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Abstract: This paper overviews the key applications enabled by matrix theory in two major fields of
interest in electrical engineering, namely wireless communications and signal processing. The paper
focuses on the fundamental role played by matrices in modeling and optimization of wireless
communication systems, and in detection, extraction and processing of the information embedded in
signals. Among the major applications in wireless communications, the role of matrix representations
and decompositions in characterizing multiple-input multiple-output (MIMO) and orthogonal
frequency division multiplexing (OFDM) communication systems is described. In addition, this
paper points out the important contribution made by matrices in solving signal estimation and
detection problems. Special attention is given to the implementation of matrices in sensor array signal
processing and the design of adaptive filters. Furthermore, the crucial role played by matrices in
representing and processing digital images is depicted by several illustrative applications. This paper
concludes with some applications of matrix theory in the area of compressive sensing of signals and
by outlining a few open research problems for future study.
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1. Introduction

Matrix theory is widely used in many disciplines of modern engineering, including wireless
communications, signal processing, control, biomedical engineering, etc. From a mathematical
perspective, matrices are used both as a representation as well as an information processing tool
to solve efficiently and reliably practical engineering problems. Since matrices are prevalent in
engineering and have enabled remarkable solutions to problems of paramount importance, this paper
overviews some of the major applications of matrix theory in wireless communications and signal
processing. Our hope is that this article will help in renewing the interest of engineering community in
linear algebra, and in particular in the tools offered by matrix theory, and its applications in engineering.
Rather than describing details for all the statements and developments, our goal is instead to provide
the readers the basic facts and key features of how matrix techniques were applied in some major
engineering applications that played a fundamental role during the last two decades in the fields of
signal processing and wireless communications.

The outline of this paper is summarized as follows. Section 2 describes how matrix techniques are
exploited in the modern communication systems. Specifically, we discuss the key role played by the
concept of singular value decomposition (SVD) in modeling and characterization of the multiple-input
multiple-output (MIMO) or multiple antennas based communication systems, and the important role
played by unitary matrix transformations such as Discrete Fourier Transform (DFT) in the orthogonal
frequency-division multiplexing (OFDM) signaling scheme, which currently has been adopted in many
wireless communications standards. Section 3 focuses on several illustrative uses of matrices in signal
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estimation and detection applications. In particular, the usefulness of matrix decompositions and
matrix inversion lemma in enabling online (recursive) estimation of parameters and development of
adaptive filters is illustrated. A special attention is also given to the applications of matrices in sensor
array signal processing. A more modern estimation method based on large dimensional random
matrix theory is also briefly discussed to exemplify the recent trends in the utilization of matrices in
signal processing and wireless communications. Section 4 describes the close relationship between
matrices and images. Two image compression methods, which rely on matrix transformation and
separation operations, are described. In Section 5, a recently proposed data compression approach
termed as compressive (compressed) sensing is briefly examined from the perspective of the role
played by matrices. Finally, Section 6 concludes the paper by outlining the key role played by matrices
in solving some important problems from the fields of signal processing and wireless communications.
Several open research problems that require more advanced linear algebra concepts and results are
pointed out as well.

Throughout this paper, we will denote scalars by lowercase italic letters (a), vectors by bold
lowercase italic letters (a), and matrices by bold uppercase Roman letters (A).

2. Matrix Theory in Modern Wireless Communication Systems

Nowadays, wireless communications have emerged as the fastest growing segment of the
telecommunications industry. For example, cellular communication systems have exhibited
an explosive growth over the last several decades and currently present over 6 billion users all over the
world. Existing and future applications of wireless communications include multimedia Internet-based
cell phones, high-quality real-time streaming of video and data signals, and transmission, reception and
processing of all sorts of data collected by sensors and devices. The requirements imposed by
these communication systems are subject to many technical challenges. In this section, two modern
signaling schemes: MIMO and OFDM, which are currently adopted in many wireless communications
standards to improve the performance of current wireless communication systems, are discussed.
The presentation will focus mainly on how the matrix theory concepts and results can be applied to
implement and assess the performance of MIMO and OFDM-based communications systems.

2.1. SVD for Modeling MIMO Channels

The channel capacity, defined as the maximum data rate at which data can be sent with arbitrarily
low probability of error, was reported for the Gaussian channel by Shannon in his seminal paper [1].
Currently, achieving higher and higher data rates with tolerable error rates and fixed transmitter power
is one of the most demanding targets for the current wireless communication systems. For example,
the evolution from LTE to 4 G LTE-Advanced communication standard requires an increase in
the downlink data rate from 150 Mbps to 1 Gbps and an uplink data rate increase from 75 Mbps
to 500 Mps [2].

Theoretically, there are many ways to improve the channel capacity, like increasing the signal
power, reducing the noise power, exploitation of space/time/frequency diversity, multiplexing, etc.
However, due to the power limitation and unexpected properties of the receiver noise, diversity and
multiplexing have been two popular design strategies on which researchers focused extensively during
the last decade. Among these techniques, using multiple transmit and multiple receive antennas has
been advocated as one of the most efficient methods to achieve the spatial multiplexing gain.

MIMO signaling is defined as the communication system with multiple antennas at both the
transmitter and receiver, and it can be modeled as a system with multiple inputs and multiple outputs.
A MIMO communication system with Nt transmit and Nr receive antennas is shown in Figure 1.
This system can be depicted by the following matrix representation:
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


y1
...

yNr


 =




h11 · · · h1Nt
...

. . .
...

hNr1 · · · hNr Nt







x1
...

xNt


+




ν1
...

νNr


 , (1)

or simply by y = Hx + ν, where x represents the Nt × 1 dimensional vector of transmitted data
symbols, y denotes the Nr × 1 dimensional vector of received data symbols, H = [hij] stands for
the transmit (propagation channel) matrix with the entry hij denoting the gain from transmitter j to
receiver i, and ν is assumed to represent the white Gaussian noise vector. From (1), one can infer that

yi =
Nt

∑
j=1

hijxj + νi, i = 1, 2, · · · , Nr.

h11

hNrNt

hNr1

h1Nt

x1

xNt yNr

y1

Figure 1. Multiple-input multiple-output (MIMO) channel.

In other words, the output symbol yi is a linear combination of the input symbols, which makes it
difficult to recover the transmitted data symbols. This unfavorable phenomenon is referred to as the
intersymbol interference (ISI) and results in signal aliasing. However, it is shown next that the MIMO
channel can be decomposed into independent signal paths by the help of SVD. This feature enables
to design efficient decoding schemes while achieving the spatial multiplexing gain to improve the
channel capacity. The SVD representation of channel matrix H takes the form:

H = UΣVH , (2)

where U ∈ CNr×Nr and V ∈ CNt×Nt are unitary matrices, Σ ∈ RNr×Nt is a diagonal matrix with
r nonzero diagonal elements, where r ≤ min(Nr, Nt). The parallel decomposition of the MIMO channel
into a series of parallel single-input single-output (SISO) channels can be obtained by pre-multiplying
the transmitted signal with V and post-multiplying the received signal with UH , as shown in Figure 2.

x~

xVx ~
= nHxy +=

y~

yUy
H

=
~

Figure 2. Parallel decomposition.

In the new coordinate system, the relationship between the input and output of channel takes
the form:

ỹ = UH(Hx + ν)

= UH(HVx̃ + ν)

= UH(UΣVHVx̃ + ν)

= Σx̃ + ν̃.

(3)
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Assume Σ = diag(σ1, σ2, · · · , σr, 0, · · · , 0). Thus, the MIMO channel can be decomposed into
r independent SISO channels. Specifically, the ith SISO channel has a gain σi and a noise factor ν̃i,
and assumes the representation

ỹi = σi x̃i + ν̃i.

This implies that all the efficient signaling and decoding strategies well investigated in the SISO
context could be transferred mutatis-mutandis to the MIMO framework with a minimal effort thanks
to SVD.

Moreover, by assuming that the channel state information, or equivalently, the channel matrix H
is known at the receiver but not at the transmitter, Telatar [3] showed that the MIMO channel capacity
can be expressed as

C =
r

∑
i=1

log2

(
1 +

σ2
i ρ

Nt

)
, (4)

where ρ is the transmitted signal power and the additive receiver noise is assumed to have unit
power. This result is in perfect accordance with (3) since the MIMO capacity in (4) can be interpreted
as the summation of independent SISO channel capacities. Under the assumption that the entries
of H follow a zero-mean spatially white (ZMSW) model, the law of large numbers implies that
lim

Nt→∞
1

Nt
HHH = INr , and the capacity can be expressed asymptotically [4] in the presence of a large

number of transmit/receive antennas as

C = Nr log2(1 + ρ).

This implies that as N = min (Nr, Nt) grows large, the channel capacity increases linearly
with N [5]. This fact as well as some other results for MIMO capacity analysis [6,7] makes MIMO
signaling superior to SISO signaling and it also explains the reason why currently MIMO techniques
are so appealing in a broad range of applications such as wireless communications, radar, sonar,
geo-physical (seismic) signal processing, wireless sensor networks, and antenna array processing.
The proposed framework for determining the capacity of MIMO linear time-invariant channels could
be further extended to determine the capacity of memoryless nonlinear MIMO channels subject to
a power constraint [8]. Reference [8] re-formulates this problem within a functional framework and
employs variational calculus techniques to determine the capacity-achieving input distribution of
memoryless nonlinear MIMO channels. As a special case, the capacity-achieving input distribution for
the linear MIMO channel is re-established in [8].

2.2. Matrix Representation of OFDM

Orthogonal frequency-division multiplexing (OFDM) is another core technology employed
by modern wireless communication systems. It is the basic signaling technology in the recently
proposed long-term evolution (LTE) wireless communication standard and has been already adopted
as the basic signaling scheme in many communication standards such as Wireless Local Area
Network (WLAN), Wireless Metropolitan Area Network (WMAN), Wireless Regional Area Network
(WRAN), Wireless Personal Area Network (WPAN), Digital Audio Broadcasting (DAB), and Digital
Video Broadcasting (DVB). OFDM represents a multicarrier system which divides the whole spectrum
into several narrow frequency bands, and the data is transmitted in a parallel manner along all
these narrow frequency bands. The basic signaling mechanism of OFDM [4] is depicted graphically
in Figure 3.
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Figure 3. Orthogonal frequency-division multiplexing (OFDM).

To simplify the exposition, we have represented all the operations between channel input
vector x and output vector y as a system with transfer matrix H, such that y = Hx + ν, where ν

stands for the additive noise vector. OFDM implements an inverse discrete Fourier transform
(IDFT) at the transmitter side and a discrete Fourier transform (DFT) at the receiver side. However,
in practice, the fast Fourier transform (FFT) algorithm is widely used to compute DFT due to its fast
implementation and computational efficiency. This is the reason why the processing blocks are marked
in Figure 3 with FFT and IFFT instead of DFT and IDFT.

Given x[n], n = 0, 1, · · · , N − 1, the N-point DFT of x[n] is defined as

X[k] =
1√
N

N−1

∑
n=0

x[n]e−j 2πnk
N , k = 0, 1, · · · , N − 1.

The sequence x[n] can be recovered back by means of the IDFT as

x[n] =
1√
N

N−1

∑
k=0

X[k]ej 2πnk
N , n = 0, 1, · · · , N − 1.

It is easy to show that the DFT operation can be represented as a matrix multiplication

X = Wx,

where X = [X[0], X[1], · · · , X[N − 1]]T , x = [x[0], x[1], · · · , x[N − 1]]T , and the DFT matrix W is
a unitary matrix expressed as

W =
1√
N




1 1 1 · · · 1
1 w w2 · · · wN−1

1 w2 w4 · · · w2(N−1)

...
...

...
. . .

...
1 wN−1 w2(N−1) · · · w(N−1)2




(5)
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with w = e−j 2π
N . Additionally, the IDFT operation can be expressed as

x = W−1X = WHX,

since W−1 = WH is due to the fact that W is a unitary matrix.

Matrix Analysis of OFDM

Consider a discrete channel H with coefficients h[n], n = 0, 1, · · · , M. The cyclic
prefix [4] is implemented to generate the new sequence x̃[n], n = −M,−M + 1, · · · , N − 1,
where x̃[n] = x[n mod N]. Specifically,

x̃[−M], · · · , x̃[−1], x̃[0], · · · , x̃[N − 1] = x[N −M], · · · , x[N − 1], x[0], · · · , x[N − 1]. (6)

This yields the output y[n] = x̃[n] ∗ h[n] + ν[n]. Introducing the simplified notations x̃[n] as x̃n,
h[n] as hn, etc., it turns out that the relation between the input and output of the channel can be
expressed as




yN−1

yN−2
...

y0



=




h0 h1 · · · hM 0 · · · 0
0 h0 · · · hM−1 hM · · · 0
...

. . . . . . . . . . . . . . .
...

0 0 0 h0 · · · hM−1 hM







x̃N−1
...

x̃0

x̃−1
...

x̃−M




+




νN−1

νN−2
...

ν0




. (7)

Plugging (6) into (7) leads to




yN−1

yN−2
...

y0



=




h0 h1 · · · hM 0 · · · 0
0 h0 · · · hM−1 hM · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · 0 h0 · · · hM−1 hM
...

. . . . . . . . . . . . . . .
...

h2 h3 · · · hM−2 · · · h0 h1

h1 h2 · · · hM−1 · · · 0 h0







xN−1

xN−2
...

x0



+




νN−1

νN−2
...

ν0




, (8)

which can be written compactly as
y = Hx + ν.

It turns out that H is a circulant matrix with the generator vector [h0, 0, · · · , 0, hM, · · · , h1]
T .

According to the properties of circulant matrices [9], H admits the eigenvalue decomposition

H = UΛUH ,

where Λ is a diagonal matrix whose diagonal elements stand for the eigenvalues of H and U is a unitary
matrix whose rows correspond to the columns of DFT matrix W in (5). In other words, U = WH .
Thus, one can infer the following relations:
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Y = Wy

= W(Hx + ν)

= W(HWHX + ν)

= WUΛUHWHX + Wν

= ΛX + ν̃.

(9)

It turns out that by exploiting DFT and IDFT operations and inserting the cyclic prefix,
OFDM transforms a frequency-selective channel into N orthogonal flat-fading subchannels without
ISI, which helps to reduce the complexity of the receiver decoder. Due to its advantages in combining
the energy of all the propagation paths of the channel and enabling a reduced complexity equalization,
OFDM has been adopted in numerous communications standards (ADSL, WLAN, LTE, etc.) and
has been also used in conjunction with the MIMO technique in what it is currently referred to as the
MIMO-OFDM technology [10].

3. Matrix Applications in Signal Estimation Theory

Estimation theory is a branch of statistics that aims to estimating the values of parameters based on
measured or empirical data. Applications of parameter estimation are prevalent in the area of wireless
communications and signal processing. In this section, we briefly discuss how matrix theory can be
applied to simplify signal estimation problems, reduce computational complexity, develop adaptive
(recursive) filters and solve ill-conditioned estimation problems.

3.1. Cholesky Decomposition for Whitening the Noise

The Cholesky decomposition [11] of a Hermitian positive-semidefinite matrix A admits
the representation:

A = DDH ,

where D is a lower triangular matrix with nonnegative diagonal entries. Every Hermitian
positive-definite matrix has a unique Cholesky decomposition.

Cholesky decomposition is mainly used in whitening the noise for signal estimation and detection
applications. Consider a simple vector parameter estimation problem expressed as [12]:

x = θ+ ν, (10)

where x ∈ RN stands for the observed data, ν ∈ RN denotes the additive noise with Gaussian
distribution N (0, Σ) (Σ is not diagonal) and θ represents the unknown vector to be estimated.
Knowledge of the probability density function (PDF) p(x; θ) lies at the basis for several very
well-known and used estimators such as the minimum variance unbiased estimator (MVUE) and the
maximum likelihood estimator (MLE) [12]. In the present application, p(x; θ) stands for a multivariate
Gaussian PDF of the form:

p(x; θ) = (2π)−
N
2 |Σ|− 1

2 e−
1
2 (x−θ)TΣ−1(x−θ), (11)

where | · | denotes the matrix determinant.
Interestingly, if we assume the covariance matrix Σ to be full rank and consider its Cholesky

decomposition, i.e., Σ = DDT , and multiply with the Cholesky factor D−1 both sides of (10), we obtain

D−1x = D−1θ+ D−1ν,

x̃ = θ̃+ ν̃,
(12)

where the covariance matrix of ν̃ is now given by
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E(ν̃ν̃T) = E(D−1ννTD−T) = D−1E(ννT)D−T = D−1ΣD−T = D−1DDTD−T = I.

This transformation whitens the noise such that the new PDF takes the form:

p(x̃; θ̃) = (2π)−
N
2 e−

1
2 (x̃−θ̃)T(x̃−θ̃)

= (2π)−
N
2 e
− 1

2

N−1
∑

i=0
(x̃i−θ̃i)

2

=
N−1

∏
i=0

p(x̃i; θ̃i).

(13)

Using representation (13), where the noise is white (not correlated anymore), the estimation
task can be performed by processing independently each θ̃i on a one-by-one basis, which, in general,
for many applications, leads to a closed form solution. The estimate θ can be obtained by θ = Dθ̃.
In contrast, in (11), we must process the entire vector x due to the dependence caused by the colored
noise. Thus, the whitening method significantly simplifies the estimation problem when the noise
is colored.

3.2. SVD for Least-Squares Based Estimation

Section 2.1 pointed out the important role played by SVD in modeling, implementation and
characterization of MIMO channels. In this new section, we will illustrate the benefits offered by SVD
in solving least-squares (LS) estimation problems [13].

Consider a linear estimation problem defined as follows:

x = Aθ+ ν,

where x ∈ RN is the observed data, ν ∈ RN stands for the additive noise, A ∈ RN×P is the given linear
interaction matrix, and θ ∈ RP is the unknown vector to be estimated.

The LS estimator is defined as

θ̂LS = arg min
θ
||Aθ− x||22, (14)

where || · ||2 stands for the Euclidean norm. If A is full column rank, i.e., rank(A) = P and N ≥ P,
it admits the closed form solution

θ̂LS = (AHA)−1AHx. (15)

However, in the case of N < P, matrix AHA is rank deficient and this solution is invalid. In this
case, an infinite number of minimizers exist, and the set of these solutions is denoted by Θ. A unique
solution for the LS problem can be enforced by selecting the minimum l2 (Euclidean) norm solution
from the set Θ. Thus, one should add this constraint to (14):

θLS = arg min ||θ̂LS||22
θ̂LS ∈ Θ.

(16)

The new optimization problem defined by (14) and (16) can be solved by means of SVD.
In particular, due to the SVD of A, i.e., A = UΣVH , and the fact that multiplying a vector with
a unitary matrix does not change the Euclidean norm of the vector, it turns out that

||Aθ− x||22 = ||UH(UΣVHθ− x)||22 = ||ΣVHθ−UHx||22 = ||Σy− b||22, (17)

where VHθ = y and UHx = b. Since N < P, the singular matrix Σ can be represented as
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Σ =

[
Σ1 0
0 0

]
.

Moreover, b and y can also be decomposed as b = [bT
1 bT

2 ]
T and y = [yT

1 yT
2 ]

T , respectively.
Hence, (17) resumes to

||Aθ− x||22 = ||Σ1y1 − b1||22 + ||b2||22. (18)

Therefore, the minimum-norm LS-solution that minimizes ||Aθ− x||22 is given by y1 = Σ−1
1 b1

and y2 = 0. Alternatively,

y =

[
Σ−1

1 0
0 0

] [
b1

b2

]
= Σ†b,

where the block matrix is denoted as Σ†. Finally, the LS-estimate of θ can be obtained by

θLS = Vy = VΣ†b = VΣ†UHx.

3.3. Matrix Inverse Lemma for Derivation of the Recursive Least-Squares Filter

In many signal processing applications, the data is generated by sampling a continuous-time
signal. In this way, more data becomes available as the time progresses. One can either wait for all the
available data or process the data iteratively in time. The latter approach requires a recursive (online)
approach to update the filter taps. Next, the key role played by the matrix inverse lemma (Woodbury
matrix identity) in deriving the least-squares (RLS) filter will be presented.

The matrix inverse lemma states that [12]:

(A + xyH)−1 = A−1 − A−1xyHA−1

1 + yHA−1x
, (19)

where matrix A ∈ RN×N is assumed invertible, and x, y ∈ RN .
Consider now the linear time-invariant (LTI) system shown in Figure 4. The problem is to adapt

the m-tap FIR filter coefficients h so that its output y(n) follows the reference signal x(n). The received
signal y(n) is expressed as:

y(n) =
m−1

∑
i=0

hn(i)a(n− i) = hH
n an, (20)

where an = [a(n), a(n− 1), · · · , a(n−m + 1)]H is the vector containing the m most recent samples of
input signal a(n). Our goal is to estimate the taps of filter h at each time slot n using a least-squares
estimation approach. Specifically, the problem resumes to:

ĥn = arg min
hn
||Anhn − xn||22, n = 1, 2, · · · , N, (21)

where

An =




a(1) a(0) · · · a(−m + 2)
a(2) a(1) · · · a(−m + 1)

...
...

. . .
...

a(n− 1) a(n− 2) · · · a(n−m)

a(n) a(n− 1) · · · a(n−m + 1)



=




aH
1

aH
2
...

aH
n−1
aH

n



=

[
An−1

aH
n

]
,

and
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hn =




hn(0)
hn(1)

...
hn(m− 2)
hn(m− 1)




and xn =




x(1)
x(2)

...
x(n− 1)

x(n)



=

[
xn−1

x(n)

]
.

As time evolves the number of rows of matrix An keeps increasing, and to avoid repeatedly
calculating from scratch the least-squares estimate of ĥn for each instant of time n, expressing ĥn in
terms of ĥn−1 helps to reduce the computational burden. Indeed, such an approach exhibits the huge
benefit of reducing the computational complexity incurred by evaluating the taps of the filter at each
time instant.

LTI Filter h +

Update Algorithm

a(n)

y(n) - x(n)

e(n)

Figure 4. RLS filter.

As we described earlier in (14) and (15), the problem (21) admits the solution

ĥn = (AH
n An)

−1AH
n xn.

Setting Rn = AH
n An and pn = AH

n xn leads to

ĥn = R−1
n pn. (22)

Moreover, since

Rn = AH
n An =

n

∑
i=1

aiaH
i =

n−1

∑
i=1

aiaH
i + anaH

n = Rn−1 + anaH
n ,

(22) can be expressed as
ĥn = (Rn−1 + anaH

n )−1pn. (23)

Applying the matrix inverse lemma (19) to the inverse of the matrix contained in
Equation (23) yields:

R−1
n = (R−1

n−1 + anaH
n )−1 = R−1

n−1 −
R−1

n−1anaH
n R−1

n−1

1 + aH
n R−1

n−1an
. (24)

Furthermore, defining kn =
R−1

n−1an

1+aH
n R−1

n−1an
and Σn = R−1

n , it follows that

Σn = Σn−1 − knaH
n Σn−1, (25)

and
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Σnan = Σn−1an − knaH
n Σn−1an

= kn(1 + aH
n Σn−1an)− knaH

n Σn−1an

= kn.

(26)

Plugging (25) and (26) into (22) results in

ĥn = Σnpn

= Σn[pn−1 + anx(n)]

= Σnpn−1 + Σnanx(n)

= (Σn−1 − knaH
n Σn−1)pn−1 + knx(n)

= ĥn−1 − knaH
n ĥn−1 + knx(n)

= ĥn−1 + kn[x(n)− aH
n ĥn−1]

= ĥn−1 + ε(n)kn,

(27)

where ε(n) = x(n)− aH
n ĥn−1 and the second equality comes from the fact that

pn = AH
n xn = AH

n−1xn−1 + anx(n) = pn−1 + anx(n).

In a nutshell, the RLS algorithm can be summarized as follows:

(1) Choose a large positive number α, and initialize Σ0 = αI and ĥ0 = 0.
(2) For n = 1, 2, · · · , N, sequentially update

kn =
Σn−1an

1 + aH
n Σn−1an

,

ε(n) = x(n)− aH
n ĥn−1,

ĥn = ĥn−1 + ε(n)kn,

Σn = Σn−1 − knaH
n Σn−1.

As the algorithm processes, the error made by approximating Σ0 = αI and ĥ0 = 0 becomes less
and less significant [12].

In some cases, a weighted least squares estimation error is used as the minimizer by multiplying
the error terms with so-called “forgetting factors”, which are intended to reduce the influence of old
data [14]. The RLS algorithm has emerged as a powerful tool for adaptive filtering, prediction and
system identification applications. Despite the fundamental role played by the RLS algorithm in the
adaptive signal processing field, it encounters numerical problems when implemented in a finite
precision environment, and especially in fixed-point arithmetic DSP processors [15]. The round-off
error propagation, defined as the influence of subsequent computations when a single perturbation
occurs at a random iteration, represents one of the major drawbacks of the RLS algorithm in a finite
precision implementation and has been well studied in literature [16–18]. A popular method to improve
the accuracy and stability of RLS algorithm is to implement a variable forgetting factor (VFF) [19–21].
Other modified RLS methods can be found in [22–25] and the references therein.

3.4. Matrix Theory in Sensor Array Signal Processing

Sensor array signal processing focuses mainly on signal enumeration and source location
applications, and presents a huge importance in many domains such as radar, sonar and underwater
surveillance. The classic problem in sensor array signal processing is to detect and locate the radiating
sources given the temporal and spatial information collected from the sensors. The goal of this section
is to introduce the basic framework of sensor array signal processing and illustrate the fundamental



Algorithms 2016, 9, 68 12 of 21

role of matrix theory in representing and addressing the detection and estimation problems associated
with the radiating sources.

First consider the one-source-one-sensor scenario shown in Figure 5. It is proved in [26] that
under the far-field and narrowband assumptions, the output of a sensor can be modeled as follows:

x(t) = g(θ)s(t)e−jrTk,

where g(θ) is a function of the direction of arrival (DOA) θ, and it represents the frequency response
of the sensor. Variable s(t) represents the complex envelope of the source signal, and r and k
stand for the radius vector and the wave vector, respectively. The magnitude of k is defined as
|k| = α = 2π/λ, where λ is the wavelength. As shown in Figure 5, in a two-dimensional plane,
we have k = α(cos θ, sin θ)T and r = (x, y)T . Thus, the output of the sensor can be simplified to

x(t) = g(θ)e−jα(x cos θ+y sin θ)s(t) = a(θ)s(t), (28)

where a(θ) = g(θ)e−jα(x cos θ+y sin θ).

x

y

r

Source

-k

Sensor

θ

Figure 5. One-sensor one-source array.

For the one-source-L-sensor case, the array output vector can be expressed as

x(t) = a(θ)s(t), (29)

where x(t) = [x1(t), x2(t), · · · , xL(t)]T denotes the output of each sensor and
a(θ) = [a1(θ), a2(θ), · · · , aL(θ)]

T stands for the steering vector and captures the sensor array
geometry information. Two common array geometries, termed as the uniform linear array (ULA) and
uniform circular array (UCA), are depicted in Figure 6. For ULA, rl = [(l − 1)d, 0]T , and for UCA,
rl = R[cos(2π(l − 1)/L), sin(2π(l − 1)/L)]T . Additionally, if we assume that all the sensors have the
same frequency response, g1(θ) = · · · = gL(θ) = g(θ), the ULA steering vector takes the form:

aULA(θ) = g(θ)[1, e−jαd cos θ , · · · , e−jα(L−1)d cos θ ]T , (30)

and the UCA admits the form:

aUCA(θ) =g(θ)[e−jαR cos θ , e−jαR[cos(2π/L) cos θ+sin(2π/L) sin θ], · · · ,

e−jαR[cos(2π(L−1)/L) cos θ+sin(2π(L−1)/L) sin θ]]T .
(31)
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Figure 6. Array geometries

Furthermore, if N source signals with DOA θn, n = 1, 2, · · · , N, are superimposed on an L-dimensional
array (N -source-L-sensor), the array output vector can be expressed as

x(t) =
N∑

n=1

a(θn)sn(t),

or compactly as
x(t) = A(θ)s(t), (32)

where x(t) = [x1(t), · · · , xL(t)]T ∈ RL, A(θ) = [a(θ1), · · · , a(θN)] ∈ RL×N and s(t) =

[s1(t), · · · , sN(t)]T ∈ RN . In the presence of an additive noise ν(t), the sensor array equation can
be expressed as:

x(t) = A(θ)s(t) + ν(t). (33)

The central goal of array signal processing is to locate the source signals, or equivalently, to estimate
the DOAs θ given the observed data x(t) at the sensors. From (33), we can see that the input and
the output are just related by a steering matrix A(θ) and the problem formulation is simplified using a
steering matrix representation. Moreover, the estimation problem may also be addressed efficiently by
exploring the special structure of the steering matrix. For instance, under the ULA geometry, we aim at
estimating θ = [θ1, · · · , θN ]T subject to




x1(t)

x2(t)
...

xL(t)



=




1 1 · · · 1

e−jαd cos θ1 e−jαd cos θ2 · · · e−jαd cos θN

...
... . . . ...

e−jα(L−1)d cos θ1 e−jα(L−1)d cos θ2 · · · e−jα(L−1)d cos θN







s1(t)

s2(t)
...

sN(t)




+




ν1(t)

ν2(t)
...

νL(t)




. (34)

It can be observed that the steering matrix A(θ) for the ULA geometry is a Vandermonde matrix.
Thus, the special properties of Vandermonde matrices can be exploited to develop efficient algorithms
to estimate the DOA. For instance, the estimation of signal parameters by rotation invariant techniques
(ESPRIT) [28] utilizes the so-called shifting property of Vandermonde matrices, which can be easily
understood by considering two submatrices A1 and A2 of A(θ), obtained by removing the first and
last rows of the steering matrix A(θ), respectively. Due to the structure of Vandermonde matrix
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Furthermore, if N source signals with DOA θn, n = 1, 2, · · · , N, are superimposed on
an L-dimensional array (N-source-L-sensor), the array output vector can be expressed as

x(t) =
N

∑
n=1

a(θn)sn(t),

or compactly as
x(t) = A(θ)s(t), (32)

where x(t) = [x1(t), · · · , xL(t)]T ∈ RL, A(θ) = [a(θ1), · · · , a(θN)] ∈ RL×N and
s(t) = [s1(t), · · · , sN(t)]T ∈ RN . In the presence of an additive noise ν(t), the sensor array equation
can be expressed as:

x(t) = A(θ)s(t) + ν(t). (33)

The central goal of array signal processing is to locate the source signals, or equivalently,
to estimate the DOAs θ given the observed data x(t) at the sensors. From (33), we can see that
the input and the output are just related by a steering matrix A(θ) and the problem formulation is
simplified using a steering matrix representation. Moreover, the estimation problem may also be
addressed efficiently by exploring the special structure of the steering matrix. For instance, under the
ULA geometry, we aim at estimating θ = [θ1, · · · , θN ]

T subject to




x1(t)
x2(t)

...
xL(t)



=




1 1 · · · 1
e−jαd cos θ1 e−jαd cos θ2 · · · e−jαd cos θN

...
...

. . .
...

e−jα(L−1)d cos θ1 e−jα(L−1)d cos θ2 · · · e−jα(L−1)d cos θN







s1(t)
s2(t)

...
sN(t)



+




ν1(t)
ν2(t)

...
νL(t)




. (34)

It can be observed that the steering matrix A(θ) for the ULA geometry is a Vandermonde matrix.
Thus, the special properties of Vandermonde matrices can be exploited to develop efficient algorithms
to estimate the DOA. For instance, the estimation of signal parameters by rotation invariant techniques
(ESPRIT) [27] utilizes the so-called shifting property of Vandermonde matrices, which can be easily
understood by considering two submatrices A1 and A2 of A(θ), obtained by removing the first and
last rows of the steering matrix A(θ), respectively. Due to the structure of Vandermonde matrix
A(θ) in (34), the shifting property manifests through the fact that matrices A1 and A2 are related
by means of shift matrix Φ via A2 = A1Φ, where Φ is a diagonal matrix with diagonal elements
[e−jαd cos θ1 , e−jαd cos θ2 , · · · , e−jαd cos θN ]. Therefore, the DOA estimation problem is simplified to that of
finding Φ, which can be addressed by exploring the eigenvalue decomposition of the sensor array
covariance matrix. The interested reader is referred to [14,26,28] for more details about ESPRIT and
other matrix factorization based algorithms for sensor array estimation.
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3.5. Random Matrix Theory in Signal Estimation and Detection

Suppose we are given a parameter to be estimated with a “population size” of N and n
observations of the population. Many estimation methods proposed in literature rely on the asymptotic
behavior that the number of observations is much larger than the population size, i.e., n/N → ∞.
However, in modern signal processing, this assumption sometimes is not met in practice. For instance,
in biological networks, the estimate generally consists of a large number of DNAs and the population
size may also grow as the number of observations increases. Moreover, in radar applications, a large
number of sensors are used to detect a fast moving object with observations available only during
a short time period. Therefore, under such a set-up, the proposed estimators may perform poorly
if the condition n/N → ∞ is not satisfied. Recently, a novel estimation method based on the large
dimensional random matrix theory has been proposed to cope with this situation. The random
matrix theory originated from the work of Wigner [29] in 1955 and was later generalized to a large
extent by Marcenko and Pastur [30] in 1967. Recently, a considerable amount of work based on
random matrix theory has emerged in the literature of signal processing, wireless communications
and information theory.

Consider a simple example from [31], where x ∈ CN is a complex random vector with zero
mean and covariance matrix R. Given n observations of x, we will consider a classic estimator of R

in the form of the sample covariance matrix Rn = 1
n

n
∑

i=1
xixH

i . Because of the law of large numbers,

||Rn − R||2 a.s.−→ 0 as n → ∞, where || · ||2 denotes the spectral norm of a matrix, i.e., the absolute
value of the largest eigenvalue if the matrix is Hermitian, and a.s.−→ stands for almost sure convergence.
By taking the special case where R = IN , it was shown in [31] that if n → ∞ but n/N does not
tend to zero, i.e., n/N = 1/2, the spectral norm of Rn − IN is at least greater than 1. The problem
lies in the fact that the random eigenvalue distribution FRn of Rn does not converge to a Dirac mass
measure at 1 [31]. However, it is observed that in many scenarios, it converges to a limit distribution
as N, n → ∞, N/n = c. In the special case where R = IN , the limit distribution is referred to as
the Marcenko-Pastur distribution [30]. The derivation of the eigenvalue distribution for such large
dimensional matrices brings the most fundamental tool of random matrix theory, namely the Stieltjes
transform, and it is also a necessary prior step for parameter estimation and detection problems.
Furthermore, the knowledge of the eigenvalue distribution for large dimensional matrices alone plays
a paramount role in some wireless communication problems, such as computing or approximating the
capacity of multi-antenna based channels. The interested reader can refer to [32–35] for more details
about applications of random matrix theory in wireless communications.

In the following, we present a parameter estimation problem where the conventional sample
covariance method fails for comparable population size and number of observations. In this case,
an estimation method based on the spectral properties of large dimensional random matrices,
referred to as the G-estimation method [36] can be employed to improve the performance. Rather than
analyzing the complicated mathematical details of the random matrix theory and G-estimation method,
our aim is instead to illustrate how the random matrix theory can be applied in a typical application.
Consider a multi-source power estimation problem [31], where at time t, a number of N sensors receive
signals from K sources which are equipped with n1, n2, · · · , nK transmitters, respectively. The observed
data y ∈ CN from sensors at time t can be expressed as

y(t) =
K

∑
k=1

√
PiŨixi(t) + σν(t), (35)

where Pi denotes the transmit power of source i, xi ∈ Cni stands for the signal collected from source i
and it is assumed to be complex Gaussian distributed with zero mean and identity covariance matrix,
and σν represents the additive noise. For simplicity, the channel matrix Ũi ∈ CN×ni is selected such
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that [Ũ1, Ũ2, · · · , ŨK] ∈ CN×(n1+n2+···+nK) represent the n1 + n2 + · · · + nK columns of the unitary
matrix U ∈ CN×N .

If follows that
E[y(t)y(t)H ] = UPUH + σ2IN ,

where P is a diagonal matrix with diagonal elements

P1, · · · , P1︸ ︷︷ ︸
n1

, P2, · · · , P2︸ ︷︷ ︸
n2

, · · · , PK, · · · , Pk︸ ︷︷ ︸
nK

, 0, · · · , 0︸ ︷︷ ︸
N−n1−···−nK

.

Suppose that L independent observations of y(t) are available, i.e., y(1), y(2), · · · , y(L). Thus,
it follows that as L→ ∞: ∥∥∥∥∥

1
L

L

∑
i=1

y(i)y(i)H − σ2IN −UPUH

∥∥∥∥∥
a.s.−→ 0, (36)

and a consistent estimator can be derived. However, when N is also a large number and L and
N are comparable, (36) does not hold anymore. Using the Stieltjes transform and its extensions,
the G-estimation method is generally adopted to improve the estimation performance. More technical
and mathematical details about the Stieltjes transform and its generalizations can be found in [31,35].

4. Matrices in Image Processing

In digital image processing, images are usually represented using matrices. For example,
the gray-scale image “Lena.tiff” is illustrated in Figure 7a, while its matrix representation is shown
in Figure 7b. A matrix element is called “pixel”. Most digital images use integer numbers between 0
(to indicate black) and 255 (to indicate white) to represent the values of pixels, giving a total of 28 = 256
gray levels. Color images, in turn, can be represented by three matrices. These matrices specify the
amount of red (R), green (G) and blue (B) present in the image. This representation system is known as
the RGB system.
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Figure 7. Example of gray-scale figure

In the following sections, two image compression methods are discussed, namely the block transform
coding and wavelet representation, both of which decompose the image matrix into several submatrices
and use the sparsity of these submatrices to compress the image.

4.1. Block Transform Coding

The block transform coding [37] is a compression technique which divides an image into several
non-overlapping subimages of equal size and then processes these subimages using a 2-D transform.
It turns out that after implementing a block transformation, for most subimages, a large portion of the
resulting coefficients present small magnitudes and thus can be discarded. Therefore, using the block
transform coding, one can develop a very simple storage mechanism since most of the block transformed
entries assume small values and can be neglected.

Specifically, an M × N image is divided into MN/n2 subimages each of which has a size n × n.
Consider a subimage with coefficients g(x, y), the 2-D transform can be expressed as follows:

T (u, v) =
n−1∑

x=0

n−1∑

y=0

g(x, y)r(x, y, u, v). (37)

The original image g(x, y) can be recovered by the inverse transform defined by

g(x, y) =
n−1∑

u=0

n−1∑

v=0

T (u, v)s(x, y, u, v). (38)

In these equations, r(x, y, u, v) and s(x, y, u, v) are referred to as forward and inverse transformation
kernels, respectively. The kernels depend on what transformation (DFT, DCT, Haar Wavelet Transform,
etc.) is implemented. In this paper, the JPEG image compression standard using the discrete cosine
transform (DCT) is presented. In this case, we have

r(x, y, u, v) = s(x, y, u, v) = α(u)α(v) cos

[
(2x + 1)uπ

2n

]
cos

[
(2y + 1)vπ

2n

]
,

where

α(x) =





√
1
n
, x = 0,√

2
n
, x = 1, 2, · · · , n − 1.

Figure 7. Example of gray-scale figure.

In the following sections, two image compression methods are discussed, namely the block
transform coding and wavelet representation, both of which decompose the image matrix into several
submatrices and use the sparsity of these submatrices to compress the image.

4.1. Block Transform Coding

The block transform coding [37] is a compression technique which divides an image into several
non-overlapping subimages of equal size and then processes these subimages using a 2-D transform.
It turns out that after implementing a block transformation, for most subimages, a large portion of
the resulting coefficients present small magnitudes and thus can be discarded. Therefore, using the



Algorithms 2016, 9, 68 16 of 21

block transform coding, one can develop a very simple storage mechanism since most of the block
transformed entries assume small values and can be neglected.

Specifically, an M× N image is divided into MN/n2 subimages each of which has a size n× n.
Consider a subimage with coefficients g(x, y), the 2-D transform can be expressed as follows:

T(u, v) =
n−1

∑
x=0

n−1

∑
y=0

g(x, y)r(x, y, u, v). (37)

The original image g(x, y) can be recovered by the inverse transform defined by

g(x, y) =
n−1

∑
u=0

n−1

∑
v=0

T(u, v)s(x, y, u, v). (38)

In these equations, r(x, y, u, v) and s(x, y, u, v) are referred to as forward and inverse
transformation kernels, respectively. The kernels depend on what transformation (DFT, DCT,
Haar Wavelet Transform, etc.) is implemented. In this paper, the JPEG image compression standard
using the discrete cosine transform (DCT) is presented. In this case, we have

r(x, y, u, v) = s(x, y, u, v) = α(u)α(v) cos
[
(2x + 1)uπ

2n

]
cos

[
(2y + 1)vπ

2n

]
,

where

α(x) =





√
1
n , x = 0,√
2
n , x = 1, 2, · · · , n− 1.

Equations (37) and (38) can be written in a compact form by using matrices. Consider (38) as
an example,

G =
n−1

∑
u=0

n−1

∑
v=0

T(u, v)Suv, (39)

where G is the subimage matrix consisting of g(x, y) and

Suv =




s(0, 0, u, v) s(0, 1, u, v) · · · s(0, n− 1, u, v)
s(1, 0, u, v) s(1, 1, u, v) · · · s(1, n− 1, u, v)

...
...

. . .
...

s(n− 1, 0, u, v) s(n− 1, 1, u, v) · · · s(n− 1, n− 1, u, v)




.

Similarly, (37) can be defined as

T =
n−1

∑
x=0

n−1

∑
y=1

g(x, y)Rxy. (40)

4.2. Wavelet Representation

Besides the classical DCT image representation, another modern image representation method,
that relies on the 2-D wavelet coding and lies at the basis of JPEG 2000 standard [37], is used extensively.
Different from the transform coding, the wavelet coding processes the whole image and results in
a modified image consisting of four subimages. For example, after processing Figure 7a using the Haar
wavelet, the modified image in Figure 8a is obtained. The four submatrices represent the approximation,
the horizontal details, the vertical details and the diagonal details, respectively. One can observe that
the three detail matrices can be coarsely quantized since their coefficients roughly present similar values.
Moreover, the approximation matrix in Figure 8a can also be decomposed into four sub-subimages as
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shown in the upper left corner of Figure 8b. In this way, the image is compressed to a higher degree
given the premise that the original image can be recovered with a tolerated quality.

Vertical
Detail

Approx Horizontal
Detail

Diagonal
Detail

(a) First scale Haar wavelet transform (b) Second scale Haar wavelet transform

Figure 8. Haar Wavelet transform.

5. Compressive Sensing

The celebrated Shannon/Nyquist sampling theorem states that in order to reconstruct a signal
without losing information, the sample rate must be at least two times larger than the signal bandwidth.
So far, most signal acquisition techniques rely on this principle. As mentioned in Section 4.1,
transform coding plays a key role in data acquisition systems. However, this compression framework
suffers from several drawbacks [38]. For instance, consider a discrete signal x ∈ RN with entries x[n],
n = 0, 1, · · · , N − 1. An image or a higher-dimensional data structure can be also vectorized into
a long one-dimensional vector. It is known that any signal in RN can be represented in terms of a basis
of N vectors {ψi}N−1

i=0 . In this case,

x =
N−1

∑
i=0

siψi = Ψs,

where s stands for the weighting coefficients and Ψ is the basis matrix with columns [ψ0, · · · , ψN−1].
The signal x is called K-sparse if only K coefficients of s are non-zero and the remaining N − K
coefficients are roughly zero (or can be truncated to zero). Thus, in order to process the transform
coding, the locations of the K non-zero coefficients must be coded, which results in an overhead.
Moreover, the N − K zero coefficients still need to be computed even though they will be discarded.

Compressive sensing addresses these issues by directly processing the compressed signal without
acquiring the original N-sample signal provided that the signal is K-sparse [39]. This novel sampling
method dramatically undersamples the signal at a greatly reduced rate. Next we will present the
mathematical model behind this new technique.

Consider the following representation [38]:

y = Φx = ΦΨs = Θs, (41)

where x ∈ RN stands for the original signal, y ∈ RM (M � N) denotes the compressed signal,
and Φ ∈ RM×N represents the linear measurement process. Mathematically, the problem can be
formulated as follows. First, find a matrix Φ such that y = Φx preserves most of the information
embedded in x. Second, find an algorithm to recover x from only M samples of y.
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5.1. Good Sensing Matrices

The most critical issue is to determine whether Φ is good for compressive sensing and
reconstruction. The reconstruction seems to be impossible at first glance since the problem is
ill-conditioned (M < N). However, it is now well-known that one can reconstruct the sparse signal
from a limited number of measurements if the sensing matrix satisfies the restricted isometry property
(RIP) [39–41]. A matrix Φ ∈ RM×N is said to satisfy the RIP of order K < M with isometry constant
δK ∈ (0, 1) if

(1− δK)||v||22 ≤ ||Φv||22 ≤ (1 + δK)||v||22
holds for any K-sparse vector v.

Since verifying the RIP property of a matrix requires an exhaustive search of all (N
K) possibilities,

most algorithms developed so far are based on randomization. Typically, the matrix elements
are produced by independent and identically distributed (i.i.d.) random variables with certain
distribution. References [42] and [43] proved that if the elements of matrix Φ are i.i.d. Gaussian random
variables with zero means and variance 1/N, and M ≥ cK log(N/K) where c is a small constant,
then Φ satisfies RIP with a very high probability. Therefore, the signal can be recovered from
only M ≥ cK log(N/K)� N variables. Other available selections for robust sensing matrices are
discussed in [42,44].

5.2. Compressive Signal Reconstruction

The signal reconstruction problem requires the recovery of signal x, or equivalent of the weighted
coefficients s, given the sensing matrix Φ, basis matrix Ψ and compressed signal y. The ultimate goal
of compressive sensing is to find the possible sparsest representation of the signal. Therefore, the ideal
reconstruction problem can be expressed via the l0 norm as follows:

min ||s||0
s.t. Θs = y.

(42)

Unfortunately, such a formulation of the problem is both numerically unstable and
computationally complex (NP-complete) [45]. For simplicity, problem (44) can be reduced to minimize
the l2 norm of s

min ||s||2
s.t. Θs = y,

(43)

which leads to the closed form solution ŝ = θT(θθT)−1y. However, this method will almost never
yield a K-sparse solution. Even worse, usually a full representation solution (no zero elements) will be
generated by using the l2 norm.

Surprisingly, the optimization based on the l1 norm is the most promising recovery technique
used so far for sparse signals. In this case, the recovery problem is formulated as follows:

min ||s||1
s.t. Θs = y.

(44)

In some cases, the l1 minimization yields the same result as the ideal l0 minimization [46].
Moreover, the l1 minimization can be efficiently solved via linear programming which presents
a computational complexity of O(N3). For the last decade, a series of papers [39,43,47] explained
why l1 minimization can be approximated as an l0 minimization and why it can recover a sparse
signal. Until now, most of the works dedicated to compressive sensing, see, e.g., the works of Dandes,
Romberg, Tao and Donoho [39–43] assume the l1 norm formulation.
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6. Conclusions

This paper overviewed how matrix theory can be applied in wireless communications and
signal processing applications. In particular, this paper illustrated how matrix transformations,
matrix decompositions and random matrix theory could be exploited in the implementation,
characterization and optimization of MIMO communication systems, OFDM signaling schemes and
signal estimation applications. This paper also reviewed the significant role played by matrices in
representing and processing digital images and signals acquired by an array of sensors. Furthermore,
a recent research activity termed as compressive sensing was briefly discussed herein paper. It will
require continued efforts from researchers in wireless communications and signal processing to
ultimately exploit the full potential applications of matrix theory. Furthermore, the complex
phenomena in nature and engineering applications require higher-dimensional matrices for their
modeling, characterization and understanding. In this regard, tensors have been used in mathematics,
physics and engineering since they are a generalization of scalars, vectors and two-dimensional arrays
to represent more complex quantities and properties in higher dimensions. Therefore, a promising
research direction is to investigate new applications of tensors in wireless communications and signal
processing, and to extend the arsenal of mathematical tools available for storing, extracting and
processing information from tensors. Finally, we would like to mention that linear algebra plays a very
important role in developing powerful algorithms in bioinformatics and systems biology applications.
Numerous algorithms for the inference of gene and proteomic regulatory networks as well as for
the inference of transcription factor networks have been proposed in literature (see, e.g., [48,49]) by
exploiting linear algebra tools. However, reviewing these computational biology applications as well
as numerous other machine learning applications where linear algebra plays a key role is beyond the
scope of this paper.
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