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Abstract:



Support vector machines (SVM) are proposed in order to obtain a robust controller for ship course-keeping. A cascaded system is constructed by combining the dynamics of the rudder actuator with the dynamics of ship motion. Modeling errors and disturbances are taken into account in the plant. A controller with a simple structure is produced by applying an SVM and L2-gain design. The SVM is used to identify the complicated nonlinear functions and the modeling errors in the plant. The Lagrangian factors in the SVM are obtained using on-line tuning algorithms. L2-gain design is applied to suppress the disturbances. To obtain the optimal parameters in the SVM, then particle swarm optimization (PSO) method is incorporated. The stability and robustness of the close-loop system are confirmed by Lyapunov stability analysis. Numerical simulation is performed to demonstrate the validity of the proposed hybrid controller and its superior performance over a conventional PD controller.
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1. Introduction


Ship motion control plays an important role in guaranteeing the safety and economy of a ship in navigation. Well-designed control systems allow ships to sail and perform tasks with adequate reliability and economy in severe seas, which are usually due to uncertain environmental forces induced by wind, waves, and current. Since the ship dynamics are nonlinear essentially and often affected by uncertain environmental forces, it is challenging to achieve a robust and accurate control system for ship motion, which refers to course-keeping, roll stabilization, path following, dynamic positioning, vertical motion control, and station-keeping [1]. Conventional control strategies like PID control can no longer satisfy the requirement of navigation, guidance and control of ships. During recent decades, many advanced control schemes have been developed and successfully applied to ship motion control, including sliding mode variable structure control [2,3]; parameter adaptive control [4,5]; H-infinity robust control [6,7]; neural-network control [8,9]; fuzzy control [10,11]; neuro-fuzzy control [12,13]; line-of-sight based model control [14,15], etc.



To obtain a controller for ship motion, knowledge of the ship’s dynamic characteristics is necessary. This knowledge can be obtained through the mathematical model of ship motion. In ship motion control, usually two kinds of mathematical models are available, i.e., control-design models and high-fidelity models [1]. A precise mathematical model of the plant allows one to design a satisfactory controller by applying some conventional control strategies such as linearization feedback control [16], PID control [17], and adaptive control [18]. However, the ship dynamics is inevitably affected by some uncertainties, which might degrade the controller performance if the uncertainties are not properly compensated for or suppressed in the controller design. Such uncertainties include modeling errors and disturbances. For modeling errors, they refer to parameter errors, ignored high-order modes and unmodelled dynamics of ship motion. Examples of unmodelled dynamics are thrust and torque losses, cross-coupling drag, varying wake, air suction and interaction between the thruster and the hull [19]. For disturbances, they result from random noises in mechanical and electrical equipments, or the environmental forces induced by wind, waves and current. Usually, neither modeling errors nor disturbances can be described by precise mathematical expressions. Therefore, a robust and accurate control scheme is required. H-infinity control is one of the main choices [20,21]. However, there are two difficulties with this method. One is that prior knowledge about the bound of an uncertainty is required, which is challenging sometimes. The other is the difficulty in guaranteeing the control accuracy because of the absence of adaptation to the changing characteristics of uncertainties.



To deal with the uncertainties in a plant, an artificial intelligence (AI)-based controller provides another interesting and effective option. Such an AI-based controller is characterized by nonlinear mapping and on-line learning abilities, which make it possible to identify and compensate for the uncertainties in the plant. Commonly employed AI computing approaches include neural networks (NN), Bayesian probability, fuzzy logic, machine learning, evolutionary computation and genetic algorithms. Combined with AI computation, the controller performance can be greatly improved [22]. In the field of ship motion control, during last decades there have been many NN applications e.g., [8,9,23,24]. Comparatively, SVM is a novel technique of Artificial Intelligence. This kind of learning machine aims to achieve structural risk minimization (SRM) [25] that makes it outperform the algorithms based on empirical risk minimization (ERM) like NN. Better generalization ability can be guaranteed because not only prediction error but also model complexity is considered when performing SRM. Globally optimal solution can also be guaranteed in SVM since convex quadratic programming is performed. Additionally, by applying the kernel trick, the curse of dimensionality can be avoided in SVM, which is usually inevitable in NN. SVM has found wide applications in the field of control engineering and in the past years, there have been some SVM applications to ship motion control. For instance, Liu et al. applied fuzzy SVM to the course-keeping [26]. Jiang et al. proposed SVM based general predictive control (GPC) for ship course-keeping [27]. Luo et al. presented a robust SVM controller for the ship course-keeping [28].



This paper presents a robust controller for the ship course-keeping by using SVM identification and L2-gain design. The investigated plant is composed of the ship dynamics and the dynamics of rudder actuator. Uncertainties are taken account of in the cascaded system, which refer to modeling errors and external disturbance. In the controller design, the modeling errors are identified by SVM while the external disturbance is suppressed by using L2-gain design. To guarantee the robust stability of the controller, a Lyapunov recursive function method is adopted. The main novelty of our approach is the determination of the Lagrangian factors in SVM. Rather than calculate the Lagrangian factors through a matrix equation, one can obtain these factors by solving differential equations proposed. To improve the control accuracy, the parameters in SVM are optimized by incorporating particle swarm optimization (PSO). The rest of the paper is organized as follows. In Section 2, the mathematical model of ship steering, the methodologies of SVM and PSO are described; in Section 3, the details of the controller design and the stability analysis are given; in Section 4, a simulation example is presented to illustrate the validity of the controller designed; and the final section is the concluding remarks.




2. Problem Formulation


2.1. Mathematical Model of Ship Steering


A general six-degree-of-freedom (6DOF) model of ship motion can be described as [29]


[image: there is no content]



(1)




where [image: there is no content] is the generalized position vector with [image: there is no content], defined in the North-East-Down geographical reference frame; [image: there is no content] is the generalized velocity vector with [image: there is no content], defined in the body-fixed reference frame; [image: there is no content] is the kinematic transformation matrix between the body-fixed reference frame and the North-East-Down geographical reference frame; [image: there is no content] is the rigid-body mass matrix; [image: there is no content] is the Coriolis-centripetal matrix; [image: there is no content] denotes a generalized force vector.



System (1) gives a general description of the motion of a marine vessel, a surface ship or an underwater vehicle. In practical applications to ship motion control, this complicated model is often simplified to a model with less than 6DOF. Such a simplified model can be called as a control-design model in which the essential behavior of a dynamic system is captured [1]. More often than not, to study the yaw dynamics and control, a 1DOF model can be adopted. This model is usually named as the response model (sometimes named as Nomoto model or K-T model). Despite simplicity, this model reflects the important response characteristics of the yaw dynamics, from the control input (i.e., the rudder angle) to the system output (i.e., the yaw rate or the heading angle). Practically, this kind of model is commonly preferred in the studies on ship motion control. A first-order nonlinear response model has the form as


[image: there is no content]



(2)




where [image: there is no content] are manoeuvring indices; [image: there is no content] the heading angle; [image: there is no content] the yaw rate; [image: there is no content] the coefficient of nonlinear term; [image: there is no content] the rudder angle. If uncertainties are taken into account, the second subsystem of (2) can be written as


[image: there is no content]



(3)




where [image: there is no content] is the modeling error, [image: there is no content] is the external disturbance.



In many researches on ship course-keeping control, the actuator dynamics were ignored. It should be noted that if the time constant of the actuator is not much smaller than that of the ship, ignoring the actuator dynamics would result in degradation of the controller performance. Generally, the rudder actuator dynamics can be expressed as


[image: there is no content]



(4)




where [image: there is no content] is the time constant of rudder; [image: there is no content] the demand or execution rudder angle. Combining (3) and (4) through an integrator, a cascaded system is derived as follows, in which [image: there is no content] is the system control input; while the rudder angle [image: there is no content] is an interim state variable and the heading angle [image: there is no content] is the system output.


[image: there is no content]



(5)








2.2. Support Vector Regression


SVM is a kind of machine learning algorithm for classification and regression. Since it was invented, it has been widely applied in scientific and engineering areas due to its powerful learning abilities. For a MISO system, support vector machines for regression (SVR) have a general form as


[image: there is no content]



(6)




where [image: there is no content] is a nonlinear function vector. The above calculation is performed in a so-called high-dimensional feature space to approximate the hidden mapping relationship contained in the original training samples:


[image: there is no content]








where [image: there is no content] is the number of samples.



To improve feasibility, SVM has been developed during the last decade and some effective modified SVM versions have been proposed, one of which is the Least Squares SVM (LS-SVM). Rather than solve the problem of convex quadratic programming that is required in standard SVM, LS-SVM provides a simpler solution by solving a linear matrix equation [30,31]


[image: there is no content]



(7)




where

	
[image: there is no content];



	
[image: there is no content] is a [image: there is no content]-dimensional unit matrix;



	
[image: there is no content] is the kernel matrix with the element [image: there is no content];



	
[image: there is no content] is the so-called regularization factor, an important hyperparameter that controls the tradeoff between empirical risk and generalization ability of SVM;



	
[image: there is no content]; [image: there is no content].








After the constant [image: there is no content] and Lagrangian factors [image: there is no content] are calculated through (7), the estimated function in (6) can be determined by


[image: there is no content]



(8)




where [image: there is no content] is the number of the support vectors associated with nonzero [image: there is no content]. [image: there is no content] is the kernel function defined by [image: there is no content].




2.3. Particle Swarm Optimization


Besides SVM, another AI technique, particle swarm optimization (PSO) is also applied in this paper. As a popular parameter optimization tool, PSO is introduced to obtain the optimal parameters in SVM, which exert a vital influence on the performance of SVM. Model selection is an important issue in machine learning, no matter for classifiers or regressors. For SVM, the main concern in model selection is the selection of SVM parameters. Those parameters include insensitivity factor, regularization factor, and kernel parameters. However, how to calculate their optimal values theoretically still remains unsolved. One reason is that it is difficult to determine the VC dimension [32]. A simple and commonly used way to obtain these parameters is the trial-and-error method despite some proposals, for instance analytic parameter selection directly from the training data [33], in-sample and out-of-sample method [34], dynamic particle filter [35], etc. To improve the performance of SVM, this paper makes use of PSO to determine SVM parameters.



The main idea of PSO is to optimize a problem from a population of candidate solutions (so-called particles). These particles are moved towards the optimal position (best solution) through iteration of velocity and position [36]. This optimization method is easy to use since few or no assumptions are required; for example the optimization problem is not required to be differentiable. Moreover, a globally optimal solution can be guaranteed even if the capacity of candidate solutions is very large. In practice, PSO has been proven an effective universal parameter optimizer. There have been some PSO applications to the parameter optimization of SVM, e.g., [37,38,39].



A standard PSO algorithm adopts the following iteration formulae about the particle’s velocity and position


[image: there is no content]



(9)






[image: there is no content]



(10)




where [image: there is no content] is the velocity of a particle at the k-th step; n is the number of particles; q is the dimension of particle; [image: there is no content] is the position of a particle; [image: there is no content] is the inertia weight; [image: there is no content] and [image: there is no content] are acceleration coefficients; [image: there is no content] is the best position of a individual particle while [image: there is no content] is the swarm or social best position; [image: there is no content] are both random.





3. Controller Design and Stability Analysis


Usually, the problem of ship course-keeping control can be viewed as a tracking control issue. Without loss of generality, two general assumptions with respect to the continuous cascaded system described by (5) can be given as [A1]. The desired system output signal [image: there is no content] is differentiable and the cascaded system is controllable. [A2]. The external disturbance [image: there is no content] is bounded with [image: there is no content]



3.1. Controller Design


First of all, feedback control is applied to the certain terms in the System (3). A desired rudder angle can be defined as


[image: there is no content]



(11)




where [image: there is no content], [image: there is no content] is introduced as an auxiliary controller to deal with the uncertainties in (3).



Three error signals are defined as


[image: there is no content]



(12)






[image: there is no content]



(13)






[image: there is no content]



(14)







Incorporating (11)–(14) into (3), it follows


[image: there is no content]



(15)







For the actuator dynamics described by (4), the controller can be designed as


[image: there is no content]



(16)




where [image: there is no content] is another auxiliary controller. By analogy to (15), it holds


[image: there is no content]



(17)







Thus, based on (15) and (17), an error system can be obtained as


[image: there is no content]



(18)







As can be seen, the above system is linear with respect to the error vector [image: there is no content]. Moreover, the convergence of the error system will depend on the design of two auxiliary controllers, i.e., u1 and u2. Lyapunov function method is adopted to obtain proper u1 and u2. This method has been widely used in control engineering since it provides an effective and systematic procedure to obtain a stable controller. For the control of a nonlinear complicated system, this method is usually preferred.



For the System (18), a definitely positive Lyapunov function candidate w.r.t. the error vector [image: there is no content] can be defined as


[image: there is no content]



(19)







Its derivative w.r.t. time is


[image: there is no content]



(20)







As can be seen, to obtain the auxiliary controller u1, one has to deal with the uncertain terms, i.e., [image: there is no content] and w. For the disturbance [image: there is no content], L2-gain design is applied. This approach derives from H-infinity control strategy and is considered as an effective way to suppress uncertain disturbance. Using this method, an L2-gain performance index should be defined as


[image: there is no content]



(21)




where [image: there is no content] are small positive constants, z is introduced as an evaluation signal.



An identity w.r.t. the evaluation signal z and the disturbance w can be obtained as


[image: there is no content]



(22)







Let [image: there is no content], the above identity becomes the following inequality


[image: there is no content]



(23)







Combining the above inequality with the derivative (20), one has


[image: there is no content]



(24)







To obtain u1, one has to account for another uncertainty, i.e., [image: there is no content]. Different from the way used to deal with the disturbance w, the modeling error [image: there is no content] will be identified and compensated instead of being suppressed by using L2-gain design. This is because although both modeling error and disturbance are uncertainties, the modeling error is usually a continuous signal while the disturbance w might be instantaneous. In this paper SVM is proposed to approximate such a continuous uncertainty. Besides, the term [image: there is no content] in (24) is also dealt with by SVM. As seen from (24), to obtain u2, it is necessary to calculate the derivative of δd. According to the Equation (11), one has


[image: there is no content]



(25)







The main difficulty is to calculate the derivative of u1. Therefore, SVM is used to identify this complicated nonlinear function. One can define the two nonlinear functions in (24) and their SVM approximations as


[image: there is no content]



(26)






[image: there is no content]



(27)




where [image: there is no content] is the approximation error and contains the constant b that is defined in (6). Moreover, it is assumed that [image: there is no content]. [image: there is no content] and [image: there is no content] are Lagrangian factors. If the SVM approximates the nonlinear functions f1 and f2 very well, the prediction errors [image: there is no content] should be small enough. In that case, the Lagrangian factors, [image: there is no content] and [image: there is no content], can be called “ideal” Lagrangian factors. However, these “ideal” factors are actually unable to be obtained in controller design because [image: there is no content] and [image: there is no content] in (26) and (27) are unknown uncertainties. Suppose [image: there is no content] and [image: there is no content] are the updated approximations of their “ideal” values with high accuracy, the two nonlinear functions f1 and f2 can be approximated by


[image: there is no content]



(28)






[image: there is no content]



(29)







Thus, the two auxiliary controllers u1 and u2 in (24) can be designed as


[image: there is no content]



(30)




where [image: there is no content] and [image: there is no content] are positive control gains.



Combining the auxiliary controllers with (11) and (16), the command rudder angle to the cascaded System (5) can be expressed as


[image: there is no content]



(31)







Figure 1 shows the control framework.


Figure 1. Control framework.



[image: Algorithms 09 00052 g001]







3.2. Stability Analysis


Based on (26), (27) and (30), the inequality (24) becomes


[image: there is no content]



(32)




in which

	
[image: there is no content]



	
[image: there is no content]; [image: there is no content];



	
[image: there is no content]; [image: there is no content];



	
[image: there is no content][image: there is no content]








To make sure the right hand side of (32) be negative, the estimates [image: there is no content] and [image: there is no content] are designed by adopting the following on-line tuning algorithms


[image: there is no content]



(33)




where [image: there is no content] and [image: there is no content] are positive constants. In addition, an augmented error signal is defined as


[image: there is no content]



(34)







Based on (19), another Lyapunov function candidate that involves the error vector [image: there is no content] can be defined as


[image: there is no content]



(35)




where [image: there is no content] represents the trace of a matrix. Combined with the definition given by (33), the following derivative can be obtained


[image: there is no content]



(36)







Let [image: there is no content] and


[image: there is no content]








the following inequality w.r.t. (35) holds


V˙2+‖z‖2−μ12w2≤−2λ0V2−λ3λ1ζ2+ζη1−λ3λ2ξ2+ξη2 +ε2ε1|ζ|tr{H˜1T(H1−λ3H˜1)}+ε2ε1‖ς‖tr{H˜2T(H2−λ3H˜2)}



(37)







Without loss of generality, the Lagrangian factor vectors H1 and H2 can be assumed bounded by [image: there is no content] where [image: there is no content] represents the Frobenius norm with the definition [image: there is no content]. Thus, the inequality (37) evolves to


V˙2+‖z‖2−μ12w2≤−2λ0V2+‖ς‖(τ1+ε24λ3ε1(H1M2+H2M2)−τ2‖ς‖−λ3ε2ε1(‖H˜1‖F−12λ3H1M)2−λ3ε2ε1(‖H˜2‖F−12λ3H2M)2),(∃τ1,2>0)



(38)







Given a compact set [image: there is no content], if the tracking error [image: there is no content] falls within the compact set at any time, the above inequality can be reduced to


[image: there is no content]



(39)







Let [image: there is no content], in the case when the disturbance [image: there is no content], the above inequality can be simplified to


[image: there is no content]



(40)




The uniformly ultimately bounded (UUB) stability can be proven [40].



Back to (39), in the case when disturbance exists, i.e., [image: there is no content], one has


[image: there is no content]



(41)







Integrating the above inequality yields


[image: there is no content]



(42)




where [image: there is no content] is a small positive constant. Compared with the L2-gain performance index given by (21) it can be said that the disturbance w is suppressed. In other words, the robustness is guaranteed.



If the tracking error [image: there is no content] falls outside the compact set, i.e., [image: there is no content], the following inequality can be obtained


[image: there is no content]



(43)




by appropriately selecting parameters so that


[image: there is no content]



(44)




holds. By analogy to the analysis of (39), in cases either [image: there is no content] or [image: there is no content], the stability and robustness of (43) can be guaranteed.



From the above analysis, it can be concluded that the controller designed by (31) and the SVM algorithms given by (33) can guarantee the stability and robustness of the tracking system. It is noted that although only UUB stability can be guaranteed, the control accuracy can be improved by appropriate selection of the parameters in controller, including the control gains and the parameters in SVM. In the study, PSO is incorporated into SVM to obtain optimal SVM parameters.





4. Example Study


To confirm the validity of the controller designed, a numerical simulation is performed combined with a surface ship. Firstly, the state space equation form of (5) can be obtained as


[image: there is no content]



(45)




where [image: there is no content], [image: there is no content], [image: there is no content]


[image: there is no content]











The model parameters are [41]


[image: there is no content]








From the point of view of ship manoeuvrability, this ship is unstable because K is negative. Therefore, an appropriate robust controller is required for the purpose of course-keeping. The controller gains in (31) are selected as [image: there is no content] The constant in (14) is selected as [image: there is no content].



For the SVM identification, a Gaussian kernel is adopted as


[image: there is no content]



(46)




where [image: there is no content] is the kernel width that has an impressive effect on SVM learning ability. The input variable is defined as


[image: there is no content]



(47)




For the support vectors [image: there is no content] and [image: there is no content], both of them are selected as two successive former input variables which means that [image: there is no content] for identifiers in (30). Denote [image: there is no content], the support vectors can be expressed as


[image: there is no content]



(48)




where [image: there is no content] is the sampling time.



To obtain a optimized SVM, PSO is incorporated to obtain the optimal [image: there is no content] in (46). Moreover, the parameters [image: there is no content] and [image: there is no content] in the tuning algorithms of Lagrangian factors given by (33) are also determined by PSO. The fitness in PSO algorithm adopts the root of mean square error (RSME) as


[image: there is no content]



(49)




The number of particles in PSO is set to 20, as is the number of iteration. The initial particle’s positions and velocities are assumed randomly distributed within a given range. Figure 2 presents the results of RMSE, σ, ε1 and ε2. As can be seen from the results, the fitness and the parameters converge to stable values, obtained as [image: there is no content]. The three parameters, i.e., σ, ε1 and ε2, are used in the SVM based controller.


Figure 2. Parameter optimization by PSO.



[image: Algorithms 09 00052 g002]






In the study, the control objective is to track a desired heading angle. Without loss of generality, the desired heading angle [image: there is no content] is assumed as a harmonic signal. To verify the stability and robustness of the controller designed, deviation of the heading angle is assumed at the start, which indicates that [image: there is no content]. For uncertainties, the modeling error is assumed [image: there is no content] and the external disturbance is assumed as an instantaneous impulse with the amplitude of 1.5 (°/s) at the time [image: there is no content]Figure 3 presents the tracking results, including the histories of heading angle [image: there is no content], yaw rate [image: there is no content], demand rudder angle [image: there is no content], actual rudder angle [image: there is no content], and Lagrangian factors [image: there is no content] as well.


Figure 3. Simulation results using an SVM-based controller.



[image: Algorithms 09 00052 g003]






From the simulation results, it can be seen that both stability and robustness of the tracking system are achieved. The tracking accuracy is satisfactory as well. Moreover, the control inputs are reasonable and applicable from the point of view of operation.



As a comparison, a conventional PD controller is designed as follows,


[image: there is no content]



(50)




where k1,2 are control gains, selected as k1 = 5, k2 = 50. Figure 4 presents the simulation results using the PD controller designed. Compared with the performance of the SVM based controller as shown in Figure 3, it can be seen that obvious oscillation happens to the command rudder angle for a PD controller, which implies a limitation for the PD controller from an operational point of view despite the simple structure of the PD controller.


Figure 4. Simulation results using PD controller.



[image: Algorithms 09 00052 g004]






Further comparison is carried out by combining the SVM identification and inverse dynamic compensation that is commonly employed to obtain a feedback controller for a certain system (without uncertainties). By observing the inequality (24), the auxiliary controllers u1 and u2 can be designed as


[image: there is no content]



(51)




which indicates that only the modeling errors [image: there is no content] and the derivative of desired rudder angle [image: there is no content] in the inequality (20) are approximated by SVM, i.e.,


[image: there is no content]



(52)






[image: there is no content]



(53)




The terminal control input can be defined as


δc=(Tψ¨d+fψ˙d+Tλe˙−f(ψ,ψ˙)e˙+e+14μ12ζ+r22ζ−2r22λe+∑i=12αi′K(xi,x)+λ1Tζ)/K+Kζ−ξ+∑i=12βi′K(xi,x)+λ2TEξ



(54)







Comparing controller (54) with (31), one can find that the controller with inverse dynamic compensation in combination with SVM identification (given by (54)) is more complicated than the controller in which the complicated nonlinear function are indentified by SVM (given by (31)). Figure 5 presents the simulation results using controller (54). The parameters are selected as [image: there is no content]. In comparison with the results shown in Figure 3, it can be seen that oscillation of the command rudder angle happens at the initial stage and at the time of instantaneous external disturbance despite rapid convergence. Further remarks can be made as follows: (i) no matter whether inverse dynamic compensation is incorporated, the stability and robustness of the control system can be guaranteed due to the use of Lyapunov theory and L2-gain design; (ii) although the response rate of the controller in the case of inverse dynamic compensation (as described by (54)) is better than the case without compensation (as described by (31)), a moderate helming as shown in Figure 3, which can be achieved by using the controller (31), is preferable from the practical point of view. Moreover, as can be seen, the structure of the controller (31) is simpler than the controller (54), which makes sense in practice.


Figure 5. Simulation results using SVM controller in combination of inverse dynamic compensation.



[image: Algorithms 09 00052 g005]







5. Conclusions


In this paper, SVM is applied to the control of a cascaded system with uncertainties with regard to ship course-keeping. The dynamics of the rudder actuator are considered in the plant. To guarantee the real-time performance of the controller, the Lagrangian factors in SVM are determined by on-line tuning algorithms. There are two advantages of the on-line SVM proposed in this paper over conventional on-line SVM. First, no supervised signal is required; second, the capacity of the training samples can be small, which improves the efficiency of the learning machine. Nonlinear functions and an uncertainty (modeling error) in the plant can be effectively identified by the proposed SVM, which helps obtain a controller with simple structure. Another method, L2-gain design, is applied to suppress the disturbance to the plant. The validity of the hybrid controller based on SVM and L2-gain design is confirmed by numerical simulation.



PSO is used to obtain the parameters in SVM. It should be noted that the optimal parameters are actually obtained in off-line way instead of on-line way, which limits its practical application to real-time control. In the next work, an on-line approach to the selection of SVM parameters will be studied.
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