvested within the period of interest.
Harvest probabilities of sample trees from harvested NFI plots are predicted. For each sample tree,
these probabilities are used to define the share of the weight (number of trees per hectare represented
by the sample tree) harvested. Harvested volumes per sample tree are calculated from this harvested
weight and can be aggregated to derive the respective harvested volumes for each inventory plot.

The principal research question is whether RFs (CTree-RF and CART-RF) are suitable to generate
harvested volume predictions for harvested inventory plots. Since GLMMs are suitable for this task,
the research question can be addressed by comparing results of RF-based volume predictions to results
of GLMM-based volume predictions. The performance of the models is tested on a separate test set
not used for training.

Addressing each of the two RF algorithms individually, the research hypothesis is: RF based
prediction results are not different from GLMM based prediction results. If this hypothesis cannot
be rejected, the respective RF can be used despite the multilevel data structure. The flexibility that
comes with the ability of RFs to select variables and define their interaction and relationships in an
automatized way would then be an argument for preferencing an RF over a GLMM. This can be
important when the model has to be trained frequently and on different data sets (different regions,
different periods).

If the first hypothesis is rejected for an RF and the RF delivers results inferior to the GLMM, the use
of this RF cannot be recommended. If an RF delivers results superior to the GLMM, this indicates
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that wood supply modellings can benefit from the nonparametric nature of the respective RF and its
ability to include high-level variable interactions. If the performance of both CTree-RF and CART-RF
are equal to or superior to the GLMM, the two RFs can be compared following the same logic.

2. Materials and Methods

2.1. Data

The harvest prediction method was tested on data from the German NFI (referred to below
as NFI) for the federal state of Baden-Württemberg located in the southwest of the country.
Baden-Württemberg covers an area of around 35,750 km2, of which approximately 38.4% is considered
to be forest [28,29]. A more detailed description of the case can be found in Kilham et al. [4] and MLR
(Ministry of Rural Affairs and Consumer Protection Baden-Württemberg) [30]. Models were trained
on the period 2002–2012, which corresponds to the most recent inter-NFI period. The aftermath of a
storm in 1999, a drought period in 2003, and a storm in 2007 affected the forest in Baden-Württemberg
during this period.

Data used were entirely generated from the second (2002) and third (2012) NFIs. NFI data are
available online at Thünen Institute [29]. The NFI uses a systematic single-level cluster sampling with
permanently marked and remeasured plots. NFI tracts are located on a 2 km × 2 km grid. One NFI
tract consists of up to four plots and is officially considered as the primary sampling unit. In one tract,
plots are located at the corners of a square with side lengths of 150 m [28,31]. Plots of one tract can be
in different forest stands and might be associated with different landholders. For this reason, they were
considered as independent research units in this study.

Only trees registered with an angle-count method (basal area factor = 4 m2 ha−1) with a diameter
at breast height (DBH) ≥7 cm were used. Moreover, only plots on accessible, productive forest not
owned by the federal government were included. The data sets included only sample trees measured
in 2002 and 2012, as well as trees measured in 2002 and registered as not standing (harvest or mortality)
in 2012. Tree representation factors (weights) from 2002 were used.

Enough data was available to set aside the test set completely, which is preferable to
cross-validation or boosting [32]. The training and the test set were created with the createDataPartition
function of R’s caret package [33]. The function considered the original distribution of the plot-level
harvest decision when creating the partitions to reproduce the class distribution in the split [34].
Generally, models were trained on a training set consisting of 75% of the plots. To evaluate model
performance, the fitted models were applied to the test set (25% of the plots). Assuming independence
between plots, plot- and tree-level test sets were independent from the respective training sets as none
of the training set sample trees shared a common plot with a test set sample tree.

The training set and test set included only plots that were harvested according to the NFI in
the 2002–2012 period (5684 training set plots with 49,055 sample trees and 1894 test set plots with
15,960 sample trees). An extension of the training set (in the following training set B) was used to
generate an additional attribute for the tree-level harvest models (see Chapter 2.5. Plot Harvest Stratum
Attribute). This training set included the 5684 harvested plots plus additional 3313 plots not harvested
in the 2002–2012 period.

2.2. Response and Predicting Attributes

All considered variables were registered in the NFI or derived from NFI measurements. Training
set specifications of response attributes (dependent variables) and predicting attributes (independent
variables) are shown in Tables A1 and A2. The binary tree-level attribute harvest decision was the
response attribute. A tree was counted as harvested if it was registered in the 2002 NFI and was found
to have been removed from the inventory plot in 2012.

Eleven plot-level and 11 tree-level variables were considered as predicting attributes. Comparable
to Kilham et al. [4], plot-level attributes were related to plot characteristics (plot standing volume,
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average age of trees on the plot, average DBH of trees on the plot, plot type), site characteristics (slope,
harvest condition, altitude, site index), ownership characteristics (ownership type), and characteristics
related to forest policies (nature protected area, nature park).

Plot standing volume over bark (ob) in m3 per hectare was calculated for the beginning of the
10-year period across all species. Average age of trees on the plot recorded the average age of all
sample trees of the dominant and predominant forest stories (for plenter forest, all sample trees of the
plot were considered) at the middle of the period. Average DBH of trees on the plot corresponded to
the average DBH of all sample trees of the dominant and predominant forest stories (for plenter forest,
all sample trees) at the beginning of the period.

The attribute plot type differentiated between conifer 1, conifer 2, deciduous, mixed 1, and mixed 2.
To generate these characteristics, tree species were divided into three groups: ‘conifers 1’ consisted of
species of the genus Picea (Picea spp.), and fir (Abies alba Mill.); ‘conifers 2’ referred to other conifers (see
Table A3); and ‘deciduous’ referred to broadleaf species (see Table A3). The differentiation between
‘conifer 1’ and ‘conifer 2’ was applied because the group of spruce and fir is of particular market
relevance in Baden-Württemberg [30]. Plot type characteristics were then generated by calculating the
basal area share of each tree species group per ha from trees of the dominant and predominant forest
stories (for plenter forest, all sample trees). From these values, the dominant tree species group was
determined for each plot. If the dominant tree species group represented a share of <90%, the plot was
considered to be mixed. This threshold is commonly used in the German NFI to differentiate pure
from mixed stands [31]. ‘Mixed 1’ referred to plots where the conifer 1 group represented a share of
≥50%. ‘Mixed 2’ referred to plots where the conifer 1 group had a share of <50%.

Slope and harvest conditions can have impacts on harvests [6,35]. Slope was recorded in per
cent (whole-numbers) and used as a continuous variable. The variable harvest condition had the two
classes: ‘favorable’ and ‘unfavorable’. Unfavorable referred to site conditions likely to impede harvest
operations (slopes >30%, or machine track distances >150 m, or distances to nearest driveway >1 km).
Altitude [36] referred to the elevation of the plot in meters above sea level (a.s.l.). Site index [6] was
an attribute that included both plot and site characteristics. It was the average yearly total increment
in m3 ob ha−1 over 100 years of the dominant species on the plot and originated from the database
of the German forest development and wood supply modeling WEHAM (German abbreviation:
Waldentwicklungs- und Holzaufkommensmodellierung) [37].

Ownership type [38,39] differentiated between federal state, community, large private, medium
private, and small private properties. The private property size classes refer to the total forest property
of a specific owner within Germany—large private: >500 ha; medium private: 5–500 ha; and small
private: <5 ha. The binary attributes ‘nature protected area’ and ‘nature park’ recorded whether a plot
was protected under the respective directive.

Regarding tree-level attributes, tree species were classified according to eight groups including
species of the genus Picea, species of the genus Abies (Abies spp.), Douglas fir (Pseudotsuga menziesii
(Mirb.), species of the genus Pinus and the genus Larix (Pinus spp., Larix spp.), beech (Fagus sylvatica
L.), oak (Quercus petraea (Matt.) Liebl., Quercus robur L.), ash (Fraxinus excelsior L.), and other deciduous
species. Species share (%) referred to the basal area share of the sample tree’s species per ha. Taking a
beech sample tree as an example, a species share of 60% would indicate that beech trees accounted
for 60% of the basal area per ha registered at the respective plot. For this attribute, species were not
grouped beforehand. F-rDiffDq was proposed by Schelhaas et al. [40] as an estimate of the social
position of a tree within its inventory plot and was defined as:

F − rDiffDq =
DBH

DBHq
− 1 (1)

where DBHq is the plot level quadratic mean diameter of all sample trees [40].
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Tree-level predicting attributes were related to tree type (species, species share), health condition
(skidding damage, fungus, beetle, other stem damages, dead), pre-treatment (pruning), dimension
(DBH, tree height), and social status (F-rDiffDq). These referred to the condition registered in 2002.

The six variables related to tree health and pre-treatment were binary attributes indicating whether
a tree was found to be damaged, infested or treated in 2002. The attribute dead recorded whether the
tree had recently died but was still standing and had fine brushwood.

DBH was measured in mm for each sample tree. Tree height was only measured (in dm) for
a subsample (~1/3) of the trees registered at each plot. The subsamples were selected according to
canopy-class and tree species groups. Tree heights for the remaining sample trees were estimated with
unit-height-curves (Einheitshöhenkurven) according to Sloboda et al. [41]. The procedure is described
in detail in Riedel et al. [31].

2.3. Classification Trees

CART [12] is one of the most popular classification and regression tree (in the following CT)
algorithms. CTs recursively partition the space spanned by all predictor variables (feature space) into
rectangular areas. In the partitioning process, observations with similar response values are grouped.
Once the feature space is fragmented, constant values of the response variable are predicted for each
area [18,26]. For the binary response variable harvest decision, harvest probabilities can be derived
from the proportion of harvested trees within each partitioned area.

CART recursively produces binary splits using an impurity reduction approach. Every split
produces two new groups, each with a majority of either response class (in this research either yes
or no). This results in daughter nodes that are purer than their parent nodes. Entropy measures (e.g.,
Gini index) are used to determine the impurity in each node [18].

One shortcoming is that CTs (both CARTs and CTrees) can overfit the training data. Pruning
is used to avoid overfitting in CART. Furthermore, variable selection in CART algorithms is biased
towards variables with many possible splits, including both numerical variables and categorical
variables with many groups [18,26,42]. To address this, Hothorn et al. [26] introduced the CTree
framework, which combines regression trees with the theory of conditional inference procedures. First,
the independence of each of the m included predicting variables Xj (j = 1, . . . , m) from the response

attribute Y (global null hypothesis H0) is tested with the m partial hypotheses H j
0:

D
(
Y
∣∣Xj

)
= D(Y) (2)

where D is the (conditional) distribution of the response Y (given Xj).
If H0 cannot be rejected at specified level α, the recursion is stopped. Otherwise, the association

between the response attribute and each predictor is assessed by using test statistics or p-values which
indicate the deviation from H j

0. The Xj with the strongest relation to Y is selected and the binary
split is conducted for this predicting attribute. In CTrees, the use of p-values makes further pruning
unnecessary [26,43].

2.4. Random Forest

CTs have two additional important drawbacks. First, though producing good predictions on
average, they are considered to be unstable. Even small variations within the training data could result
in a different tree structure. Second, if a splitting point is crossed, a small change in the value of the
predicting attribute can cause a jump in the prediction [18].

The ensemble learning procedure RF [13] can help to overcome these issues by building a number
of CTs on bootstrap samples of the original data. In comparison to Bagging [44], RF adds an additional
layer of randomness by using only a subset of the predicting variables in each CT [45]. Weaker
variables—usually outplayed by stronger competitors—are allowed to enter the prediction process
and might reveal interaction effects that would otherwise remain disregarded [13,18].
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Considerations about the different RP methods in the context of multilevel data structures were
outlined in the introduction.

RFs are difficult to interpret. Variable importance (VI) measurements can be used to offer some
information about which attributes played major roles in the generation of the CTs. VI is usually
calculated from the out-of-bag (OOB) sample of each CT and then averaged across all CTs of the
RF [18,42].

The original VI—available for CART-RF—assigns higher scores to correlated predictors [46].
For this reason, Strobl et al. [42] suggested a conditional permutation scheme, which reflects only the
impact of the concerned attribute in predicting the response. This VI measurement is available for the
CTree-RF but not for the CART-RF. It is outlined in Strobl et al. [46].

However, both VI measures assume independence between the training data of a CT and the OOB
used to derive the VI. Thus, a multilevel data structure can cause bias in the calculation of VI measures
due to correlated OOB samples [17,25]. A solution was presented by Martin [25] within a multilevel
exploratory data analysis (MLEDA) framework. However, in this study, VI could be generated from
the test set instead because test set trees were considered to be independent from the training set trees.

VI was only generated for the CTree-RFs for the reasons named above. VI results derived from the
OOB samples were compared to the results derived from the test set. Following Martin [47], VIs were
standardized to facilitate a better comparison.

2.5. Plot Harvest Stratum Attribute

An additional plot-level attribute was generated (plot harvest stratum). This attribute allocated
NFI plots to plot-level harvest probability groups. The attribute was generated from training set
B. Training set B included the binary response attribute plot-level harvest decision as well as the
11 independent plot-level variables (Tables A4 and A5). For the attribute plot-level harvest decision,
the characteristic ‘yes’ (for the 5,684 harvested plots) indicated that a minimum of one sample tree was
removed from the plot between 2002 and 2012.

To create the plot harvest stratum attribute, a CTree was grown with the ctree function of R’s party
package [26,48] by using the plot-level harvest decision attribute as the dependent variable (Figure A1).
CTree was chosen instead of CART to avoid the bias described in the Classification Trees section.
The 11 plot-level attributes were used as inputs. The minimum number of plots per node was set to
200. Univariate was used as the test type and the threshold for the p-value was set to 0.001 to avoid
overfitting. The fitted CTree was applied to the test set plots to generate the corresponding attribute.

2.6. Harvest Probability Predictions for Sample Trees with Random Forests

For CTree-RF, 100 CTrees were grown from the sample trees of (harvested) training-set plots using
the cforest function of R’s party package [42,49,50]. For CART-RF, 100 CARTs were grown using the
randomForest function of R’s randomForest package [45].

Since the inclusion of both plot-level and tree-level attributes can cause bias due to the multilevel
data structure [25], both tree-level RFs were tested in two ways. In the first, all 22 plot- and tree-level
attributes as well as the plot harvest stratum attribute were used as potential inputs. In this variation,
the number of variables per CT was set to five (using the square root of the input attributes is often
found to be optimal [42,51]). In the following, the respective variations are referred to as CTree-RF-pt
and CART-RF-pt. In the second variation, only the 11 tree-level attributes were available as input
variables for the RFs. Here, three variables were used per CT. In the following, the respective variations
are referred to as CTree-RF-t and CART-RF-t.
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2.7. Harvest Probability Predictions for Sample Trees with Generalized Linear Mixed Model

GLMM extends a generalized linear regression model by incorporating fixed and random effects
(mixed effects). The status of a tree i after a harvest intervention on plot g follows a Bernoulli
distribution [16]:

ygi ∼ Bernoulli(πgi) (3)

If the tree was harvested, ygi equals one, otherwise its value is zero. πgi is the harvest probability
of the tree. The applied GLMM can be described as

logit(πgi) = β0 + β1X1gi + β2X2gi + . . . + βpXpgi + b0g (4)

where β0 is the constant (intercept), β j is the partial regression weight of predictor j, Xjgi is the trees i’s
score of the jth of p predictors in plot g, and b0g is the deviation from β0 for the random effect group
(plot) g with b0g ∼ N(0, σ2

bog
).

The GLMM was fitted on all training set sample trees of harvested plots using the glmer function
of R’s lme4 package [52]. The model was fitted with a binary logistic regression. Bound optimization
by quadratic approximation (BOBYQA, [53]) was used as an optimizer. The Nelder–Mead method [54]
was tested but the resulting model failed to converge.

All 22 input variables and the plot harvest stratum attribute were considered. Out of these,
only variables with p-values <0.001 were included to avoid overfitting. Numerical variables were
scaled and centered. Inventory plots were used as input for the random effects specified on the
intercept (sample trees of one plot were in the same random effects group). For discrete attributes
with more than two characteristics, characteristics were grouped iteratively when no statistically
significant differences (p > 0.001) were detected between the individual characteristics or groups of
characteristics. Based on this approach, strata of the plot harvest stratum attribute were grouped
starting from the terminal nodes of the classification tree. Taking the left side of the tree (Figure A1)
as an example, terminal nodes 7 and 8 were grouped first. Subsequently, terminal node 5 was joined
to this group. Finally, terminal node 3 was not attached to the group since there was a statistically
significant difference between node 3 and the group consisting of nodes 8, 7 and 5. The derived groups
were group 1 (5, 7, 8), group 2 (stratum 3 only), group 3 (12, 14, 15, 18, 19, 22, 25, 27, 28, 31, 32, 34, 35)
and group 4 (stratum 21 only).

A higher order interaction was included, which replicated the relationship between the plot-level
attribute average DBH of trees on the plot and the tree-level attribute F-rDiffDq for the different
ownership types and species (groups). The interaction reflects the change in harvest selection in
relation to a growing forest stand (Figure A2). On plots with lower average DBH, the probability of a
tree being harvested decreases with increasing F-rDiffDq. However, this relationship changes with
changing average DBH of trees on the plot. For plots with a larger average DBH, the tree-level harvest
probability can also increase with increasing F-rDiffDq. Interactions were clearly different with regard
to species (groups) and ownership types (Figure A2).

A stepwise backward variable selection (e.g., as described in Rohner et al. [55]) based on the
Akaike information criterion (AIC) [56] did not remove any variable. Nevertheless, average stand
age was excluded from the GLMM as its inclusion impeded convergence of the model. Its inclusion
also generated the lowest AIC decrease compared to other statistically significant variables. The final
GLMM included 15 attributes (Table 1). The random effect of the intercept is shown in Figure A3.

For the GLMM, residual diagnostics were generated with R’s DHARMa (diagnostic for
hierarchical regression models) package [57,58]. Within the DHARMa approach, 1000 new synthetic
data sets were created from the fitted GLMM. Cumulative distributions of simulated values for each
observed value and the quantile values corresponding to the observed values were calculated. Data
set diagnostics (Figure A4) show that no considerable abnormalities could be detected in the GLMM.
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Table 1. Estimates, significance codes, and standard errors (in parentheses) for the generalized linear
mixed model (GLMM) used to predict tree-level harvest probabilities. The model was fitted on sample
trees from the training set inventory plots on which harvests occurred (49,055 sample trees on 5684
plots; IA: interaction).

Attributes Tree-Level Harvest Probability

F-rDiffDq (index, centered and scaled) −0.245 *** (0.017)
Tree height (m, centered and scaled) 0.120 *** (0.027)
Species share (%) 0.133 *** (0.016)
Skidding damage (yes) 0.324 *** (0.029)
Fungus (yes) 1.291 *** (0.328)
Dead (yes) 1.400 *** (0.246)
Other stem damages (yes) 0.380 *** (0.045)
Pruned (yes) −0.419 *** (0.062)
Species group (other conifers) −0.545 *** (0.038)
Species group (oak) −1.300 *** (0.070)
Species group (deciduous) −0.960 *** (0.041)
Plot standing volume (m3 over bark ha−1, centered and scaled) −0.215 *** (0.024)
Average plot diameter at breast height (DBH, cm, centered and scaled) 0.245 *** (0.026)
Site index (m3 over bark ha−1, centered and scaled) −0.169 *** (0.021)
Altitude (m above sea level, centered and scaled) −0.197 *** (0.019)
Ownership type (medium private) −0.496 *** (0.073)
Ownership type (others) −0.330 *** (0.056)
Plot harvest stratum (group 1) 0.282 *** (0.108)
Plot harvest stratum (group 2) 2.336 *** (0.303)
Plot harvest stratum (group 3) −0.375 *** (0.084)
IA: Spruce spp. on state forest—Average DBH of trees on the plot—F-rDiffDq 0.247 *** (0.048)
IA: Other conifers on state forest—Average DBH of trees on the plot—F-rDiffDq 0.176 *** (0.053)
IA: Spruce spp. on community forest—Av. DBH of trees on the plot—F-rDiffDq 0.241 *** (0.037)
IA: Other conifers on community forest—Av. DBH of trees on the plot—F-rDiffDq 0.211 *** (0.046)
IA: Conifers on large private forest—Av. DBH of trees on the plot—F-rDiffDq 0.267 *** (0.056)
IA: Spruce spp. on medium priv. forest—Av. DBH of trees on the plot—F-rDiffDq 0.213 *** (0.064)
IA: Other conifers on medium private—Av. DBH of trees on the plot—F-rDiffDq 0.290 *** (0.063)
IA: Spruce spp. on small private forest—Av. DBH of trees on the plot—F-rDiffDq 0.489 *** (0.054)
IA: Other conifers on small private—Average DBH of trees on the plot—F-rDiffDq 0.306 *** (0.092)
IA: Deciduous—Average DBH of trees on the plot—F-rDiffDq 0.068 *** (0.018)
Constant (Intercept) 0.450 *** (0.102)
Observations 49,055

Note: *** p < 0.001.

2.8. Prediction

Harvest probabilities for sample trees were derived by applying the harvest models to the
respective test set. The probabilities were not converted into yes-no decisions. Instead, a proportion of
the standing volume per ha represented by an individual sample tree was predicted to be harvested
according to the derived harvest probability of that sample tree. This is similar to the method used in
WEHAM where usually only a share of the trees per ha represented by a sample tree are harvested
within one harvest intervention [37]. In the NFI, the exact date of a harvest within the ten-year period
remains unknown. For this reason, it is assumed that all harvests occurred in the middle of the
period [31]. The same assumption was applied in the prediction.

The mid-period (2007) standing volume of a sample tree (V̂j) was expressed as volume in m3 ob.
In the NFI, tree standing volume (Vj) is estimated from DBH, a second diameter measurement (the
measurement position of that second diameter on the trunk can vary) and a tree height measurement
or estimation. The exact procedure is described in Riedel et al. [31]. For trees measured in 2002 and
2012, V̂j was estimated as:

V̂j =
Vj2002 + Vj2012

2
(5)
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For trees that were recorded as missing in 2012, tree dimension measurements for 2007 were
estimated with the Sloboda trend function and V̂j was derived from these estimates [31]. The harvested
volume per sample tree Ĥj (m3 ob in 10 years) was calculated as:

Ĥj = p̂j V̂j wj (6)

where p̂j is the predicted harvest probability of the sample tree; V̂j is the mid-period standing volume in
m3 ob of the sample tree; and wj is the number of trees represented by the sample tree per ha (weight).

2.9. Evaluation Criteria

This study evaluated how well the models replicated the NFI harvest patterns when applied to
test set data not used for model training. For the numeric harvested volume predictions, percentage of
variance explained (VE) was used as a criterion in the following definition [59]:

VE = 1 − ∑n
i=1 (yi − ŷi)

2

∑n
i=1(yi − y)2 (7)

where
n
∑

i=1
(yi − ŷi)

2 is the residual sum of squares (RSS) derived from measured (yi) and predicted

(ŷi) values and
n
∑

i=1
(yi − y)2 is the total sum of squares (TSS), which corresponds to the variation of

the measured values [60]. In addition, models were compared by the resulting mean square error
(MSE) [61] defined as 1/n × RSS. Significance tests were conducted with reference to the test set
residuals (yi − ŷi). Paired Student t-tests were used to analyze the null hypothesis: The arithmetic
mean of the absolute residuals of model 1 and model 2 do not differ. Given the large number of test set
plots, a test for normal distributions was not required. To be able to compare the p-values among the
analyzed models, they were adjusted with R’s p.adjust function. When the comparison of two models
resulted in a rejection of the null hypothesis, the model with the lower average absolute residuals
was identified as the superior model. Effect sizes (r) were calculated with the correlation coefficient
according to Pearson and evaluated according the classes provided by Cohen [62]. An additional
method was the graphical comparison of average harvested volumes (m3 ob in 10 years) for subsets of
the data. The standard errors of the NFI averages were used as critical benchmarks.

3. Results

The RF algorithms were generally superior to the GLMM. The average of the absolute residuals
of both RF algorithms that used plot- and tree-level attributes were statistically significantly lower
compared to the GLMM (Table 2). However, the corresponding effect sizes were low. No difference
was detected between CTree-RF-pt and CART-RF-pt. The RF variations that used plot- and tree-level
attributes were statistically significantly superior to the respective variations that did not include
plot-level attributes. Neither CTree-RF-t nor CART-RF-t showed statistically significant differences
when compared to the GLMM.
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Table 2. Testing models for statistically significant differences with reference to absolute residuals
of plot-level harvested volume predictions with the paired sample t-test. Null hypothesis: The
averages of the residuals of model 1 and model 2 do not differ (RF: random forest; CTree-RF: RF
based on conditional inference trees; CART-RF: RF based on classification and regression trees; GLMM:
generalized linear mixed model).

Model 1 1

(Mean Absolute Residuals 2)
Model 2 1

(Mean Absolute Residuals 2) Result Adjusted p-Value 3 Effect Size (r) 4

CTree-RF-pt (95.7) CTree-RF-t (98.6) Model 1 superior 0.009 ** 0.06
CTree-RF-pt (95.7) CART-RF-pt (95.8) Model 1 ≈ Model 2 0.904 n

CTree-RF-pt (95.7) CART-RF-t (101.9) Model 1 superior 0.001 ** 0.12
CTree-RF-pt (95.7) GLMM (98.8) Model 1 superior 0.007 ** 0.06
CTree-RF-t (98.6) CART-RF-pt (95.8) Model 2 superior 0.020 * 0.05
CTree-RF-t (98.6) CART-RF-t (101.9) Model 1 superior 0.049 * 0.12
CTree-RF-t (98.6) GLMM (98.8) Model 1 ≈ Model 2 0.884 n

CART-RF-pt (95.8) CART-RF-t (101.9) Model 1 superior 0.001 ** 0.12
CART-RF-pt (95.8) GLMM (98.8) Model 1 superior 0.014 * 0.05
CART-RF-t (101.9) GLMM (98.8) Model 1 ≈ Model 2 0.077 n

1 pt: version using plot- and tree-level attributes; t: version using tree-level attributes only; 2 in m3 over bark per ha
in 10 years; 3 Note: ** p < 0.01; * p < 0.05; n p ≥ 0.05 (no statistical significance); 4 0.1 = low; 0.3 = medium; 0.5 = high [62].

Highest overall VE was achieved with the CTree-RF-pt (Table 3). VE was calculated with regard to
the harvested volume (m3 ob in 10 years) on plot level. The highest VE values were obtained with the
CTree-RF-pt and CART-RF-pt. VE values produced by the GLMM were lower. For both RF algorithms,
VE was reduced when plot-level attributes were not considered for the prediction. This reduction was
comparably strong for CART-RF.

Table 3. Harvested volume predictions on plot level from random forest (RF) based on conditional
inference trees (CTree-RF), RF based on classification and regression trees (CART-RF), and generalized
linear mixed models (GLMMs) (1894 plots with 15,960 sample trees).

Tree-Level Method 1 VE 2 RMSE 3

CTree-RF-pt 0.380 138.27
CTree-RF-t 0.327 144.15
CART-RF-pt 0.366 139.88
CART RF-t 0.177 159.42
GLMM 0.314 145.47

1 pt: variation using plot- and tree-level attributes; t: version using tree-level attributes only; 2 VE: Variance
explained; 3 RMSE: Root mean squared error.

The GLMM deviated more from the NFI value than the other methods with regard to average
harvested volumes. The species shown in Figure 1, Figure 2, and Figure A5 correspond to: spruce
(Picea abies (L.) Karst.), fir (Abies alba Mill.), pine (Pinus sylvestris L.), Douglas fir (Pseudotsuga menziesii
(Mirb.) Franco), beech (Fagus sylvatica L.), oak (Quercus petraea (Matt.) Liebl., Quercus robur L.), ash
(Fraxinus excelsior L.), and maple (Acer pseudoplatanus L.). NFIs are only representative for larger
aggregations of inventory plots. Figure 1 compares predicted test set harvested volumes for individual
tree species and tree dimensions. The GLMM underestimated beech harvests (in particular in the
DBH range 20–40 cm) to a greater extent than the other models. Figure 2 shows average harvested
volume predictions for test set plots. The displayed average volumes refer to the average of plots
included in the respective data subsample (N). For most subsets, predictions of all models remain
within the standard error of the NFI. GLMM average harvested volume predictions for spruce in
higher altitudes, and for plots located within nature parks, were above the NFI mean plus the standard
error. Furthermore, GLMM estimates for total average beech harvested volumes were below the NFI
mean minus the standard error. Such underestimations for beech were found for plots located in state
forest, plots at higher altitudes, plots with favorable harvest conditions, and plots not located in nature
parks. Average beech harvested volume predictions of the two RF models were comparably low for
the state forest—though they remained within the NFI standard error. Maple was included in the
group other deciduous in the tree-level models. Predictions for average harvested volumes of maple
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from small private forests (all three models), sites with unfavorable site conditions (all three models),
sites in higher altitudes (all three models), and from nature parks (RFs) were also above the NFI
mean plus standard error. Predictions for total average harvested volumes of maple were above the
NFI mean plus standard error when averages were calculated only for plots on which the respective
species (group) occurred (Figure A5). Other examples of average harvested volume prediction above
the NFI mean plus standard error in Figure 2 were fir in higher altitudes (CTree-RF), pine in higher
altitudes (RFs), ash in higher altitudes (all three models), and Douglas fir from small private forests
(all three models).
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Figure 1. Comparing predicted average harvested volumes to national forest inventory (NFI)
measurements on species level for the period 2002–2012. (a) Conifer species. (b) Deciduous species.
Harvested volumes refer to the average of the 1,894 test set plots. The reference year for the diameter
at breast height (DBH) classes and harvested volumes was 2007 (CART: Classification and regression
tree; CTree: Conditional inference tree; RF: Random forest; pt: variation that used plot- and tree-level
attributes; GLMM: Generalized linear mixed model).
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Figure 2. Comparing 2002–2012 predicted average harvested volumes (tree-level models only) for plots
on which harvests occurred according to the national forest inventory (NFI) for species (groups) and
selected data subsets. Harvested volumes refer to the average of the plots included in the respective
test set subsample (N). The reference year for the diameter at breast height (DBH) classes and harvested
volumes was 2007 (CART: Classification and regression tree; CTree: Conditional inference tree; RF:
Random forest; pt: variation that used plot- and tree-level attributes; GLMM: Generalized linear mixed
model; a.s.l.: above sea level).
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The VI comparison did not indicate that the correlation of OOB samples had a strong impact on
the VI. The overall importance of predicting attributes within the models offers a hint as to how far
harvest decisions are influenced by the specific impact factors. The comparison between the OOB VIs
and test set VIs of the CTree-RFs did not reveal large differences (Figure 3). Most obvious is the change
in the ranking of F-rDiffDq (Figure 3a).
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Figure 3. Standardized variable importance (VI) as permutation importance for CTree-RF in (a) the
variation that used plot- and tree-level attributes as well as strata and (b) the variation that used
tree-level attributes and strata only (DBH: Diameter at breast height, Av.: average, o.t.p.: on the plot).

4. Discussion

A major advantage of the RF based tree-level harvest models is that model fitting can be
automatized. To the knowledge of the authors, this research is the first attempt to predict detailed
BAU harvest decisions on the level of sample trees from NFIs with modern machine learning
algorithms. Previous studies restricted predictions to inventory plots or larger areas [4,6,35] or
used generalized linear models (GLM), GLMM or a copula approach to predict harvest probabilities
of sample trees [8–10,15,16]. The advantage of RF over these methods is that variable selection,
interactions, and relationships are learned by the algorithm from the training data in an automatized
way. Therefore, no presumptions about harvest regimes (e.g., thinning, single-tree selection harvest or
clear cut) under specific stand or ownership conditions were necessary. Furthermore, the RF-based
harvest models can be adapted easily to other regions, inventory designs, or harvest practices.

RFs are suited to predicting tree-level harvests in the given inventory design. Concerning average
absolute residuals, all tested RFs resulted in equal or superior performances when compared to
the GLMM. Since a GLMM can account for the multilevel data structure found in NFIs [14–16],
the respective RFs can also be considered suitable in this regard.

RFs improved predictions in comparison to the GLMM. Compared to a GLMM, the tested
RF algorithms that used plot- and tree-level attributes showed a better prediction performance.
With regard to overall test set results, they achieved higher VEs and resulted in significantly (p < 0.05)
lower average absolute residuals. One reason for the superior overall performance of CTree-RF-pt and
CART-RF-pt was that they predicted harvested volumes of spruce and beech more accurately than the
GLMM. Among other tree species, spruce and beech accounted for the highest, and second highest
harvested volumes respectively (Figure 2). The findings demonstrate that RFs can help to improve the
quality of predictions on the level of NFI sample trees.
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The RFs performed better when both plot-level and tree-level attributes were used as variable
inputs. Regarding average absolute residuals, CTree-RF-pt and CART-RF-pt were significantly (p < 0.05)
superior to the respective variations that did not use plot-level attributes. The VE of CART-RF dropped
considerably when plot-level attributes were not used.

When comparing CTree-RF-pt and CART-RF-pt, neither of the two algorithms could be clearly
identified as the better performer. No significant differences were found between the two models
regarding absolute residuals and the VEs were comparably close. This does not necessarily mean that
the CTs of CTree-RF were not biased as a consequence of the multilevel structure [25]. In that sense,
the integration of random effects into generalized RP methods [22,23] might help to further improve
the RF based tree-level harvest prediction. Other studies have found that prediction accuracies in
RF with multilevel data could be further improved if bagging subsets were resampled at the cluster
level [24,25]. This effect was not tested here as this would involve a manipulation of the original
CART-RF and CTree-RF algorithms.

The models could not capture the full effects of tree damages on harvest decisions.
Delisle-Boulianne et al. [16] found that a classification system based on defects could be used to
improve tree-level harvest models. Ledermann [8] also found tree damage to be one important
indicator for tree-level harvest selections. This study included tree damages in the RF and GLMM
models. However, the corresponding variables were ranked relatively low in terms of VI, though one
reason for this was certainly the low number of trees recorded as being infected by beetle or fungus.
Furthermore, the scenario could not capture new infestations and damages that occurred within the
10-year period. So, it is likely that tree damages played a larger role in harvest decisions. However,
since this relation was not evident in the NFI data, it could not be captured by the models.

Tree species had an important impact on harvest decisions. Species was found to be the number
one tree-level indicator according to the VI. In the GLMM, species share—which also had a relatively
high VI—was found to be positively correlated with harvest probability. The fact that tree species that
were a minority on a plot were less likely to be harvested might reflect a stronger diversification of
forest stands. The diversification of stands is frequently discussed in the context of climate change,
biodiversity, sustainable forestry, and hazard control [63]. With a focus on forest conversion periods
towards uneven-aged stands, Ledermann [8] identified stem quality and tree species as important
estimators of tree-level harvest selection.

Tree dimension was an important indicator for tree-level harvest probabilities, which is consistent
with other studies [8,10,64,65]. In this context, the F-rDiffDq transformation of the DBH was found to
be more effective than the pure DBH.

Distance-dependent attributes can be of relevance but were not included in this research.
Delisle-Boulianne et al. [16] found that tree-level harvest probabilities were influenced by the status
of neighboring trees. These attributes were not included in this study due to small plot sizes and
potential bias due to edge-effects.

The general restrictions related to data availability and sampling outlined in Kilham et al. [4]
were also relevant for this study. This also includes that the effect of disturbances from storms and
dry periods could not be deducted from the harvests. Thus, a future BAU scenario based on the
described methods and data would assume the weather conditions and disturbances of the time period
2002–2012 for every predicted 10-year period.

In general, predicting harvest decisions for plots and trees of large-scale inventories is difficult.
In these inventory designs, individual sample plots are not representative of the decision area—e.g.,
forest stand—in which they are located [4]. However, harvest intensities and the decision to
harvest a tree might be influenced more strongly by the overall condition of the stand. At the
same time, information about decision makers that can be connected to NFI plots is scarce. In this
research, owner-related information was restricted to rough ownership types and property size classes.
Under these circumstances, highly accurate harvest predictions on the level of inventory plots cannot
be expected. This is expressed in the rather low VEs shown in Table 3. However, NFIs—and therefore
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also NFI-based forest growth and wood supply modeling—are designed to generate representative
data on a larger scale [4,66]. In this context, the models were able to replicate observed harvest patterns
for aggregations of NFI plots relatively well on a comparably detailed scale.

To be able to concentrate on plot-level clusters, other potential levels of the data structure were
consciously excluded from this study. However, inventory plots themselves can be considered as
being embedded in multiple hierarchical structures. This includes the fact that several inventory plots
are managed by one owner or manager, and several owners are serviced by one forest official and
profit from the same local infrastructure. Also, plots within one inventory tract were considered to be
independent, which might be true in some cases but not in all. Including these effects in RP harvest
prediction procedures is an interesting field of future research.

To make use of the tree-level prediction within a BAU scenario, it is necessary to first predict
harvest decisions for individual NFI plots. If plot-level harvest probabilities are predicted with RF
algorithms as well, the entire model combination could benefit from the RF-specific advantages
(automatized training, nonlinear relationships, high-level interactions). Here, it is essential to convert
plot-level harvest probabilities into binary decisions with an approach (e.g., randomized procedure [6],
deterministic cut-off, or deterministic stratified procedure [4]) that suits the requirements and goals of
the respective scenario. For readers interested in the results of a joint plot-level and tree-level prediction,
a randomized plot-level prediction based on CTree-RF was combined with the three presented tree-level
models (CTree-RF-pt, CART-RF-pt, and GLMM). The prediction process is described in Table S1.
Results are shown in Table S2 and Figures S1–S3. When combined with tree growth and mortality
models, such a harvest model combination can be used to generate future scenarios—e.g., by applying
the fitted models to 2012 NFI data to predict the period 2012–2022 and to the predicted 2022 NFI data
to predict the period 2022–2032.

5. Conclusions

To a statistically significant degree, the performances of both analyzed RF algorithms were
superior to that of the GLMM. With reference to harvested volume prediction on the level of inventory
plots, both RFs achieved higher overall VEs (0.38 for CTree-RF-pt, and 0.37 for CART-RF-pt) in
comparison to the GLMM (0.31). The RFs resulted in statistically significant but low (r < 0.10) reductions
of average absolut residuals when compared to the GLMM. Predictions for the frequently harvested
species spruce and beech could be improved. The RFs need to be trained on a combination of plot-level
and tree-level attributes. For CART-RF this is even more essential, since the performance of the
algorithm was found to drop considerably when the plot-level attributes were not considered.

Predicting the harvested volumes on the basis of sample trees has the advantage that more
detailed information about species and dimension of the harvested timber can be derived. For regions
that include mixed species forests with diverse tree dimensions and for stakeholders interested in
specific material availabilities and properties (e.g., within the wood processing industry or wood-based
bioeconomy) this is of particular importance.

This research demonstrated for the first time that RFs are suitable to predict harvest probabilities
of sample trees despite the multi-layered data structures that occur in NFIs. Researchers working in
the field of forest growth and wood supply projections can benefit from this finding in two ways. First,
the RFs were found to improve the quality of predictions, which is linked to the ability of the algorithms
to integrate nonlinearity and high order variable interactions. Second, RFs can learn and predict BAU
harvest decisions from NFIs in an automatized and self-adapting way, which is a key advantage
over common approaches in this field. Regression models require extensive fitting procedures and
pre-knowledge about variable interactions and nonlinearity. In RF-based procedures, model fitting
can be automatized, thereby facilitating a flexible application. This could be of particular interest
for scientists who seek to develop inventory-based prediction applications of use for practitioners
or researchers.
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Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/10/1/20/s1,
Table S1: Training and prediction process for a combination of plot-level and tree-level harvest predictions
based on a randomized approach. Table S2: Test set results for the randomized plot-level prediction based on
probabilities derived with conditional inference trees random forest (CTree-RF). Figure S1. Standardized variable
importance (VI) as permutation importance for the plot-level random forest (RF) based on conditional inference
trees (CTree). Figure S2. Comparing predicted average harvested volumes (combined randomized plot- and
tree-level models) to national forest inventory (NFI) measurements on species level for the period 2002–2012.
(a) conifer species. (b) deciduous species. Figure S3. Comparing 2002–2012 predicted average harvested volumes
(combined randomized plot- and tree-level models) to the national forest inventory (NFI) for species (groups) and
selected data subsets.
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Appendix A

Table A1. Characteristics of continuous training set variables (5684 plots with 49,055 sample trees).

Level Attribute Range Mean SD

Plot-level Plot-level standing volume (m3 over bark/ha) 7.1–2137.7 433.3 234.7
Plot-level Average DBH of trees on the plot (cm) 7.0–100.4 33.1 12.5
Plot-level Average age of trees on the plot (years) 15.0–380.0 81.3 35.8
Plot-level Slope (%) 0–77.0 11.1 9.7
Plot-level Site Index (m3 over bark/ha) 2.0–21.0 10.4 4.1
Plot-level Altitude (m above sea level) 94.0–1370.0 554.7 214.0
Tree-level Species share (%) 0.0–1.0 0.7 0.3
Tree-level F-rDiffDq (index) −0.9–2.3 0.1 0.3
Tree-level Diameter at breast height (DBH, cm) 7–144.1 36.2 15.6
Tree-level Tree height (m) 3.2–49.7 26.1 7.4

Table A2. Characteristics of discrete training set variables (5684 plots with 49,055 sample trees).

Level Attribute Characteristics

Plot-level Nature protected area yes (126); no (5,558)
Plot-level Nature park yes (2553); no (3,131)
Plot-level Harvest condition favorable (4471); unfavorable (1,213)
Plot-level Ownership type state (1353); community (2377); large private (640); medium

private (636); small private (678)
Plot-level Plot type conifer 1 (2004); conifer 2 (193); deciduous (1260); mixed 1

(1025); mixed 2 (1202)
Tree-level Harvest decision yes (17,991); no (31,064)
Tree-level Dead yes (108); no (48,947)
Tree-level Skidding damage yes (10,016); no (39,039)
Tree-level Other stem damage yes (3238); no (45,817)
Tree-level Beetle yes (80); no (48,975)
Tree-level Fungus yes (56); no (48,999)
Tree-level Pruned yes (2814); no (46,241)
Tree-level Species (groups) spruce (24,109); fir (4614); pine (4117); Douglas fir (1511); beech

(8654); oak (2484); ash (1101); other deciduous (2465)

http://www.mdpi.com/1999-4907/10/1/20/s1
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Table A3. Species included in the plot type attribute characteristics. Only species with more than 30
individuals in the training set are named explicitly. The species (groups) were ranked according to
their frequency in the training set.

Group Species

Conifer 1 Picea abies L. Karst; Abies alba Mill.; other Picea spp.

Conifer 2 Pinus sylvestris L.; Pseudotsuga menziesii (Mirb.); Larix decidua L.; Larix kaempferi (Lamb.) Carrière;
Pinus nigra J.F.Arnold; other conifers

Deciduous Fagus sylvatica L.; Quercus petraea (Matt.) Liebl.; Fraxinus excelsior L.; Quercus robur L.; Acer
pseudoplatanus L.; Carpinus betulus L.; Tilia spp.; Alnus glutinosa (L.) Gaertn.; Quercus rubra L.;
Prunus avium L.; Betula pendula Roth; Populus nigra L.; Acer platanoides L.; Robinia pseudoacacia L.;
Castanea sativa Mill.; Salix spp.; Acer campestre L.; Ulmus spp.; other deciduous

Table A4. Characteristics of continuous variables of training set B (8997 plots).

Level Attribute Range Mean SD

Plot-level Plot-level standing volume (m3 over bark/ha) 6.3–2137.7 388.5 238.2
Plot-level Average DBH of trees on the plot (cm) 7.0–123.6 32.5 13.1
Plot-level Average age of trees on the plot (years) 15.0–380.0 80.2 37.1
Plot-level Slope (%) 0–77.0 12.0 10.4
Plot-level Site Index (m3 over bark/ha) 2.0–21.0 10.0 4.2
Plot-level Altitude (m above sea level) 90.0–1370.0 557.3 220.4

Table A5. Characteristics of discrete variables of training set B (8997 plots).

Level Attribute Characteristics

Plot-level Harvest decision yes (5684); no (3313)
Plot-level Nature protected area yes (296); no (8701)
Plot-level Nature park yes (4189); no (4808)
Plot-level Harvest condition favorable (6715); unfavorable (2282)
Plot-level Ownership type state (2116); community (3570); large private (949); medium

private (1069); small private (1293)
Plot-level Plot type conifer 1 (2833); conifer 2 (339); deciduous (2390); mixed 1

(1477); mixed 2 (1958)
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Figure A1. Classification tree based on the conditional inference tree (CTree) algorithm used to classify
plots into strata to generate the plot harvest stratum attribute (p: harvest probability; n: number of
training set plots; Ownership type as s: state; c: community; l: large private; m: medium private;
r: small private; Harvest condition as f: favorable; u: unfavorable; Plot standing volume in m3 over
bark (ob) ha−1; Site index as average yearly total increment in m3 ob ha−1 over 100 years; Slope in %).
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Figure A2. Effect of the interaction between F-rDiffDq, average diameter at breast height (DBH) of
trees on the plot, (grouped) species, and ownership type on tree-level harvest probability predictions
within the generalized linear mixed model (GLMM). For the visualization, values of all other variables
were constant (unpruned; no damages; favorable harvest conditions; plot harvest stratum attribute
group 3; training set mean values for numeric attributes). Spruce refers to Picea spp.
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Figure A4. (a) Quantile-quantile plot (QQ-plot) for the generalized linear mixed model (GLMM).
The QQ-plot can be used to detect overall deviations from the expected distribution (green line).
(b) GLMM residuals in relation to predicted values. In a well-fitted model, the results of the quantile
regression (red lines) should be straight, horizontal, and at y-values of 0.25, 0.5 and 0.75 as indicated
by the black dashed lines [58]. The two plots were generated from a synthetic data set within the
diagnostic for hierarchical regression models (DHARMa) approach.
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Figure A5. Comparing 2002–2012 predicted average harvested volumes (tree-level models only) from
plots on which harvests occurred according to the national forest inventory (NFI) for species (groups)
and selected data subsets. Harvested volumes refer to the average of the plots included in the respective
test set subsample on which the species (group) occurred. The reference year for the diameter at breast
height (DBH) classes and harvested volumes was 2007 (CART: Classification and regression tree; CTree:
Conditional inference tree; RF: Random forest; pt: variation that used plot- and tree-level attributes;
GLMM: Generalized linear mixed model; a.s.l.: above sea level).



Forests 2019, 10, 20 23 of 25

References

1. Fischer, C.; Gasparini, P.; Nylander, M.; Redmond, J.; Hernandez, L.; Brändli, U.-B.; Pastor, A.; Rizzo, M.;
Alberdi, I. Joining Criteria for Harmonizing European Forest Available for Wood Supply Estimates. Case
Studies from National Forest Inventories. Forests 2016, 7, 104. [CrossRef]

2. Tomppo, E.; Schadauer, K.; McRoberts, R.E.; Gschwantner, T.; Gabler, K.; Ståhl, G. Introduction. In National
Forest Inventories; Tomppo, E., Gschwantner, T., Lawrence, M., McRoberts, R.E., Eds.; Springer: Dordrecht,
The Netherlands, 2010; pp. 1–18.

3. Barreiro, S.; Schelhaas, M.-J.; Kändler, G.; Antón-Fernández, C.; Colin, A.; Bontemps, J.-D.; Alberdi, I.;
Condés, S.; Dumitru, M.; Ferezliev, A.; et al. Overview of methods and tools for evaluating future woody
biomass availability in European countries. Ann. For. Sci. 2016, 73, 823–837. [CrossRef]

4. Kilham, P.; Kändler, G.; Hartebrodt, C.; Stelzer, A.-S.; Schraml, U. Designing Wood Supply Scenarios from
Forest Inventories with Stratified Predictions. Forests 2018, 9, 77. [CrossRef]

5. Rock, J.; Gerber, K.; Klatt, S.; Oehmichen, K. The WEHAM 2012 “baseline scenario”: Center line or guardrail?
Forstarchiv 2016, 87, 66–69. [CrossRef]

6. Antón-Fernández, C.; Astrup, R. Empirical harvest models and their use in regional business-as-usual
scenarios of timber supply and carbon stock development. Scand. J. For. Res. 2012, 27, 379–392. [CrossRef]

7. Fridman, J.; Ståhl, G. A Three-step Approach for Modelling Tree Mortality in Swedish Forests. Scand. J.
For. Res. 2001, 16, 455–466. [CrossRef]

8. Ledermann, T. Using logistic regression to model tree selection preferences for harvesting in forests in
conversion. In Continuous Cover Forestry; Gadow, K., Nagel, J., Saborowski, J., Eds.; Springer: Dordrecht,
The Netherlands, 2002; pp. 203–216.

9. Manso, R.; Ningre, F.; Fortin, M. Simultaneous Prediction of Plot-Level and Tree-Level Harvest Occurrences
with Correlated Random Effects. For. Sci. 2018, 36, 2994. [CrossRef]

10. Thurnher, C.; Klopf, M.; Hasenauer, H. Forests in transition: A harvesting model for uneven-aged mixed
species forests in Austria. Forestry 2011, 84, 517–526. [CrossRef]

11. Eid, T. Testing a large-scale forestry scenario model by means of successive inventories on a forest property.
Silva Fenn. 2004, 38, 305–317. [CrossRef]

12. Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Taylor & Franxis
Group, LLC: Boca Raton, FL, USA, 1984; p. 368. ISBN 978-0-412-04841-8.

13. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
14. Grégoire, T.G.; Schabenberger, O.; Barrett, J.P. Linear modelling of irregularly spaced, unbalanced,

longitudinal data from permanent-plot measurements. Can. J. For. Res. 1995, 25, 137–156. [CrossRef]
15. Fortin, M.; Delisle-Boulianne, S.; Pothier, D. Considering Spatial Correlations Between Binary Response

Variables in Forestry: An Example Applied to Tree Harvest Modeling. For. Sci. 2013, 59, 253–260. [CrossRef]
16. Delisle-Boulianne, S.; Fortin, M.; Achim, A.; Pothier, D. Modelling stem selection in northern hardwood

stands: Assessing the effects of tree vigour and spatial correlations using a copula approach. Forestry 2014,
87, 607–617. [CrossRef]

17. Finch, H. Recursive Partitioning in the Presence of Multilevel Data. Gen. Linear Model J. 2015, 41, 30–44.
18. Strobl, C.; Malley, J.; Tutz, G. An Introduction to Recursive Partitioning: Rationale, Application and

Characteristics of Classification and Regression Trees, Bagging and Random Forests. Psychol. Methods
2009, 14, 323–348. [CrossRef] [PubMed]

19. Sela, R.J.; Simonoff, J.S. RE-EM trees: A data mining approach for longitudinal and clustered data. Mach.
Learn. 2012, 86, 169–207. [CrossRef]

20. Miller, P.; Mcartor, D.; Lubke, G. Metboost: Exploratory Regression Analysis with Hierarchically Clustered
Data. Stat.ML. preprint. arXiv:1702.03994.

21. Hajjem, A.; Bellavance, F.; Larocque, D. Mixed-effects random forest for clustered data. J. Stat. Comput. Simul.
2014, 84, 1313–1328. [CrossRef]

22. Hajjem, A.; Larocque, D.; Bellavance, F. Generalized mixed effects regression trees. Stat. Probab. Lett. 2017,
126, 114–118. [CrossRef]

23. Fokkema, M.; Smits, N.; Zeileis, A.; Hothorn, T.; Kelderman, H. Detecting treatment-subgroup interactions
in clustered data with generalized linear mixed-effects model trees. Behav. Res. Methods 2017. [CrossRef]

http://dx.doi.org/10.3390/f7050104
http://dx.doi.org/10.1007/s13595-016-0564-3
http://dx.doi.org/10.3390/f9020077
http://dx.doi.org/10.4432/0300-4112-87-66
http://dx.doi.org/10.1080/02827581.2011.644576
http://dx.doi.org/10.1080/02827580152632856
http://dx.doi.org/10.1093/forsci/fxy015
http://dx.doi.org/10.1093/forestry/cpr021
http://dx.doi.org/10.14214/sf.418
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1139/x95-017
http://dx.doi.org/10.5849/forsci.11-129
http://dx.doi.org/10.1093/forestry/cpu034
http://dx.doi.org/10.1037/a0016973
http://www.ncbi.nlm.nih.gov/pubmed/19968396
http://dx.doi.org/10.1007/s10994-011-5258-3
http://dx.doi.org/10.1080/00949655.2012.741599
http://dx.doi.org/10.1016/j.spl.2017.02.033
http://dx.doi.org/10.3758/s13428-017-0971-x


Forests 2019, 10, 20 24 of 25

24. Karpievitch, Y.V.; Hill, E.G.; Leclerc, A.P.; Dabney, A.R.; Almeida, J.S. An introspective comparison of random
forest-based classifiers for the analysis of cluster-correlated data by way of RF++. PLoS ONE 2009, 4, e7087.
[CrossRef]

25. Martin, D.P. Efficiently Exploring Multilevel Data with Recursive Partitioning. Ph.D. Thesis, University of
Virginia, Charlottesville, VA, USA, 2015.

26. Hothorn, T.; Hornik, K.; Zeileis, A. Unbiased Recursive Partitioning: A Conditional Inference Framework.
J. Comput. Graph. Stat. 2006, 15, 651–674. [CrossRef]

27. Fu, W.; Simonoff, J.S. Unbiased regression trees for longitudinal and clustered data. Comput. Stat. Data Anal.
2015, 88, 53–74. [CrossRef]

28. Schmitz, F.; Polley, H.; Hennig, P.; Dunger, K.; Schwitzgebel, F. Die zweite Bundeswaldinventur BWI 2: Inventur
und Auswertungsmethoden. The Second National Forest Inventory NFI 2: Inventory and Evaluation Methods;
BMELV: Braunschweig, Germany, 2008; p. 85.

29. Thünen Institut. Dritte Bundeswaldinventur. 2012. Available online: http://www.webcitation.org/
72ru1KjDW (accessed on 2 October 2018).

30. Ministerium für Ländlichen Raum und Verbraucherschutz Baden-Württemberg. Clusterstudie Forst und
Holz Baden-Württemberg: Analyse der Spezifischen Wettbewerbssituation des Clusters Forst und Holz
und Ableitung von Handlungsempfehlungen. Available online: http://www.webcitation.org/72rslkLVu
(accessed on 2 October 2018).

31. Riedel, T.; Hennig, P.; Kroiher, F.; Polley, H.; Schmitz, F.; Schwitzgebel, F. Die dritte Bundeswaldinventur BWI
2012. Inventur- und Auswertungsmethoden; BMEL: Berlin, Germany, 2017; p. 124.

32. Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning. Data Mining, Inference,
and Prediction, 2nd ed.; Corrected at 7th Printing 2013; Springer: New York, NY, USA, 2013; p. 745,
ISBN 978-0-387-84857-0.

33. Kuhn, M. Caret: Classification and Regression Training. Available online: http://www.webcitation.org/
72ruazu3v (accessed on 2 October 2018).

34. Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28. [CrossRef]
35. Verkerk, P.J.; Levers, C.; Kuemmerle, T.; Lindner, M.; Valbuena, R.; Verburg, P.H.; Zudin, S. Mapping wood

production in European forests. For. Ecol. Manag. 2015, 357, 228–238. [CrossRef]
36. Thürig, E.; Schelhaas, M.-J. Evaluation of a large-scale forest scenario model in heterogeneous forests: A case

study for Switzerland. Can. J. For. Res. 2006, 36, 671–683. [CrossRef]
37. FVA. WEHAM 2012. Modelle und Algorithmen; FVA: Freiburg, Germany, unpublished.
38. Polyakov, M.; Wear, D.N.; Huggett, R.N. Harvest choice and timber supply models for forest forecasting.

For. Sci. 2010, 56, 344–355.
39. Rinaldi, F.; Jonsson, R.; Sallnäs, O.; Trubins, R. Behavioral Modelling in a Decision Support System. Forests

2015, 6, 311–327. [CrossRef]
40. Schelhaas, M.-J.; Hengeveld, G.M.; Heidema, N.; Thürig, E.; Rohner, B.; Vacchiano, G.; Vayreda, J.;

Redmond, J.; Socha, J.; Fridman, J.; et al. Species-specific, pan-European diameter increment models
based on data of 2.3 million trees. For. Ecosyst. 2018, 5, 716. [CrossRef]

41. Sloboda, V.B.; Gaffrey, D.; Matsumura, N. Regionale und lokale Systeme von Höhenkurven für gleichaltrige
Waldbestände. Allg. Forst Jagdztg. 1993, 164, 225–228.

42. Strobl, C.; Boulesteix, A.-L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional variable importance for random
forests. BMC Bioinform. 2008, 9, 307. [CrossRef]

43. Hothorn, T.; Seidbold, H.; Zeileis, A. Package ‘Partykit’: A Toolkit for Recursive Partytioning. Available
online: http://www.webcitation.org/72rumdgV2 (accessed on 2 October 2018).

44. Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
45. Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22.
46. Strobl, C.; Hothorn, T.; Zeileis, A. Party on!: A New, Conditional Variable-Importance Measure for Random

Forests Available in the party Package. R J. 2009, 1, 14–17.
47. Martin, D. Mleda: Multilevel Exploratory Data Analysis. Available online: http://www.webcitation.org/

72ruRxsA0 (accessed on 2 October 2018).
48. R Core Team. R: A Language and Environment for Statistical, version 3.4.3; R Foundation for Statistical

Computing: Vienna, Austria, 2017.

http://dx.doi.org/10.1371/journal.pone.0007087
http://dx.doi.org/10.1198/106186006X133933
http://dx.doi.org/10.1016/j.csda.2015.02.004
http://www.webcitation.org/72ru1KjDW
http://www.webcitation.org/72ru1KjDW
http://www.webcitation.org/72rslkLVu
http://www.webcitation.org/72ruazu3v
http://www.webcitation.org/72ruazu3v
http://dx.doi.org/10.18637/jss.v028.i05
http://dx.doi.org/10.1016/j.foreco.2015.08.007
http://dx.doi.org/10.1139/x05-283
http://dx.doi.org/10.3390/f6020311
http://dx.doi.org/10.1186/s40663-018-0133-3
http://dx.doi.org/10.1186/1471-2105-9-307
http://www.webcitation.org/72rumdgV2
http://dx.doi.org/10.1007/BF00058655
http://www.webcitation.org/72ruRxsA0
http://www.webcitation.org/72ruRxsA0


Forests 2019, 10, 20 25 of 25

49. Hothorn, T.; Bühlmann, P.; Dudoit, S.; Molinaro, A.; van der Laan, M.J. Survival ensembles. Biostatistics 2006,
7, 355–373. [CrossRef]

50. Strobl, C.; Boulesteix, A.-L.; Zeileis, A.; Hothorn, T. Bias in random forest variable importance measures:
Illustrations, sources and a solution. BMC Bioinform. 2007, 8, 25. [CrossRef] [PubMed]

51. Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random forest: A classification
and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 2003,
43, 1947–1958. [CrossRef] [PubMed]

52. Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw.
2015, 67. [CrossRef]

53. Powell, M.J.D. The BOBYQA Algorithm for Bound Constrained Optimization without Derivatives; Cambridge NA
Report NA2009/06; University of Cambridge: Cambridge, UK, 2009; pp. 26–46.

54. Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [CrossRef]
55. Rohner, B.; Waldner, P.; Lischke, H.; Ferretti, M.; Thürig, E. Predicting individual-tree growth of central

European tree species as a function of site, stand, management, nutrient, and climate effects. Eur. J. For. Res.
2018, 137, 29–44. [CrossRef]

56. Sakamoto, Y.; Ishiguro, M.; Kitagawa, G. Akaike Information Criterion Statistics; KTK Scient. Publ: Tokyo,
Japan, 1986; p. 290, ISBN 9027722536.

57. Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models.
Available online: http://www.webcitation.org/72ruusQZJ (accessed on 2 October 2018).

58. r-project. DHARMa Vignette. Available online: http://www.webcitation.org/72rtsdcBU (accessed on
2 October 2018).

59. Faraway, J.J. Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression
Models; CRC Press: Boca Raton, FL, USA, 2016; p. 399. ISBN 1498720986.

60. Renaud, O.; Victoria-Feser, M.-P. A robust coefficient of determination for regression. J. Stat. Plan. Inference
2010, 140, 1852–1862. [CrossRef]

61. Lehmann, E.L.; Casella, G. Theory of Point Estimation, 2nd ed.; Springer: New York, NY, USA, 1998; p. 590,
ISBN 9780387985022.

62. Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [CrossRef]
63. Kändler, G. The design of the second German national forest inventory. In Proceedings of the Eighth Annual

Forest Inventory and Analysis Symposium, Monterey, CA, USA, 16–19 October 2006; McRoberts, R.E.,
Reams, G.A., van Duesen, P.C., McWilliams, W.H., Eds.; U.S. Department of Agriculture: Washington, DC,
USA, 2006; pp. 19–24.

64. Spiecker, H. Silvicultural management in maintaining biodiversity and resistance of forests in
Europe—Temperate zone. J. Environ. Manag. 2003, 67, 55–65. [CrossRef]

65. Fortin, M. Population-averaged predictions with generalized linear mixed-effects models in forestry: An
estimator based on Gauss−Hermite quadrature. Can. J. For. Res. 2013, 43, 129–138. [CrossRef]

66. Fortin, M. Using a segmented logistic model to predict trees to be harvested in forest growth forecasts.
For. Syst. 2014, 23, 139. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/biostatistics/kxj011
http://dx.doi.org/10.1186/1471-2105-8-25
http://www.ncbi.nlm.nih.gov/pubmed/17254353
http://dx.doi.org/10.1021/ci034160g
http://www.ncbi.nlm.nih.gov/pubmed/14632445
http://dx.doi.org/10.18637/jss.v067.i01
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1007/s10342-017-1087-7
http://www.webcitation.org/72ruusQZJ
http://www.webcitation.org/72rtsdcBU
http://dx.doi.org/10.1016/j.jspi.2010.01.008
http://dx.doi.org/10.1177/001316446002000104
http://dx.doi.org/10.1016/S0301-4797(02)00188-3
http://dx.doi.org/10.1139/cjfr-2012-0268
http://dx.doi.org/10.5424/fs/2014231-04824
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Data 
	Response and Predicting Attributes 
	Classification Trees 
	Random Forest 
	Plot Harvest Stratum Attribute 
	Harvest Probability Predictions for Sample Trees with Random Forests 
	Harvest Probability Predictions for Sample Trees with Generalized Linear Mixed Model 
	Prediction 
	Evaluation Criteria 

	Results 
	Discussion 
	Conclusions 
	
	References

