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Abstract: We consider the problem of estimating the measure of subsets in very large networks.
A prime tool for this purpose is the Markov Chain Monte Carlo (MCMC) algorithm. This algorithm,
while extremely useful in many cases, still often suffers from the drawback of very slow convergence.
We show that in a special, but important case, it is possible to obtain significantly better bounds on
the convergence rate. This special case is when the huge state space can be aggregated into a smaller
number of clusters, in which the states behave approximately the same way (but their behavior still may
not be identical). A Markov chain with this structure is called quasi-lumpable. This property allows
the aggregation of states (nodes) into clusters. Our main contribution is a rigorously proved bound on
the rate at which the aggregated state distribution approaches its limit in quasi-lumpable Markov
chains. We also demonstrate numerically that in certain cases this can indeed lead to a significantly
accelerated way of estimating the measure of subsets. The result can be a useful tool in the analysis
of complex networks, whenever they have a clustering that aggregates nodes with similar (but not
necessarily identical) behavior.
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1. Introduction

The Markov Chain Monte Carlo (MCMC) method is one of the most frequently used algorithms to
solve hard counting, sampling and optimization problems. This is relevant for many areas, including
complex networks, physics, communication systems, computational biology, optimization, data
mining, big data analysis, forecast problems, prediction tasks, and innumerable others. The success
and influence of the method is shown by the fact that it has been selected as one of the top 10 of all
algorithms in the 20th century, see [1].

The MCMC algorithm also plays an important role in large, complex networks. In this paper,
building on our earlier conference presentations [2,3], we consider the following regularly occurring
application of the MCMC method:

Consider a very large graph G, with node set S, and let A ⊆ S be a subset of the nodes. We would
like to estimate the relative size of A, that is, the goal is to obtain a good estimate of the value

p =
|A|
|S| (1)

More generally, if a random walk is considered on the graph, with stationary distribution π, then
we would like to estimate π(A), the stationary probability of being in A. In the special case when π is
the uniform distribution, we get back the formula (1).

If we can take random samples from S, according to the stationary distribution, then an obvious
estimate with good properties is the relative frequency of the event that the sample falls in A.
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Unfortunately, in most nontrivial cases of interest, this sampling task is not feasible. The reason
is that often the large set S is defined implicitly. Examples are the set of all cliques in a graph, or the set
of all feasible solutions to an optimization problem, and many others. No efficient general method is
known to sample uniformly at random from such complex sets.

An important application in telecommunication networks is to estimate blocking probabilities,
see [4,5]. More generally, if we have a large system, with an enormous state space, we may want to
estimate that the actual state falls in a specific subset. For example, if the state space consists of all
possible load values of the network links, which leads to a state space of astronomical size, we may
want to know what the probability is that at most k links are overloaded, for some value of k.

At this point, the MCMC does a very good service. If we define a Markov chain in which the
states are the elements of S and the transitions are based on simple local operations, then we can very
often obtain a Markov chain with uniform, or some other simple stationary distribution over S. Then,
if we run this chain long enough so that it gets close to the stationary distribution, then the state where
we stop the chain will be a good approximation of a random sample over S, distributed according to
the stationary distribution. Then by repeating the process sufficiently many times, and by counting the
relative frequency that the random sample falls in A, we can get a good estimate of the probability
measure of A.

The key difficulty is, however, that we should run the chain long enough to get sufficiently close
to the stationary distribution. This time is often referred to as mixing time [6]. If the mixing time grows
only polynomially with the size of the problem, e.g. with the size of the graph, then we say that the
chain is rapidly mixing. Unfortunately, in many cases of interest the mixing time grows exponentially
with the problem parameters, so in many important cases the Markov chain is mixing very slowly.

What we are interested in is whether it is possible to speed up the running time. It is clear that if
we want to estimate the size of any possible subset, then we really need to get close to the stationary
distribution, since only this distribution can guarantee that the probability of the random state falling
in the set is really the relative size of the set. On the other hand, if we only want to estimate the relative
size of a specific subset A, then it is enough for us if we reach a distribution in which the measure
of A is close to the stationary measure, but this does not have to hold for every other set. In other
words, if πt denotes the state distribution after t steps and π is the stationary distribution, then we
want to choose t such that |πt(A)− π(A)| is small, but the same does not have to hold for all other
sets. This makes it possible to reduce the required value of t, that is, to speed up the algorithm. In this
paper we investigate under what conditions it is possible to obtain such a speed-up.

The main result is that the structure of the chain, that is, the network structure, can significantly
help, if it has some special properties. Specifically, if the Markov chain is close to a so called lumpable
chain, then remarkable speedup is possible. In other words, in this case we can indeed capitalize on the
particular network structure to accelerate the method. Below we informally explain what the concept
of lumpability means. The formal definition will follow in the next section.

The concept of lumpability stems from the following observation: it is very useful if the state space
can be partitioned such that the states belonging to the same partition class “behave the same way,” in
the sense defined formally in the next section. This is the concept of lumpability [7]. Informally speaking,
it means that some sets of states can be lumped together (aggregated) and replaced by a single state,
thus obtaining a Markov chain which has a much smaller state space, but its essential behavior is the
same as the original.

In some cases, the lumpability of the Markov chain can have a very significant effect on the
efficiency of the model. A practical example is discussed in [8,9], where the authors present a fast
algorithm to compute the PageRank vector, which is an important part of search engine algorithms
in the World Wide Web. The PageRank vector can be interpreted as the stationary distribution of
a Markov chain. This chain has a huge state space, yielding excessive computation times. This Markov
chain, however, is lumpable. Making use of the lumpability, the computation time can be reduced to
as low as 20% of the original, according to the experiments presented in [8].
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Unfortunately, it happens relatively rarely that the Markov chain satisfies the definition of
lumpability exactly. This motivates the concept of quasi-lumpability [10,11]. Informally, a Markov
chain is quasi-lumpable if its transition matrix is obtainable by a small perturbation from a matrix that
exactly satisfies the lumpability condition (see the formal definition in the next section).

In this paper we are interested in the following problem, which is often encountered in
applications: how long do we have to run the Markov chain if we want to get close to the stationary
distribution within a prescribed error? While the general question is widely discussed in the literature
(see, e.g., [6,12]), we focus here on a less researched special case: how much gain can the convergence
speed enjoy, if we can capitalize on the special structure of quasi-lumpability.

2. Aggregation in Markov Chains

We assume the reader is familiar with the basic concepts of Markov chains. We adopt the notation
that a Markov chainM is given by a set S of states and by a transition probability matrix P, so we write
M = (S, P). This notation does not include the initial distribution, because it is assumed arbitrary.

Let us first define the concept lumpability of a Markov chain. Informally, as mentioned in the
Introduction, a chain is lumpable if its states can be aggregated into larger subsets of S, such that the
aggregated (lumped) chain remains a Markov chain with respect to the set-transition probabilities
(i.e., it preserves the property that the future depends on the past only through the present). Note
that this is generally not preserved by any partition of the state space. Let us introduce now the
formal definition.

Definition 1. (Lumpability of Markov chain) LetM = (S, P) be a Markov chain. LetQ = {A1, . . . , Am}
be a partition of S. The chainM is called lumpable with respect to the partition Q if for any initial
distribution the relationship

Pr(Xt ∈ Aj |Xt−1 ∈ Ai1 , . . . , Xt−k ∈ Aik) = Pr(Xt ∈ Aj |Xt−1 ∈ Ai1) (2)

holds for any t, k, j, i1, . . . , ik, whenever these conditional probabilities are defined (i.e., the conditions
occur with positive probability). If the chain is lumpable, then the state set of the lumped chain isQ
and its state transition probabilities are defined by

p̂ij = Pr(Xt ∈ Aj |Xt−1 ∈ Ai)

Checking whether a Markov chain is lumbable would be hard to do directly from the definition.
That is why it is useful to have the following characterization, which is fundamental result on the
lumpability of Markov chains, see [7]. For simple description, we use the notation p(x, A) to denote
the probability that the chain moves into a set A ⊆ S in the next step, given that currently it is in the
state x ∈ S. Note that x itself may or may not be in A.

Theorem 1. (Necessary and sufficient condition for lumpability, see [7]) A Markov chainM = (S, P)
is lumpable with respect to a partitionQ = {A1, . . . , Am} of S if and only if for any i, j the value of p(x, Aj) is
the same for every x ∈ Ai. These common values define the transition probabilities p̂(Ai, Aj) for the lumped
chain, which is a Markov chain with state setQ and state transition probabilities

p̂(Ai, Aj) = p(x, Aj) = Pr(Xt ∈ Aj |Xt−1 ∈ Ai)

where x is any state in Ai.

Informally, the condition means that a move from a set Ai ∈ Q to another set Aj ∈ Q happens
with probability p(x, Aj), no matter which x ∈ Ai is chosen. That is, any x ∈ Ai has the property that
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the probability of moving from this x to the set Aj in the next step is the same for every x ∈ Ai. The sets
Ai, Aj are partition classes ofQ. We also allow i = j, so they may coincide.

Whenever our Markov chain is lumpable, we can reduce the number of states by the above
aggregation, and it is usually advantageous for faster convergence (a specific bound will be proven in
Section 3).

It is worth noting that lumpability is a rather special property, and one has to be quite lucky to
encounter a real-life Markov chain that actually has this property. Sometimes it happens (see, e.g., the
example in the Introduction about PageRank computation), but it is not very common. Therefore, let
us now relax the concept of lumpability to broaden the family of the considered Markov chains.
The extended condition, as explained below, is called quasi-lumbability.

Informally, a Markov chain is called quasi-lumpable or ε-quasi-lumpable or simply ε-lumpable, if it
may not be perfectly lumpable, but it is “not too far" from that. This “ε-closeness" is defined in [10,11]
in a way that the transition matrix can be decomposed as P = P− + Pε. Here P− is a component-wise
non-negative lower bound for the original transition matrix P, such that P− satisfies the necessary and
sufficient condition of Theorem 1. The other matrix, Pε, represents a perturbation. It is an arbitrary
non-negative matrix in which each entry is bounded by ε. This definition is not very easy to visualize,
therefore, we use the following simpler but equivalent definition.

Definition 2. (ε-lumpability) Let ε ≥ 0. A Markov chainM = (S, P) is called ε-lumpable with respect
to a partitionQ = {A1, . . . , Am} of S if ∣∣p(x, Aj)− p(y, Aj)

∣∣ ≤ ε

holds for any x, y ∈ Ai and for any i, j ∈ {1, . . . , m}.

Note that if we take ε = 0, then we get back the ordinary concept of lumpability.
Thus, quasi-lumpability is indeed a relaxation of the original concept. It can also be interpreted
in the following way. If ε > 0, then the original definition of lumpability may not hold. This means,
the aggregated process may not remain Markov. i.e., it does not satisfy (2). On the other hand, if ε is
small, then the aggregated process will be, in a sense, “close" to being Markov, that is, to satisfying (2).

What we are interested in is the convergence analysis of quasi-lumpable Markov chains, typically
for a small value of ε. For the analysis we need to introduce another definition.

Definition 3. (Lower and upper transition matrices) Let M = (S, P) be a Markov chain which is
ε-lumpable with respect to a partition Q = {A1, . . . , Am}. The lower and upper transition matrices
L = [lij] and U = [uij] are defined as m×m matrices with entries

lij = min
x∈Ai

p(x, Aj) and uij = max
x∈Ai

p(x, Aj)

respectively, for i, j = 1, . . . , m.

Note that it always holds (component-wise) that L ≤ U. If the chain is lumpable, then these
matrices coincide, so then L = U = P̃, where P̃ is the transition matrix of the lumped chain. If the chain
is ε-lumpable, then L and U differ at most by ε in each entry.

Generally, L and U are not necessarily stochastic matrices (A vector is called stochastic if each
coordinate is non-negative and their sum is 1. A matrix is called stochastic if each row vector of it is
stochastic.), as their rows may not sum up to 1.

3. Convergence Analysis

An important concept in Markov chain convergence analysis is the ergodic coefficient, see, e.g., [12].
It is also called coefficient of ergodicity.
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Definition 4. (Ergodic coefficient) Let P = [pij] be an n× n matrix. Its ergodic coefficient is defined as

ρ(P) =
1
2

max
i,j

n

∑
k=1
|pik − pjk|.

The ergodic coefficient is essentially the largest L1 distance that occurs between different row
vectors of the matrix P. That is, in a sense, it captures how diverse are the row vectors of the matrix.
The 1/2 factor is only for normalization purposes. For stochastic matrices two important properties of
the ergodic coefficient are the following [12]:

(i) 0 ≤ ρ(P) ≤ 1
(ii) ρ(AB) ≤ ρ(A)ρ(B)

The importance of the ergodic coefficient lies in its relationship to the convergence rate of the
Markov chain. It is well known that the convergence rate is determined by the second largest
eigenvalue of the transition matrix (that is, the eigenvalue which has the largest absolute value
less than 1), see, e.g., [6]. If this eigenvalue is denoted by λ1, then the convergence to the stationary
distribution happens at a rate of O(λt

1), where t is the number of steps, see [12]. It is also known [12]
that the ergodic coefficient is always an upper bound on this eigenvalue, it satisfies λ1 ≤ ρ(P) ≤ 1.
Therefore, the distance to the stationary distribution is also bounded by O(ρ(P)t). Thus, the smaller is
the ergodic coefficient, the faster convergence we can expect. Of course it only provides any useful
bound if ρ(P) < 1. If ρ(P) = 1 happens to be the case, then it does not directly provide a useful bound
on the convergence rate, since then ρ(P)t remains 1. In this situation a possible way out is considering
the k-step transition matrix Pk for some constant integer k. If k is large enough, then we can certainly
achieve ρ(Pk) < 1, since it is known [12] that limk→∞ ρ(Pk) = 0.

Now we are ready to present our main result, which is a bound on how fast will an ε-lumpable
Markov chain converge to its stationary distribution on the sets that are in the partition, which is used
in defining the ε-lumpability of the chain. We are going to discuss the applicability of the result in the
next section.

Theorem 2. Let ε ≥ 0 andM = (S, P) be an irreducible, aperiodic Markov chain with stationary distribution
π. Assume the chain is ε-lumpable with respect to a partition Q = {A1, . . . , Am} of S. Let ρ be any upper
bound on the ergodic coefficient of the lower transition matrix L (Definition 3), that is, ρ(L) ≤ ρ. Let π0 be any
initial probability distribution on S, such that P(Xt ∈ Ai) > 0 holds for any i, and t = 0, 1, 2, . . ., whenever the
chain starts from π0. Then for every t ≥ 1 the following estimation holds:

m

∑
i=1

∣∣πt(Ai)−π(Ai)
∣∣ ≤ 2(ρ + εm/2)t + εm

1− (ρ + εm/2)t

1− ρ− εm/2

assuming ρ + εm/2 < 1.

Remark: Recall that the parameter ε quantifies how much the Markov chain deviates from the
ideal lumpable case, see Definition 2. In the extreme case, when ε = 1, every Markov chain satisfies
the definition. This places an“upward pressure” on ε: the larger it is, the broader is the class of
Markov chains to which ε-lumpability applies. On the other hand, a downward pressure is put on ε by
Theorem 2: the convergence bound is only meaningful, if ρ + εm/2 < 1 holds. This inequality can be
checked for any particular ε, since it is assumed that ρ and m are known parameters. Furthermore, the
smaller is ε, the faster is the convergence. Therefore, the best value of ε is the smallest value which still
satisfies Definition 2 for the considered state partition.

For the proof of Theorem 2 we need a lemma about stochastic vectors and matrices (Lemma 3.4
in [13], see also [14]):
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Lemma 1. (Hartfiel [13,14]) Let x, y be n-dimensional stochastic vectors and B1, . . . , Bk; C1, . . . , Ck be n× n
stochastic matrices. If ρ(Bi) ≤ ρ0 and ρ(Ci) ≤ ρ0 for all i, 1 ≤ i ≤ k, then

‖xB1 . . . Bk − yC1 . . . Ck‖ ≤ ρk
0‖x− y‖+

(
k−1

∑
j=0

ρ
j
0

)
E

where E = maxi ‖Bi −Ci‖. The vector norm used is the L1-norm ‖x‖ = ∑n
i=1 |xi| and the matrix norm is

‖A‖ = sup
z 6=0

‖zA‖
‖z‖ = max

i

n

∑
j=1
|aij|

for any n× n real matrix A = [aij].

Lemma 1 can be proved via induction on k, see [13,14]. Now, armed with the lemma, we can
prove our theorem.

Proof of Theorem 2. Let π0 be an initial state distribution of the Markov chain M, let πt be the
corresponding distribution after t steps and π = limt→∞ πt be the (unique) stationary distribution
of M. For a set A ⊆ S of states the usual notations πt(A) = P(Xt ∈ A), π(A) = limt→∞ πt(A)

are adopted.
Using the sets A1, . . . , Am of the partitionQ, let us define the stochastic vectors

π̃t =
(
πt(A1), . . . , πt(Am)

)
(3)

for t = 0, 1, 2, . . . and the m×m stochastic matrices

P̃t(π0) = [p(π0)
t (i, j)] =

[
P(Xt+1 ∈ Aj | Xt ∈ Ai)

]
(4)

for t = 1, 2, . . .. Let us call them aggregated state distribution vectors and aggregated transition
matrices, respectively. Note that although the entries in (4) involve only events of the form {Xt ∈ Ak},
they may also depend on the detailed state distribution within these sets, which is in turn determined
by the initial distribution π0. In other words, if two different initial distributions give rise to the
same probabilities for the events {Xt ∈ Ak} for some t, they may still result in different conditional
probabilities of the form P(Xt+1 ∈ Aj | Xt ∈ Ai), since the chain is not assumed lumpable in the

ordinary sense. This is why the notations P̃t(π0), p(π0)
t (i, j) are used. Also note that the conditional

probabilities are well defined for any initial distribution allowed by the assumptions of the lemma,
since then P(Xt ∈ Ai) > 0.

For any fixed t the events {Xt ∈ Ai}, i = 1, . . . , m, are mutually exclusive with total probability 1,
therefore, by the law of total probability,

P(Xt+1 ∈ Aj) =
m

∑
i=1

P(Xt+1 ∈ Aj | Xt ∈ Ai)P(Xt ∈ Ai), j = 1, . . . , m

holds. This implies π̃t+1 = π̃tP̃t(π0), from which

π̃t = π̃0P̃1(π0) · . . . · P̃t(π0) (5)

follows.
We next show that for any t = 1, 2, . . . the matrix P̃t(π0) falls between the lower and upper

transition matrices, i.e., L ≤ P̃t(π0) ≤ M holds. Let us use short notations for certain events: for
any i = 1, . . . , m and for a fixed t ≥ 1 set Hi = {Xt ∈ Ai}, H′i = {Xt+1 ∈ Ai}, and for x ∈ S let
Ex = {Xt = x}. Then Ex ∩ Ey = ∅ holds for any x 6= y and ∑x∈S Ex = 1. Applying the definition
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of conditional probability and the law of total probability, noting that P(Hi) > 0 is provided by the
assumptions of the lemma, we get

p(π0)
t (i, j) = P(H′j | Hi) =

P(H′j ∩ Hi)

P(Hi)

=
∑x∈S P(H′j ∩ Hi ∩ Ex)

P(Hi)

=
∑x∈S P(H′j | Hi ∩ Ex)P(Hi ∩ Ex)

P(Hi)

= ∑
x∈S

P(H′j | Hi ∩ Ex)
P(Hi ∩ Ex)

P(Hi)

= ∑
x∈S

P(H′j | Hi ∩ Ex)P(Ex | Hi)

Whenever x /∈ Ai we have P(Ex |Hi) = P(Xt = x |Xt ∈ Ai) = 0. Therefore, it is enough to take the
summation over Ai, instead of the entire S. For x ∈ Ai, however, Hi ∩ Ex = {Xt ∈ Ai} ∩ {Xt = x} =
{Xt = x} holds, so we obtain

p(π0)
t (i, j) = ∑

x∈Ai

P(Xt+1 ∈ Aj |Xt = x)P(Xt = x |Xt ∈ Ai)

Thus, p(π0)
t (i, j) is a weighted average of the P(Xt+1 ∈ Aj |Xt = x) probabilities. The weights are

P(Xt = x |Xt ∈ Ai), so they are non-negative and sum up to 1. Further,

lij ≤ P(Xt+1 ∈ Aj |Xt = x) ≤ uij

must hold, since lij, uij are defined as the minimum and maximum values, respectively, of

p(x, Aj) = P(Xt+1 ∈ Aj |Xt = x)

over x ∈ Ai. Since the weighted average must fall between the minimum and the maximum, therefore,
we have

lij ≤ p(π0)
t (i, j) ≤ uij (6)

that is,
L ≤ P̃t(π0) ≤ M (7)

for any t ≥ 1 and for any initial distribution π0 allowed by the conditions of the Theorem.
Let us now start the chain from an initial distribution π0 that satisfies the conditions of the

Theorem. We are going to compare the arising aggregated state distribution vectors (3) with the ones
resulting from starting the chain from the stationary distribution π. Note that, due to the assumed
irreducibility of the original chain, π(x) > 0 for all x ∈ S, so π is also a possible initial distribution that
satisfies the conditions P(Xt ∈ Ai) > 0.

When the chain is started from the stationary distribution π, then, according to (5), the aggregated
state distribution vector at time t is π̃P̃1(π) · . . . · P̃t(π) where π̃ is given as π̃ =

(
π(A1), . . . , π(Am)

)
.

On the other hand, P(Xt ∈ Ai) remains the same for all t ≥ 0 if the chain starts from the stationary
distribution. Therefore, we have

π̃P̃1(π) · . . . · P̃t(π) = π̃ =
(
π(A1), . . . , π(Am)

)
(8)



Algorithms 2016, 9, 50 8 of 12

When the chain starts from π0, then we obtain the aggregated state distribution vector

π̃t = π̃0P̃1(π0) . . . P̃t(π0) (9)

after t steps. Now we can apply Lemma 1 for the comparison of (8) and (9). The roles for the quantities
in Lemma 1 are assigned as x = π̃0, y = π̃, k = t, n = m, and, for every τ = 1, . . . , k, Bτ = P̃τ(π0),
Cτ = P̃τ(π). To find the value of ρ0 recall that by (7) we have L ≤ P̃τ(π0) ≤ M and L ≤ P̃τ(π) ≤ M.
Since any entry of U exceeds the corresponding entry of L at most by ε, therefore, by the definition
of the ergodic coefficient, ρ

(
P̃τ(π0)

)
≤ ρ + εm/2 and ρ

(
P̃τ(π)

)
≤ ρ + εm/2 hold, where ρ is the upper

bound on ρ(L). Thus, we can take ρ0 = ρ+ εm/2. With these role assignments we obtain from Lemma 1

‖π̃0P̃1(π0) . . . P̃t(π0)− π̃P̃1(π) . . . P̃t(π)‖ ≤ (ρ + εm/2)t‖π̃0− π̃‖+ E
t−1

∑
k=0

(ρ + εm/2)k

where E = maxτ ‖Pτ(π0) − Pτ(π0)‖ and the norms are as in Lemma 1. Taking (8) and (9) into
account yields

‖π̃t − π̃‖ =
m

∑
i=1

∣∣πt(Ai)−π(Ai)
∣∣ ≤ (ρ + εm/2)t‖π̃0− π̃‖+ E

t−1

∑
k=0

(ρ + εm/2)k (10)

Thus, it only remains to estimate ‖π̃0 − π̃‖ and E . Given that π̃0, π̃ are both stochastic vectors,
we have ‖π̃0− π̃‖ ≤ ‖π̃0‖+ ‖π̃‖ ≤ 2. Further,

E = max
τ
‖Pτ(π0)− Pτ(π)‖ = max

τ
max

i

m

∑
j=1

∣∣p(π0)
τ (i, j)− p(π)τ (i, j)

∣∣ ≤ εm

since (6) holds for any considered π0 (including π), and, by the definition of ε-lumpability, uij − lij ≤ ε.
Substituting the estimations into (10), we obtain

m

∑
i=1

∣∣πt(Ai)−π(Ai)
∣∣ ≤ 2(ρ + εm/2)t + εm

t−1

∑
k=0

(ρ + εm/2)k

= 2(ρ + εm/2)t + εm
1− (ρ + εm/2)t

1− ρ− εm/2

proving the Theorem.

If the chain happens to be exactly lumpable, then we get a “cleaner" result. Let π̃t be the state
distribution of the lumped chain after t steps and let π̃ be its stationary distribution. For concise
description let us apply a frequently used distance concept among probability distributions. If p, q are
two discrete probability distributions on the same set S, then their total variation distance DTV(p, q) is
defined as

DTV(p, q) =
1
2 ∑

x∈S
|p(x)− q(x)|

It is well known that 0 ≤ DTV(p, q) ≤ 1 holds for any two probability distributions. It is also clear
from the definition of the ergodic coefficient that it is the same as the maximum total variation distance
occurring between any two row vectors of the transition matrix.

Note that exact lumpability is the special case of ε-lumpability with ε = 0. Therefore, we
immediately obtain the following corollary.

Corollary 1. If the Markov chain in Theorem 2 is exactly lumpable, then in the lumped chain for any
t = 0, 1, 2, . . . the following holds:

DTV(π̃t, π̃) ≤ ρt
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where ρ = ρ(P̃) is the ergodic coefficient of the transition matrix P̃ of the lumped chain.

Proof. Take the special case ε = 0 in Theorem 2.

4. Numerical Demonstration

Let us consider the following situation. LetM be a Markov chain with state space S. Assume we
want to estimate the stationary measure π(A) of a subset A ⊆ S. A practical example of such
a situation is to estimate the probability that there is at most k blocked links, for some constant k,
in a large communication network. Here the state space is the set S of all possible states of all the
links. The state of a link is the current traffic load of the link, and it is blocked if the load is equal to
the link capacity, so it cannot accept more traffic. Within this state space the considered subset A is
the subset of states in which among all links at most k are blocked. Therefore, the relevant partition
of S is {A, S− A}. This is motivated by real-world application, since the number of blocked links
critically affects network performance. When considering the loss of traffic due to blocking, the models
of these networks are often called loss networks. For detailed background information on loss networks,
see [4,15,16]. Of course, we can also consider other events in the network. For example, at most a given
percentage of traffic is blocked, without specifying how many links are involved in the blocking.

In many cases we are unable to directly compute π(A). This task frequently has enormous
complexity, for the theoretical background see [5]. Then a natural way to obtain an estimation of π(A)

is simulation. That is, we run the chain from some initial state, stop it after t steps and check out
whether the stopping state is in A or not. Repeating this experiment a large enough number of times,
the relative frequency of ending up in A will give a good estimation of the measure of πt(A). If t is
chosen such that πt is close enough to the stationary distribution π for any initial state, then we also
obtain a good estimation for π(A). This is the core idea of the Markov Chain Monte Carlo approach.

Unfortunately, Markov chains with large state space often converge extremely slowly. Therefore,
we may not get close enough to π after a reasonable number of steps. In such a case our result can
do a good service, at least when the chain satisfies some special requirements. As an example, let
us consider the following case. First we examine it using our bounds, then we also study it through
numerical experiments.

Assume the set A ⊆ S has the property that its elements behave similarly in the following sense:
for any state x ∈ A the probability to move out of A in the next step, given that the current state is x, is
approximately the same. Similarly, if x /∈ A, then moving into A in the next step from the given x has
approximately the same probability for any x /∈ A. To make this assumption formal, assume there are
values p0, q0, ε, such that the following conditions hold:

(A) If x ∈ A then p0 ≤ p(x, Ā) ≤ p0 + ε where Ā = S− A. This means, the smallest probability of
moving out of A from any state in x ∈ A is at least p0, and the largest such probability is at most
p0 + ε.

(B) If x ∈ Ā then q0 ≤ p(x, A) ≤ q0 + ε. Similarly to the first case, this means that the smallest
probability of moving into A from any state in x /∈ A is at least q0, and the largest such probability
is at most q0 + ε. (We choose ε such that it can serve for this purpose in both directions.)

(C) To avoid degenerated cases, we require that the numbers p0, q0, ε satisify p0 + ε < 1, q0 + ε < 1
and 0 < p0 + q0 < 1. The other state transition probabilities (within A and A) can be completely
arbitrary, assuming, of course, that at any state the outgoing probabilities must sum up to 1.

Let us now apply our main result, Theorem 2, for this situation. The parameters will be as follows:
m, the number of sets in the partition, is 2, since the partition is (A, A). The matrices L, U become
the following:

L =

[
1− p0− ε p0

q0 1− q0− ε

]
U =

[
1− p0 p0 + ε

q0 + ε 1− q0

]
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Furthermore, we can take ρ = 1− p0− q0− ε as an upper bound on the ergodic coefficient of L.
Then we obtain from Theorem 2, expressing the estimation in terms of the total variation distance:

DTV(π̃t, π̃) ≤ (1− p0− q0)
t + ε

1− (1− p0− q0)
t

p0 + q0

where the distributions π̃t, π̃ are over the sets of the partition (A, Ā), not on the original state
space. Note that in our case we actually have DTV(π̃t, π̃) = |πt(A)− π(A)|, due to the fact that
|πt(A)−π(A)| = |πt(Ā)−π(Ā)|. Therefore, we obtain the estimation directly for the set A:

|πt(A)−π(A)| ≤ (1− p0− q0)
t + ε

1− (1− p0− q0)
t

p0 + q0
(11)

If p0 + q0 is not extremely small, then the term (1− p0− q0)
t will quickly vanish, as it approaches

0 at an exponential rate. Therefore, after a reasonably small number of steps, we reach a distribution
πt from any initial state, such that approximately the following bound is satisfied:

|πt(A)−π(A)| ≤ ε

p0 + q0
(12)

It is quite interesting to note that neither the precise estimation (11), nor its approximate
version (12) depend on the size of the state space.

Now we demonstrate via numerical results that the obtained bounds indeed hold. Moreover, they
are achievable after a small number of Markov chain steps, that is, with fast convergence. We simulated
the example with the following parameters: n = 100 states, p0 = q0 = 0.25, and ε = 0.1. The set A was
a randomly chosen subset of 50 states. The transition probabilities were also chosen randomly, with
the restriction that together with the other parameters they had to satisfy conditions (A), (B), (C).

Figure 1 shows the relative frequency of visiting A, as function of the number of Markov chain
steps. It is well detectable that the chain converges quite slowly. Even after many iterations the
deviation from the stationary probability π(A) does not visibly tend to 0. On the other hand, it indeed
stays within our error bound:

|πt(A)−π(A)| ≤ ε

p0 + q0
=

0.1
0.25+ 0.25

= 2×0.1

as promised. Having observed this, it is natural to ask, how soon can we reach this region, that is, how
many steps are needed to satisfy the bound? This is shown in Figure 2. We can see that after only
10 iterations, the error bound is already satisfied. Note that this is very fast convergence, since the
number of steps to get within the bound was as little as 10% of the number of states.
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Figure 1. Deviation from the stationary measure for many iterations.

Figure 2. Very fast convergence to satisfy the error bound.

5. Conclusions

We have analyzed the convergence rate of quasi-lumpable Markov Chains. This represents the
case when the large state space can be aggregated into a smaller number of clusters, in which the
states behave approximately the same way. Our main contribution is a bound on the rate at which the
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aggregated state distribution approaches its limit in such chains. We have also demonstrated that in
certain cases this can lead to a significantly accelerated convergence to an approximate estimation of
the measure of subsets. The result can serve as a useful tool in the analysis of complex networks, when
they have a clustering that approximately satisfies the conditions lumpability.
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