
algorithms

Article

A State Recognition Approach for Complex
Equipment Based on a Fuzzy Probabilistic
Neural Network
Jing Xu 1, Zhongbin Wang 1,*, Chao Tan 1,2 and Xinhua Liu 1

1 School of Mechatronic Engineering, China University of Mining and Technology, No. 1 Daxue Road,
Xuzhou 221116, China; xujingcmee@cumt.edu.cn (J.X.); tccadcumt@126.com (C.T.);
l_xinhua_2006@126.com (X.L.)

2 Xuyi Mine Equipment and Materials R&D Center, China University of Mining & Technology,
No. 12-8 Jingui Road, Huai’an 211700, China

* Correspondence: wangzbpaper@126.com; Tel.: +86-516-8388-4512

Academic Editor: Toly Chen
Received: 29 April 2016; Accepted: 16 May 2016; Published: 20 May 2016

Abstract: Due to the traditional state recognition approaches for complex electromechanical
equipment having had the disadvantages of excessive reliance on complete expert knowledge and
insufficient training sets, real-time state identification system was always difficult to be established.
The running efficiency cannot be guaranteed and the fault rate cannot be reduced fundamentally
especially in some extreme working conditions. To solve these problems, an online state recognition
method for complex equipment based on a fuzzy probabilistic neural network (FPNN) was proposed
in this paper. The fuzzy rule base for complex equipment was established and a multi-level state
space model was constructed. Moreover, a probabilistic neural network (PNN) was applied in state
recognition, and the fuzzy functions and quantification matrix were presented. The flowchart of
proposed approach was designed. Finally, a simulation example of shearer state recognition and the
industrial application with an accuracy of 90.91% were provided and the proposed approach was
feasible and efficient.
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1. Introduction

With the rapid development of modern industry, electromechanical devices are developing
towards the direction of large scale and complex structures. Large field investigation and
theoretical studies show it is of great significance to recognize the state of complex equipment [1–3].
State recognition is the process of identification and classification of the equipment working condition.
In this process, appropriate features are extracted to describe each part of the object, and then it is
divided into different states according to the characteristics [4]. Thus, the state can be distinguished
from others according to the extracted features [5].

As for the low reliability and accuracy, a multiple sensor information fusion system was gradually
applied to substitute a single sensor system since the 1980s. Nowadays, multiple sensors are installed
on complex equipment to record information of different scales and levels [6]. Traditional state
recognition methods mainly combine the field sensor information according to the existing knowledge
and experience [7]. However, if the information gathered by sensors is handled without deep fusion,
the internal relationship between the information would often be cut off, and the surrounding
characteristics indicated by the rational combination of information may be lost [8–10]. To realize
state recognition accurately, a deep sensor data fusion method should be used, and redundancy and
contradiction among the sensors need to be eliminated [11,12]. Thus, state recognition of complex
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equipment is in fact the process of selecting appropriate field sensors and fusing the information
effectively [13,14].

Bearing the above observation in mind, we apply a fuzzy probabilistic neural network (FPNN) to
solve the problem of state recognition for complex equipment, and the rest of this paper is organized
as follows. In Section 2, some related work is outlined based on the literature. In Section 3, the key
technologies of proposed methods such as construction of a multi-level state space, probabilistic
neural networks, fuzzy functions and quantification matrix are described in detail, and the flowchart
of proposed method is designed. In Section 4, a simulation example is put forward to verify the
feasibility and efficiency of the proposed method. An industrial application of mining automation
production based on the proposed system is provided in Section 5. Our conclusions and future work
are summarized in Section 6.

2. Literature Review

In this section, we try to summarize the relevant literature to this paper. Recent publications
related to this paper are about two research streams: state recognition and fuzzy probabilistic
neural networks.

2.1. State Recognition

In recent years, many qualitative and quantitative state recognition methods have quickly
developed both at home and abroad, promoted development of science and technology, and have been
widely applied in the engineering field.

In order to accurately discriminate the real-time operating status of crude oil tanks, ref. [15]
proposed a new method based on an expert system and associated cluster analysis. In [16], a method of
equipment degradation state recognition based on wavelet correlation feature scale entropy and hidden
semi-Markov models was proposed to prevent the equipment from further degradation and failure.
The authors take a roller bearing as an example, and the experiment results showed that the proposed
method was effective. In [17], a new state recognition method based on a hierarchical hidden Markov
model was presented. Based on the method, the computational complexity and the inference time were
decreased, and state of gearbox could be recognized accurately. In [18], a high-speed train running
state monitoring technique was presented based on a fuzzy grey correlation degree. In [19], a novel
approach for screw compressor state recognition and fault diagnosis based on wavelet theory was
proposed. According to tested rotor and valve vibration signal energy changing characteristics under
different working conditions of the compressor, the working state could be obtained clearly, and an
experiment validated the accuracy of the proposed method. In [20], to recognize the state of viscoelastic
sandwich structure, an approach based on the adaptive redundant second-generation wavelet packet
transform, permutation entropy and the wavelet support vector machine (SVM) was proposed. In [21],
a novel state recognition method combining kernel principal component analysis and support vector
machine was proposed, and experimental results demonstrated the effectiveness of the proposed
algorithm. In [22,23], an artificial neural network was applied to wear state recognition. In [24], aiming
at the non-stationary and time-variation characteristics of the gear-box signal, a new method that
combined wavelet analysis and a neural network was proposed to recognize the state. To verify the
proposed approach, three conditions of a gear-box were simulated by experiments, and the result
indicated that the method could recognize the three conditions effectively. In [25], a multi-fractal
analysis was applied in state recognition by extract nonlinear features from complex systems.

2.2. Fuzzy Probabilistic Neural Network

A fuzzy set and system was introduced by Zadeh about five decades ago [26]. As the fuzzy theory
has advantages in dealing with indeterminate and nonlinear problems, it was widely used in control
engineering, state recognition, information processing, decision making, and so on [27]. With the
rapid development of electronic techniques in recent decades, Artificial Neural Network (ANN) has
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developed as an important tool in many fields [28,29]. PNN was proposed by Specht in 1989 [30],
which was a significant part of ANN. PNN has a better ability for self-adaption, self-organization
and self-learning compared with a SVM and K-nearest neighbor (KNN), and it was mainly applied in
classification [31].

A Fuzzy Probabilistic Neural Network (FPNN) combines the existing expert knowledge, fuzzy
control theory and probabilistic neural network organically, and it is widely used in prediction,
classification and fault diagnosis. In [32], to identify partial discharge location in a power cable,
the fuzzy inference system and probabilistic neural network was proposed, the peak absolute value
and average power of partial discharge signals were set as input variables, and the experimental
results validated the proposed approach. In [33], a novel approach based on fuzzy logic control and
PNN was presented to realize direct torque control in permanent magnet synchronous motor drives.
In [34], a credit risk assessment model of commercial banks through a fuzzy probabilistic neural
network model was proposed, which combined the relative membership degree in fuzzy mathematics
with probabilistic neural network. Ref. [35] put forward a fuzzy system to improve the performance
of a probabilistic neural network for detecting MEMS analog faults, which was actually a pattern
recognition task.

2.3. Discussion

Although many approaches were proposed for state recognition of complex equipment in the
above literature, they had some common disadvantages as follows. Firstly, the proposed methods
need a large number of simulation data to train the algorithms, while it is difficult to gain real-time and
accurate data due to the complicated working conditions. Secondly, in several approaches, an expert
knowledge base is needed. However, the existing knowledge base is usually incomplete and could
only describe part of the working conditions for the complex equipment. Finally, different judgments
may be available for a certain working conditions and have limitations in some working conditions.

In order to tackle the above problems, this paper proposes a novel multi-sensor information
fusion method for state recognition through integration of fuzzy logic theory and a probabilistic neural
network. The simulation example and industry application are provided and the proposed approach
is proven feasible.

3. The Proposed Approach

3.1. Construction of the Multi-Level State Space

To train the initial PNN, a fuzzy rule base founded on the existing expert knowledge system is
utilized. Based on deep analysis of the complex equipment, a multi-level segmentation is operated to
obtain the state space for the complex equipment.

Generally, a complex equipment is composed of several units: U1, U2, U3,..., Un, and each unit
can be described by a number of sub-units, which can be depicted through a series of state variables.
Moreover, several features might be extracted from each variable. The multi-level description for
complex equipment can be shown in Figure 1.

For an arbitrary state variable i, descripted by P, it can be described by feature 1 (f _1 for short),
feature 2 (f _2),..., feature l (f _l), and can be expressed as follows:

Rule 1: IF f _1 is NB, and f _2 is NB,..., and f _l is NB, THEN P is p_1,
Rule 2: IF f _1 is NB, and f _2 is NB,..., and f _l is NM, THEN P is p_2,
Rule 3: IF f _1 is NB, and f _2 is NB,..., and f _l is NS, THEN P is p_3,
......

assuming that f _1 could be classed into a1 cases, f _2 into a2 cases,..., and f _l into al situations. Obviously,
there exists a1¨ a2¨ ¨ ¨ al fuzzy rules for P, similar to the other variables. Likewise, b1¨ b2¨ ¨ ¨ bk fuzzy rules
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are established for describing a sub-unit. Moreover, c1¨ c2¨ ¨ ¨ cm are fuzzy rules for a unit, and d1¨ d2¨ ¨ ¨ dn

are fuzzy rules for the equipment. Finally, a bottom-up rule base can be constructed.
For state variable i, feature matrix Xi is generalized by summarizing the state of each feature and

can be expressed as follows:

Xi “

»

—

—

—

–

NB NB . . . . . . NB
NB NB . . . . . . NM

. . . . . .
PB PB . . . . . . PB

fi

ffi

ffi

ffi

fl

, βi “

¨

˚

˚

˚

˝

p_1
p_2

. . . . . .
p_a1a2...al

˛

‹

‹

‹

‚

(1)

where i = 1, 2, 3, . . . k, vector βi representing the state of state variable i.
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As shown, the input layer receives external data at first, and then data is transported to the hidden
layer. The hidden layer is a radial base layer, in which each neuron has its own center. The hidden layer
accepts information from the input layer, then distance between input data and computing center is
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calculated. Input layer nodes and hidden layer nodes run the length of input eigenvectors. Relations of
neural node between type i and type j in the hidden layer can be expressed as follows:

Φijpxq “
1

p2πq1{2σd
e´

px´xijqpx´xijq
T

σ2 (2)

where i = 1, 2, 3, . . . M, M is the total number of classes in the training sample, d is dimension of the
training sample, xij is j-th center of the x-th sample, and σ is smoothing factor.

In the summation layer, the output is the weighted average of the same type of neuron nodes
from the hidden layer. The weighted average can be calculated as follows:

νi “

L
ÿ

j“1

Φij{L (3)

where νi is output of i-th type, L stands for the number of i-th type neuron node, and the amount of
summation layer neuron is equal to M. After calculating each neuron node in the summation layer, we
select the maximum probability as the result node and transport it into the output layer. The result can
be expressed as follows:

β “ arg maxpνiq (4)

In competitive neurons constituting the output layer, the number of neuron nodes is equal to
that in the summation layer. Threshold detection is operated at last, resulting in the output layer with
maximum a posteriori estimation of 1, and the others are 0.

For the PNN training process, the inputs and outputs of state variables could be expressed by
matrix Xi and vector βi based on the fuzzy rule base.

3.3. Fuzzy Functions and Quantification Matrix

Field sensor data are continuously changing, and quantification is necessary before the fuzzy
processing. Generally, the state of a parameter can be described in set: {NB, NM, NS, ZO, PS,
PM, PB}, and all elements or several elements may be selected in a practical application. An
elementary assumption can be made that the initial value range of the parameter was [´re, re],
and the quantification value range can be described as follows:

Q “ t´d,´d` 1, ...0, ...d´ 1, du (5)

Usually, re ‰ d, quantifying factor K is introduced as follows:

K “ d{re (6)

Thus, an arbitrary input parameter q can be dispersed into the corresponding value in Q, which
can be described as below:

$

’

’

’

&

’

’

’

%

q Ñ ´d pt ď ´dq
q Ñ t pt ď Kq ď t` 1{2, t ă dq
q Ñ t` 1 pt` 1{2 ď Kq ď t` 1, t ă dq
q Ñ d pt ě dq

(7)

According to the field sensor data, the actual value range of the parameter q is [a,b], and d = 6 is
selected, so the quantification formula can be expressed as follows:

Qq “
12

b´ a
pq´

a` b
2
q (8)
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Similarly, the features of each state variable can be quantified following the scheme provided
above, and the quantification matrix for the corresponding variable can be calculated as follows:

XQi “

»

—

—

—

–

fq_11 fq_21 . . . . . . fq_l1
fq_11 fq_21 . . . . . . fq_l2
. . . . . .
fq_1a1 fq_2a2 . . . . . fq_lal

fi

ffi

ffi

ffi

fl

, i “ 1, 2, 3...k (9)

3.4. The State Recognition Flow

According to the above description on the comprehensive method based on fuzzy control logic
and a probabilistic neural network, the proposed approach can be coded easily on the computer and
the flowchart can be summarized as in Figure 3, and the main control processes can be presented
as follows:

(a) According to the structural characteristics of the equipment, a multi-level description for the
equipment is constructed, and a bottom-up rule base is established based on preliminary statistic
data and expert experience.

(b) A feature matrix is set up for each state variable on the basis of the established rule base. Each
matrix is the state set of the corresponding variable and can be divided into training rows and
testing rows.

(c) The desired recognition accuracy is set up before the training. Then, the initial smoothing factor
and iteration number are designated, and the two parameters are adjusted according to the
training processing. Initial PNN is trained by the training rows and the training effect is justified
by the testing rows.

(d) For an arbitrary group of field data, quantification is conducted by the fuzzy functions, so the
data can be extracted as a feature vector. The vector is the input of the trained PNN, and the state
of each variable can be obtained according to the trained PNN.

(e) The state of each sub-unit, unit and the whole equipment are acquired by the established
bottom-up rule base.
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4. Simulation Example

The shearer in a fully mechanized coal mining working face is a typical kind of complex device
that synthesizes mechanism, electronic and hydraulic-drive technologies. The state identification
for the shearer is crucial in coal production. The running efficiency has a direct effect on the coal
output. In addition, it is of great significance to guarantee its safe and steady operation. Thus, the state
recognition of the shearer was taken as an example to validate the proposed method.

4.1. Constructing the Multi-Level State Space and Training PNN

The model of a shearer was shown in Figure 4, and three units can be separated according to the
structural characteristics of the shearer. The cutting and haulage unit can be divided into the left and
right sub-unit separately. The states of each sub-unit and transformer are described by the current
and temperature, and each state variable consists of four features. The multi-level state space for the
shearer was constructed as shown in Figure 5.
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After preliminary analysis on the current and temperature of the shearer, the average, variance,
peak factor, and frequency center are selected as the features. According to the combination of vast
statistic data, expert knowledge and experience, the state set of the average value of the left cutting
current was {RS, NM, RB, B}, the state set of stand deviation was {NM, RB}, the state set of peak factor
was {RS, NM, RB}, and the state set of the frequency center was {NM, AN}. Then, the fuzzy rule base
on each feature of the left cutting current could be shown as below:
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Rule 1: If A is LC_A_RS, S is LC_S_NM, P is LC_P_RS and F is LC_F_NM, Then LC is LC_RST,
Rule 2: If A is LC_A_RS, S is LC_S_NM, P is LC_P_RS and F is LC_F_AN, Then LC is LC_FT,
Rule 3: If A is LC_A_RS, S is LC_S_NM, P is LC_P_NM and F is LC_F_NM, Then LC is LC_VST,
Rule 4: If A is LC_A_RS, S is LC_S_NM, P is LC_P_NM and F is LC_F_AN, Then LC is LC_RST,
......
Rule 46: If A is LC_A_B, S is LC_S_RB, P is LC_P_NM and F is LC_F_AN, Then LC is LC_AN,
Rule 47: If A is LC_A_B, S is LC_S_RB, P is LC_P_RB and F is LC_F_NM, Then LC is LC_AN,
Rule 48: If A is LC_A_B, S is LC_S_RB, P is LC_P_RB and F is LC_F_AN, Then LC is LC_AN.

where:

Symbol Meaning Symbol Meaning
LC_A_RS The average value is relative small(RS) LC_P_RB The peak factor is relative big(RB)

LC_A_NM The average value is normal(NM) LC_F_NM The frequency center is normal(NM)
LC_A_RB The average value is relative big(RB) LC_F_AN The frequency center is abnormal(AN)
LC_A_B The average value is big LC_VST The left cutting current is very stable(VST)

LC_S_NM The stand deviation is normal(NM) LC_ST The left cutting current is stable(ST)
LC_S_RB The stand deviation is relative big(RB) LC_RST The left cutting current is relative stable(RST)
LC_P_RS The peak factor is relative small(RS) LC_FT The left cutting current is fluctuant(FT)

LC_P_NM The peak factor is normal(NM) LC_AN The left cutting current is abnormal(AN)

In the same way, the fuzzy rule base of other parameters, sub-units, units, and the whole shearer
were established successively.

Then, the feature matrix of the left cutting current could be summarized as shown:

XLC48ˆ4 “

»

—

—

—

—

—

–

LC_A_RS LC_S_NM LC_P_RS LC_F_NM
LC_A_RS LC_S_NM LC_P_RS LC_F_AN
LC_A_RS LC_S_NM LC_P_RS LC_F_NM

. . . . . .
LC_A_B LC_S´ RB LC_P´ RB LC_F_AN

fi

ffi

ffi

ffi

ffi

ffi

fl

, βLC48ˆ1 “

¨

˚

˚

˚

˚

˚

˝

LC_RST
LC_FT

LC_VST
. . . . . .

LC_AN

˛

‹

‹

‹

‹

‹

‚

(10)

Likewise, the feature matrix of the left cutting temperature and other parameters could be
obtained. At this point, all fuzzy rule bases and feature matrices of features could be established.

In the process of sample training for initial PNN, the inputs were XLC, XLT, XRC, XRT, XLHC, XLHT,
XLHT, XRHC, XRHT, XTT, and the outputs were βLC, βLT, βRC, βRT, βLHC, βLHT, βRHC, βRHT, βTT. In the
input layer of PNN, the row vector of feature matrix was transported. The probability of LC_VST,
LC_ST, LC_RST, LC_FT and LC_AN was calculated individually in the summation layer in the training
process of the left cutting current. Finally, results with the biggest posteriori probability were the
outputs of the row vectors. The same operation could be done for other feature matrixes.

The predetermined accuracy was set at 95%, the smooth factor σ in PNN was 0.1, and the iteration
number was 500. To verify the effect of the training process, the front 40 rows in each feature matrix
were selected as the training samples, the last eight rows were extracted as the test sample. Thus, there
were 360 training samples and 72 test samples in total. For the left cutting current, the input of the
training sample was actually XLC40ˆ 4, the output was βLC40ˆ 1, and it was the same as the other state
variables. After training the initial PNN, 72 row vectors were input into the trained PNN, and the
results showed 69 outputs were in accordance with the actual conditions of each parameter, and the
accuracy was 95.83%. Thus, the training effect satisfies the demand.

4.2. Recognizing State of the Shearer

Eight groups of sensor information were extracted in Table 1, and each group was composed of
128 sample points, which contained the left cutting current, left cutting temperature, right cutting
current, right cutting temperature, left haulage current, left haulage temperature, right haulage current,
right haulage temperature and transformer temperature. In order to extract key features from field
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sensors, four typical characteristics in the time-frequency domain, such as the average value, standard
deviation, peak factor, and frequency center of the data were selected. Then, the fuzzy rule base and
feature matrix were established. The features of the left cutting current could be shown in Figure 6.Algorithms 2016, 9, 34 10 of 14 
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Figure 6. Feature curve of the left cutting current.

Table 1. Field sensor data.

Left Cutting Current/Ampere

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8
1 26.8519 27.7778 27.3148 27.1605 27.9321 29.1667 27.6235 27.4691
2 26.8519 27.3148 27.3148 27.1605 27.3148 29.1667 27.6235 26.8519
3 26.8519 25.6173 27.3148 27.1605 27.9321 28.5494 27.6235 26.8519
4 26.8519 27.1605 27.4691 27.3148 27.9321 28.5494 28.2407 26.8519
5 26.8519 27.1605 27.3148 27.6235 27.7778 28.5494 27.6235 26.8519
... ......

127 27.7778 27.3148 27.0062 27.9321 28.7037 27.9321 26.6975 26.8519
128 27.7778 27.3148 27.0062 27.9321 28.7037 28.2407 26.8519 26.8519

Left Cutting Temperature/Degree Centigrade

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8
1 53.1829 53.0671 53.7037 54.2824 55.2662 55.9606 56.6551 57.4653
2 53.1829 52.8935 53.9931 54.6296 55.0926 55.8449 56.8866 57.9282
3 53.1250 53.4144 53.7037 54.5718 55.5556 56.2500 57.1759 57.5810
4 52.8356 53.0671 53.9931 54.9190 55.7292 56.1343 56.8287 57.7546
5 53.1250 53.0671 54.3403 54.6875 55.3819 56.5394 57.5231 57.8704
... ......

127 52.7778 53.4144 54.6296 54.2824 55.6713 56.6551 56.8287 57.9282
128 52.7778 53.3565 54.6296 54.6296 55.6134 56.8866 56.8287 57.8704

Right Cutting Current/Ampere

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8
1 26.0802 27.3148 27.3148 27.6235 27.3148 27.0062 26.6975 26.6975
2 26.0802 27.1605 27.3148 27.6235 27.6235 27.0062 26.2346 26.6975
3 26.0802 26.3889 27.4691 27.6235 27.6235 26.3889 26.6975 27.0062
4 25.9259 26.8519 27.7778 27.7778 27.6235 26.3889 26.6975 26.8519
5 26.0802 26.8519 27.6235 27.1605 27.1605 26.3889 26.6975 26.8519
... ......

127 27.3148 27.6235 28.2407 27.3148 26.8519 27.0062 26.2346 28.5494
128 27.3148 27.6235 28.2407 27.3148 26.8519 26.6975 26.2346 28.5494
... ......

Fuzzy membership functions and quantification matrices were calculated to quantify sensor
data gathered from field sensors. For the left cutting current, fuzzy functions for each feature can be
determined according to feature curves of the left cutting current and the existing experience.
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µcj was the membership function of the average value and could be shown as below:

µcj “

$

’

&

’

%

5j{128 p0 ă j ď 51.2q
5j{64´ 2 p51.2 ă j ď 76.8q
4 pj ą 76.8q

(11)

µcb was the membership function of the standard deviation and could be shown as below:

µcb “

$

’

&

’

%

b{3 p0 ă b ď 3q
b{7` 4{7 p3 ă b ď 10q
2 pb ą 10q

(12)

µcf was the membership function of the peak factor and could be shown as below:

µc f “

$

’

’

’

&

’

’

’

%

50 f {51 p0 ă f ď 1.02q
50 f {24´ 9{8 p1.02 ă f ď 1.5q
2 f {3` 1 p1.5 ă f ď 3q
3 p f ą 3q

(13)

Moreover, µpf was the membership function of the frequency center and could be shown as below:

µp f “

#

1 p0.9 ď p ď 1.0q
2 pp ă 0.9 or p ą 1.0q

(14)

Then, a quantification matrix of left cutting current was obtained as below:

XLCQ8ˆ4 “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

1.0559 0.1067 1.0208 1.0000
1.0711 0.1067 1.0417 1.0000
1.0598 0.1533 1.0417 1.0000
1.0816 0.1233 1.0000 1.0000
1.1027 0.1600 1.0833 1.0000
1.1129 0.3300 1.1667 1.0000
1.0738 0.2100 1.0625 1.0000
1.0668 0.2133 1.1458 1.0000

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(15)

Working condition of the shearer was recognized by the trained PNN and the multi-level fuzzy
rule base. The state of each left cutting current was obtained by inputting a four-dimensional row
vector into the trained PNN. Row vector xq1ˆ 4 = (1.0599 0.1067 1.0208 1.0000) was inputted into PNN
to gain the left cutting current of group 1. In the same way, parameter states of other groups were
obtained by the trained PNN as shown below:

Parameters State Set
Left cutting current LCC_RST, LCC_RST, LCC_RST, LCC_RST, LCC_RST, LCC_RST, LCC_RST, LCC_RST

Left cutting temperature LCT_N, LCT_N, LCT_N, LCT_N, LCT_N, LCT_N, LCT_N, LCT_N
Right cutting current RCC_RST, RCC_RST, RCC_RST, RCC_RST, RCC_RST, RCC_RST, RCC_RST, RCC_RST

Right cutting temperature RCT_N,RCT_N, RCT_N, RCT_N, RCT_N, RCT_N, RCT_N, RCT_N
Left haulage current LHC_RST, LHC_RST, LHC_RST, LHC_FT, LHC_FT, LHC_RST, LHC_FT, LHC_FT

Left haulage temperature LHT_N, LHT_N, LHT_N, LHT_N, LHT_N, LHT_N, LHT_N, LHT_N
Right haulage current LHC_RST, LHC_RST, LHC_RST, LHC_RST, LHC_FT, LHC_RST, LHC_RST, LHC_RST

Right haulage temperature RHT_N, RHT_N, RHT_N, RHT_N, RHT_N, RHT_N, RHT_N, RHT_N
Transport temperature TT_N, TT_N, TT_N, TT_N, TT_N, TT_N, TT_N, TT_N
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After calculating the fuzzy state set of each parameter by the trained PNN, working conditions of
each sub-unit, unit, and the shearer could be gained on the established multi-level fuzzy rule base.
The working condition of the shearer could be shown as below:

tSH_N, SH_N, SH_N, SH_AL, SH_AL, SH_N, SH_AL, SH_ALu,

where:

Symbol Meaning

SH_N State of the shearer is normal
SH_AL State of the shearer is alarm
SH_F State of the shearer is fault

in which, working state of group 1, group 2, group 3, and group 6 was Normal, and group 4, group 5,
group 7, and group 8 was Alarm.

5. Industrial Application

In this section, a state recognition system based on the proposed approach was developed
and applied in the field of mining automation production as shown in Figure 7. The information
database was acquired from the 71506 coal mining face in the NO. 13 Mine of Yangquan Coal Industry
Group Corporation.
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Figure 7. State recognition system for the shearer.

In order to illustrate the application effect of the proposed system, running parameters of the
shearer were collected from the programmable logic controller (PLC) and transported by wireless mesh
switches and fiber channel switches. The three-dimensional virtual reality system and the monitoring
platform were established to show real-time working state of the shearer. An industrial test lasting for
an hour was conducted, and the state of shearer was updated every 10 s. The current and temperature
data of the coal mining shearer were collected in each time interval. Then, a comprehensive running
state was obtained and recorded automatically. The running log of the shearer was shown in Table 2,
where Alarm was recognized 21 times by the proposed system, and one of them was a false Alarm.
Moreover, an Alarm event was missing. Thus, the accuracy of the industrial was 90.91%. The average
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computing time of the recognition process was 0.8632 s, which could basically meet the practical
production.

Table 2. The shearer running log.

Event Number FPNN Estimation State Actual State Time/h:m:s Computing Time/s

1 Alarm Alarm 0:00:40 0.8763
2 Alarm Alarm 0:03:20 0.9239
3 Alarm Alarm 0:05:30 0.7633

......
14 Normal Alarm 0:15:20 0.8520
15 Alarm Alarm 0:20:30 0.9172
16 Alarm Normal 0:22:30 1.0239
17 Fault Fault 0:26:50 0.9764

......
22 Alarm Alarm 0:52:40 0.8012

The shearer operator adjusted the shearer according to the real-time state recognition system,
and the running parameters trended towards stable, where the cutting current was shown in Figure 8.
It could be calculated from the figure that the average value of the left and right currents were 27.9578A
and 27.2498, respectively, and the maximal values were about 10.95% and 4.77% larger than the
average. In addition, the standard deviations of the two curves were 0.9601 and 0.6794. As the
geological condition of the working area was complicated and changeable, the slight fluctuation was
caused by the changing hardness and the variable thickness of the coal seam.

1 
 

 

Figure 8. Cutting current curve.

6. Conclusions

A state recognition approach through integration of fuzzy logic theory and a probabilistic
neural network was proposed to improve running efficiency and reduce fault occurrence of complex
equipment. The key techniques of the proposed method such as construction of a multi-level state
space, a probabilistic neural network, fuzzy functions and quantification matrices were described in
detail, and the flowchart of proposed method was designed. Finally, a simulation example and the
industrial application were provided. Experiment results showed that the proposed approach was
feasible and efficient.

However, there are also some limitations and trouble in this paper listed as follows: (1) the initial
training rules for PNN were obtained from expert experience and the level of intelligence was not high
enough; (2) parameter selection during the training process for a cognitive PNN relied on extensive
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simulations; and (3) the online system still has a problem of response delay in the present model.
In future studies, the authors plan to investigate some improvements for the proposed approach.
Possible improvements may include the adaptive algorithm to establish the rule base and select
appropriate parameters, higher execution efficiency of the algorithm code, and applications of the
proposed approach in other fields.
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