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Abstract: Low-Rank Tensor Recovery (LRTR), the higher order generalization of Low-Rank Matrix
Recovery (LRMR), is especially suitable for analyzing multi-linear data with gross corruptions,
outliers and missing values, and it attracts broad attention in the fields of computer vision, machine
learning and data mining. This paper considers a generalized model of LRTR and attempts to recover
simultaneously the low-rank, the sparse, and the small disturbance components from partial entries
of a given data tensor. Specifically, we first describe generalized LRTR as a tensor nuclear norm
optimization problem that minimizes a weighted combination of the tensor nuclear norm, the l1-norm
and the Frobenius norm under linear constraints. Then, the technique of Alternating Direction
Method of Multipliers (ADMM) is employed to solve the proposed minimization problem. Next, we
discuss the weak convergence of the proposed iterative algorithm. Finally, experimental results on
synthetic and real-world datasets validate the efficiency and effectiveness of the proposed method.

Keywords: low-rank tensor recovery; low-rank matrix recovery; nuclear norm minimization;
alternating direction method of multipliers

1. Introduction

In the past decade, the low-rank property of some datasets has been explored skillfully to recover
both the low-rank and the sparse components or complete the missing entries. The datasets to be
analyzed are usually modeled by matrices and the corresponding recovery technique is named as
Low-Rank Matrix Recovery (LRMR). LRMR has received a significant amount of attention in some
fields of information science such as computer vision, machine learning, pattern recognition, data
mining and linear system identification. There are several appealing types of LRMR including Matrix
Completion (MC) [1], Robust Principal Component Analysis (RPCA) [2] and Low-Rank Representation
(LRR) [3]. Mathematically, we customarily formulate LRMR as matrix nuclear norm minimization
problems that can be effectively solved by several scalable methods. Diverse variants of LRMR derive
from the aforementioned three models, for instance, MC with noise (or stable MC) [4], stable RPCA [5,6],
incomplete RPCA [7], LRR with missing entries [8], and LRMR based on matrix factorization or
tri-factorization [9,10].

The fields of image and signal processing usually require processing large amounts of multi-way
data, such as video sequences, functional magnetic resonance imaging sequences and direct-sequence
code-division multiple access (DS-CDMA) systems [11]. For the datasets with multi-linear structure,
traditional matrix-based data analysis is prone to destroy the spatial and temporal structure, and can
be affected by the curse of dimensionality. In contrast, tensor-based data representation can avoid
or alleviate the above deficiencies to some extent. Furthermore, tensor decompositions can be used
to obtain a low-rank approximation of an investigated data tensor. Two of the most popular tensor
decompositions are the Tucker model and the PARAFAC (Parallel Factor Analysis) model, and they
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can be thought of as the higher order generalizations of Singular Value Decomposition (SVD) and
Principal Component Analysis (PCA) [12].

Generally speaking, the traditional tensor decomposition models are very sensitive to missing
entries, arbitrary outliers and gross corruptions. On the contrary, Low-Rank Tensor Recovery (LRTR)
is very effective to recover simultaneously the low-rank component and the sparse noise, or complete
the missing entries. As the higher order generalization of LRMR, LRTR is composed mainly of tensor
completion [13] and Multi-linear RPCA (MRPCA) [14]. The task of tensor completion is to recover
missing or unsampled entries according to the low-rank structure. The alternating least squares method
based on the PARAFAC decomposition was originally proposed to complete missing entries [15].
Subsequently, the Tucker decomposition was applied to the problem of tensor completion [16–18].
The multi-linear rank is commonly used to describe the low-rank property, although it is hard to be
properly estimated. The tensor nuclear norm generalizes the matrix nuclear norm and becomes a new
standard for measuring the low-rank structure of a tensor. Hence, LRTR can usually be boiled down to
a tensor nuclear norm minimization problem.

Liu et al. [13] established a tensor nuclear norm minimization model for tensor completion and
proposed the Alternating Direction Method of Multipliers (ADMM) for efficiently solving this model.
Gandy et al. [19] considered the low-n-rank tensor recovery problem with some linear constraints and
developed the Douglas–Rachford splitting technique, a dual variant of the ADMM. To reduce the
computational complexity of the tensor nuclear norm minimization problems, Liu et al. [20] introduced
the matrix factorization idea into the minimization model and obtained a much smaller matrix nuclear
norm minimization problem. Tan et al. [21] transformed tensor completion into a linear least squares
problem and proposed a nonlinear Gauss–Seidel method to solve the corresponding optimization
problem. In [14], Shi et al. extended RPCA to the case of tensors and presented the MRPCA model.
MRPCA, also named robust low-rank tensor recovery [22], was described as a tensor nuclear norm
minimization which can be solved efficiently by the ADMM.

This paper studies a generalized model of LRTR. In this model, the investigated data tensor is
assumed to be the superposition of a low-rank component, a gross sparse tensor and a small dense error
tensor. The Generalized Low-Rank Tensor Recovery (GLRTR) aims mainly to recover the low-rank
and the sparse components from partially observed entries. For this purpose, we establish a tensor
nuclear norm minimization model for GLRTR. In addition, the ADMM method is adopted to solve the
proposed convex model.

The rest of this paper is organized as follows. Section 2 provides mathematical notations and
introduces preliminaries on tensor algebra. In Section 3, we review related works on LRTR. We present
a generalized LRTR model and develop an efficient iterative algorithm for solving the proposed model
in Section 4. Section 5 discusses the weak convergence result on the proposed algorithm. We report the
experimental results in Section 6. Finally, Section 7 draws the conclusions.

2. Notations and Preliminaries

This section will briefly introduce mathematical notations and review tensor algebra. We denote
tensors by boldface Euclid Math One, e.g., A, matrices by boldface capital letters, e.g., A, vectors
by boldface letters, e.g., a, and scalars by italic letters, e.g., a or A. A tensor with order N indicates
that its entries can be expressed via N indices. For an Nth-order real tensor A P RI1ˆI2ˆ¨¨¨ˆIN , its
pi1, i2, ¨ ¨ ¨ , iNq entry is denoted by ai1i2¨¨¨iN .

The n-mode matricization (unfolding) of tensor A, denoted by Apnq, is an In ˆ
ś

j‰n Ij

matrix obtained by rearranging n-mode fibers to be the columns of the resulting matrix.
Furthermore, we define an opposite operation “fold” as f oldnpApnqq “ A. Given
another tensor B P RI1ˆI2ˆ¨¨¨ˆIN , the inner product between A and B is defined as
xA,By “

řI1
i1“1

řI2
i2“1 ¨ ¨ ¨

řIN
iN“1 ai1i2¨¨¨iN bi1i2¨¨¨iN . Then, the Frobenius norm (or l2-norm) of tensor A

can be induced by the above inner product, that is, ||A||F “
a

xA,Ay. Moreover, we also give
other norm definitions of a tensor, which will be needed in the following sections. The l1-norm
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of tensor A is expressed as ||A||1 “
řI1

i1“1
řI2

i2“1 ¨ ¨ ¨
řIN

iN“1

ˇ

ˇai1i2¨¨¨iN

ˇ

ˇ and the tensor nuclear norm

is ||A||˚ “
řN

n“1 wn||Apnq||
˚

, where ||Apnq||
˚

, named the nuclear norm of Apnq, is the sum of

singular values of Apnq, wn ě 0 and
řN

n“1 wn “ 1. Due to the fact that the nuclear norm of one matrix
is the tightest convex relaxation of the rank function on the unit ball in the spectral norm, it is easy to
verify that the tensor nuclear norm ||A||˚ is a convex function with respect to A.

The n-mode product of tensor A by a matrix U P RJnˆIn , denoted as A ˆn U, is an
Nth-order tensor with the dimensionality of I1 ˆ ¨ ¨ ¨ ˆ In´1 ˆ Jn ˆ In´1 ˆ ¨ ¨ ¨ ˆ IN , and its
pi1, ¨ ¨ ¨ , in´1, j, in`1 ¨ ¨ ¨ , iNq ´ th entry is calculated as

řIn
in“1 ai1i2¨¨¨iN ujin . The multi-linear rank of

tensor A is stipulated as a vector
´

rankpAp1qq, rankpAp2qq, . . . , rankpApNqq
¯

, where rankp¨q indicates
the rank function of a matrix. Tensor A is low-rank if and only if rankpApnqq ! In for some n. Then,
the Tucker decomposition of A is defined as

A « C ˆ1 Up1q ˆ2 Up2q ¨ ¨ ¨ ˆN UpNq fi C ˆN
n“1 Upnq, (1)

where the core tensor C P RJ1ˆJ2ˆ¨¨¨ˆJN , mode matrices Upnq P RJnˆIn and Jn ď In. The multi-linear
rank of a tensor has superiority over other definitions (e.g., the rank used in PARAFAC decomposition)
because it is easy to compute. Refer to the survey [12] for further understanding of tensor algebra.

Within the field of low-rank matrix/tensor recovery, two proximal minimization problems are
extensively employed:

min
X
λ||X||1 `

1
2

||X ´A||2
F, (2)

min
X
λ||X||˚ `

1
2

||X´A||2
F, (3)

where A and A are a given data tensor and matrix respectively, λ ě 0 is a regularization factor.
To address the above two optimization problems, we first define an absolute thresholding operator
Sλpq : RI1ˆI2ˆ¨¨¨ˆIN Ñ RI1ˆI2ˆ¨¨¨ˆIN as below: pSλpAqqi1i2¨¨¨iN

“ max
`
ˇ

ˇai1i2¨¨¨iN

ˇ

ˇ´ λ, 0
˘

. It has been
proven that problems (2) and (3) have closed-form solutions denoted by SλpAq [2] and TλpAq [23]
respectively, where TλpAq “ USλpΣqVT and UΣVT is the singular value decomposition of A.

3. Related Works

Tensor completion and MRPCA are two important and appealing applications of LRTR. In this
section, we review the related works on the aforementioned two applications.

As the higher order generalization of matrix completion, tensor completion aims to recover all
missing entries with the aid of the low-rank (or approximately low-rank) structure of a data tensor.
Although low-rank tensor decompositions are practical in dealing with missing values [15–18], we
have to estimate properly the rank of an incomplete tensor in advance. In the past few years, the matrix
nuclear norm minimization model has been extended to the tensor case [13]. Given an incomplete
data tensor D P RI1ˆI2ˆ¨¨¨ˆIN and a corresponding sampling index set Ω Ă rI1s ˆ rI2s ˆ ¨ ¨ ¨ ˆ rINs,
we define a linear operator PΩpq : RI1ˆI2ˆ¨¨¨ˆIN Ñ RI1ˆI2ˆ¨¨¨ˆIN as follows: if pi1, i2, ¨ ¨ ¨ , iNq P Ω,
pPΩpDqqi1i2¨¨¨iN

“ di1i2¨¨¨iN ; otherwise, pPΩpDqqi1i2¨¨¨iN
“ 0, where rIns “ t1, 2, . . . , Inu. Then, the

original tensor nuclear norm minimization model for tensor completion [13] is described as:

min
X

||X||˚, s.t. PΩpX q “ PΩpDq. (4)

To tackle problem (4), Liu et al. [13] developed three different algorithms and demonstrated
experimentally that the ADMM is the most efficient algorithm in obtaining a high accuracy solution.
If we further take the dense Gaussian noise into consideration, then the stable version of tensor
completion is given as below [19]:

min
X

||X||˚, s.t. ||PΩpX q ´ PΩpDq||F ď η, (5)
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or its corresponding unconstrained formulation:

min
X
λ||X||˚ `

1
2

||PΩpX q ´ PΩpDq||2
F, (6)

where the regularized parameter λpě 0q is used to balance the low-rankness and the approximate
error, and η is a known estimate of the noise level.

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse
component, and it is possible to recover simultaneously the two components by principal component
pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case of tensors
and presented the framework of MRPCA, which regards the data tensor D as the sum of a low-rank
tensor A and a sparse noise term
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* 1, ,
min , s. t . ( ) ( ),       

F  
      P P  (8) 

where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 
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. Mathematically, the low-rank and the sparse components can be
simultaneously recovered by solving the following tensor nuclear norm minimization problem:

min
A,
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section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop a
corresponding iterative scheme.

4.1. Model of GLRTR

The datasets contaminated by Gaussian noise are very universal in practical engineering
applications. In view of this, we assume the data tensor D to be the superposition of the low-rank
component A, the large sparse corruption
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of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
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applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

and the Gaussian noise G. We also consider the case that
some entries of D are missing. To recover simultaneously the above three terms, we establish a convex
GLRTR model as follows:

min
A,E ,G

||A||˚ ` λ||
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case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 

2

* 1, ,
min , s. t . ( ) ( ),       

F  
      P P  (8) 

where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 
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||1 ` τ||G||2
F, s.t. PΩpDq “ PΩpA`
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Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
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a corresponding iterative scheme.  
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component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
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where the regularization coefficients   and   are nonnegative. ε 
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 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

`Gq, (8)

where the regularization coefficients λ and τ are nonnegative.
If we reinforce the constraints G “ O(or equivalently τ Ñ `8 ) and
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
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“ O (or equivalently
λÑ `8 ), then the GLRTR is transformed into the tensor completion model (4), where the zero tensor
O has the same dimensionality as D. If only the constraint
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

“ O is considered, then the GLRTR is
equivalent to Equation (6). Furthermore, if we take G “ O and Ω “ rI1s ˆ rI2s ˆ ¨ ¨ ¨ ˆ rINs, then the
model of GLRTR becomes the model of MRPCA. In summary, the proposed model is the generalization
of the existing LRTR.

For the convenience of using the splitting method, we discard A and introduce N + 1 auxiliary
tensor variables M1,M2, . . . ,MN,X , where these auxiliary variables have the same dimensionality
as D. Let Mnpnq be the n-mode matricization of Mn for each n P rNs and M “ tM1,M2, . . . ,MNu.
Hence, we have the equivalent formulation of Equation (8):

min
X ,E ,G,M

řn
N“1 wn||Mnpnq||

˚
` λ||
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
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components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 

* 1,
min , s . t . .   
 
      (7) 

In [22], MRPCA is also called as robust low-rank tensor recovery. 
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Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  
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The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

||1 ` τ||G||2
F,

s.t. X “Mn `G `
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 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

, PΩpX q “ PΩpDq, n “ 1, 2, . . . , N.
(9)

As a matter of fact, the discarded low-rank tensor A can be represented by
A “

řn
N“1 Mn{N. Now, we explain the low-rankness of A from two viewpoints. One is

||A||˚ ď
řn

N“1 ||Mn||˚{N ď max
1ďnďN

||Mn||˚. The other is that a better solution to Equation (9)

will satisfy M1 «M2 « . . . «MN. These viewpoints illustrate that A is approximately low-rank
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along each mode. The aforementioned non-smooth minimization problem is distributed convex.
Concretely speaking, the tensor variables can be split into several parts and the objective function is
separable across this splitting.

4.2. Optimization Algorithm to GLRTR

As a special splitting method, the ADMM is very efficient to solve a distributed optimization
problem with linear equality constraints. It takes the form of the decomposition–coordination
procedure and blends the merits of dual decomposition and augmented Lagrangian methods. In this
section, we will propose the method of ADMM to solve Equation (9).

We first construct the augmented Lagrangian function of the aforementioned convex optimization
problem without considering the constraint PΩpX q “ PΩpDq:

LµpX , M,
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where µ is a positive numerical constant, Yn are Lagrangian multiplier tensors and
Y “ tY1,Y2, . . . ,YNu. There are totally five blocks of variables in LµpX ,M,
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applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 

2

* 1, ,
min , s. t . ( ) ( ),       

F  
      P P  (8) 

where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

,G,Yq with respect to one argument. On the contrary, if tX ,M,G,
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[ ] {1,2,..., }n nI I . Then, the original tensor nuclear norm minimization model for tensor completion 
[13] is described as: 

*
min , s.t . ( ) ( ). P P

    (4) 

To tackle problem (4), Liu et al. [13] developed three different algorithms and demonstrated 
experimentally that the ADMM is the most efficient algorithm in obtaining a high accuracy 
solution. If we further take the dense Gaussian noise into consideration, then the stable version of 
tensor completion is given as below [19]: 
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or its corresponding unconstrained formulation: 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 

* 1,
min , s . t . .   
 
      (7) 

In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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min , s. t . ( ) ( ),       

F  
      P P  (8) 

where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

u are given, Y
is updated by maximizing LµpX ,M,
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[ ] {1,2,..., }n nI I . Then, the original tensor nuclear norm minimization model for tensor completion 
[13] is described as: 
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To tackle problem (4), Liu et al. [13] developed three different algorithms and demonstrated 
experimentally that the ADMM is the most efficient algorithm in obtaining a high accuracy 
solution. If we further take the dense Gaussian noise into consideration, then the stable version of 
tensor completion is given as below [19]: 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 

* 1,
min , s . t . .   
 
      (7) 

In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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* 1, ,
min , s. t . ( ) ( ),       

F  
      P P  (8) 

where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

,G,Yqwith respect to Y . The detailed iterative procedure is
outlined as follows:

Computing X . Fix tM,
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[ ] {1,2,..., }n nI I . Then, the original tensor nuclear norm minimization model for tensor completion 
[13] is described as: 
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To tackle problem (4), Liu et al. [13] developed three different algorithms and demonstrated 
experimentally that the ADMM is the most efficient algorithm in obtaining a high accuracy 
solution. If we further take the dense Gaussian noise into consideration, then the stable version of 
tensor completion is given as below [19]: 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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      (7) 

In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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F  
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 
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[ ] {1,2,..., }n nI I . Then, the original tensor nuclear norm minimization model for tensor completion 
[13] is described as: 
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To tackle problem (4), Liu et al. [13] developed three different algorithms and demonstrated 
experimentally that the ADMM is the most efficient algorithm in obtaining a high accuracy 
solution. If we further take the dense Gaussian noise into consideration, then the stable version of 
tensor completion is given as below [19]: 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 

* 1,
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 
      (7) 

In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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F  
      P P  (8) 

where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 
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[13] is described as: 
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To tackle problem (4), Liu et al. [13] developed three different algorithms and demonstrated 
experimentally that the ADMM is the most efficient algorithm in obtaining a high accuracy 
solution. If we further take the dense Gaussian noise into consideration, then the stable version of 
tensor completion is given as below [19]: 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 
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To tackle problem (4), Liu et al. [13] developed three different algorithms and demonstrated 
experimentally that the ADMM is the most efficient algorithm in obtaining a high accuracy 
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tensor completion is given as below [19]: 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

. In consideration of the constraint PΩpX q “ PΩpDq, the
final update formulation of X is revised as

X :“ PΩp
ĂX q ` PΩpDq, (12)

where Ω is the complement set of Ω.
Computing M. If Mn is unknown and other variables are fixed, we update Mn by minimizing

LµpX ,M,
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error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
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section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 
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applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
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the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

,G,Yqwith respect to Mn:

Mn : “ arg min
Mn

LµpX ,M,
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In [22], MRPCA is also called as robust low-rank tensor recovery. 
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a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
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component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
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component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
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Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  
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The datasets contaminated by Gaussian noise are very universal in practical engineering 
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component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
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the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 
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Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
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component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 
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case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 

2

* 1, ,
min , s. t . ( ) ( ),       

F  
      P P  (8) 

where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

||1 `
1
2 ||

Algorithms 2016, 9ms 2016, 9, 28 

4 

if 1 2( , , , ) Ni i i ,  
1 21 2

( )  P d
NN

i i ii i i
; otherwise,  

1 2
( ) 0 P 

Ni i i
, where 

[ ] {1,2,..., }n nI I . Then, the original tensor nuclear norm minimization model for tensor completion 
[13] is described as: 

*
min , s.t . ( ) ( ). P P

    (4) 

To tackle problem (4), Liu et al. [13] developed three different algorithms and demonstrated 
experimentally that the ADMM is the most efficient algorithm in obtaining a high accuracy 
solution. If we further take the dense Gaussian noise into consideration, then the stable version of 
tensor completion is given as below [19]: 

*
min , s. t . ( ) ( ) ,   

F
P P


    (5) 

or its corresponding unconstrained formulation: 

2

*

1min ( ) ( ) ,
2    

F
P P


    (6) 

where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
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component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 
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component, and it is possible to recover simultaneously the two components by principal 
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[ ] {1,2,..., }n nI I . Then, the original tensor nuclear norm minimization model for tensor completion 
[13] is described as: 
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
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To tackle problem (4), Liu et al. [13] developed three different algorithms and demonstrated 
experimentally that the ADMM is the most efficient algorithm in obtaining a high accuracy 
solution. If we further take the dense Gaussian noise into consideration, then the stable version of 
tensor completion is given as below [19]: 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 

* 1,
min , s . t . .   
 
      (7) 

In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 

2

* 1, ,
min , s. t . ( ) ( ),       

F  
      P P  (8) 

where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

,Gu are fixed, we can update the Lagrangian multipliers Y as follows:

Yn :“ Yn ` µ pX ´Mn ´G ´
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[13] is described as: 
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To tackle problem (4), Liu et al. [13] developed three different algorithms and demonstrated 
experimentally that the ADMM is the most efficient algorithm in obtaining a high accuracy 
solution. If we further take the dense Gaussian noise into consideration, then the stable version of 
tensor completion is given as below [19]: 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 

* 1,
min , s . t . .   
 
      (7) 

In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 

2

* 1, ,
min , s. t . ( ) ( ),       

F  
      P P  (8) 

where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

q , n “ 1, 2, . . . , N. (16)

Once tX ,M,
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[ ] {1,2,..., }n nI I . Then, the original tensor nuclear norm minimization model for tensor completion 
[13] is described as: 
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To tackle problem (4), Liu et al. [13] developed three different algorithms and demonstrated 
experimentally that the ADMM is the most efficient algorithm in obtaining a high accuracy 
solution. If we further take the dense Gaussian noise into consideration, then the stable version of 
tensor completion is given as below [19]: 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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F  
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

,G,Yu are updated, we will increase the value of µ by multiplying it with a
constant ρpą 1q during the procedure of iterations. The whole iterative procedure is outlined in
Algorithm 1. The stopping condition of Algorithm 1 is set as max

1ďnďN
||X ´Mn ´G ´
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To tackle problem (4), Liu et al. [13] developed three different algorithms and demonstrated 
experimentally that the ADMM is the most efficient algorithm in obtaining a high accuracy 
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*
min , s. t . ( ) ( ) ,   

F
P P


    (5) 

or its corresponding unconstrained formulation: 

2

*

1min ( ) ( ) ,
2    

F
P P


    (6) 

where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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min , s . t . .   
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      (7) 

In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

||2
F ă ε or the

maximum number of iterations is reached, where ε is a sufficiently small positive number.

Algorithm 1. Solving GLRTR by ADMM

Input: Data tensor D, sampling index set Ω, regularization parameters λ and τ.
Initialize: M,
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To tackle problem (4), Liu et al. [13] developed three different algorithms and demonstrated 
experimentally that the ADMM is the most efficient algorithm in obtaining a high accuracy 
solution. If we further take the dense Gaussian noise into consideration, then the stable version of 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

,G,Y ,µ,µmax and ρ.
Output: X ,
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To tackle problem (4), Liu et al. [13] developed three different algorithms and demonstrated 
experimentally that the ADMM is the most efficient algorithm in obtaining a high accuracy 
solution. If we further take the dense Gaussian noise into consideration, then the stable version of 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

,G and M.
While not converged do

1. Update X according to (12).
2. Update Mn according to (13), n “ 1, 2, . . . , N.
3. Update
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To tackle problem (4), Liu et al. [13] developed three different algorithms and demonstrated 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

according to (14).
4. Update G according to (15).
5. Update Yn according to (16), n “ 1, 2, . . . , N.
6. Update µ as µ :“ minpρµ,µmaxq.

End while

In our implementation, M,
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error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

,G and Y are initialized to zeros tensors. The other parameters
are set as follows: w1 “ w2 “ . . . “ wN “ 1{N,µ “ 10´4,ρ “ 1.1, µmax “ 1010 and ε “ 10´8.
Furthermore, the maximum number of iterations is set to 100.

5. Convergence Analysis

Because the number of block variables in Equation (9) is more than two, it is difficult for us to prove
the convergence of Algorithm 1. Nevertheless, the experimental results in the next section demonstrate
this algorithm has good convergence behavior. This section will discuss the weak convergence result
on our ADMM algorithm.
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We consider a special case of Algorithm 1, that is, there is no missing entries. In this case, it holds
that X “ D. Thus, Equation (9) is transformed into

min
M,E ,G

wn||Mnpnq||
˚
` λ||
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
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section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
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The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

||1 ` τ||G||2
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s.t. D “Mn `G `

Algorithms 2016, 9ms 2016, 9, 28 

4 

if 1 2( , , , ) Ni i i ,  
1 21 2

( )  P d
NN

i i ii i i
; otherwise,  

1 2
( ) 0 P 

Ni i i
, where 

[ ] {1,2,..., }n nI I . Then, the original tensor nuclear norm minimization model for tensor completion 
[13] is described as: 

*
min , s.t . ( ) ( ). P P

    (4) 

To tackle problem (4), Liu et al. [13] developed three different algorithms and demonstrated 
experimentally that the ADMM is the most efficient algorithm in obtaining a high accuracy 
solution. If we further take the dense Gaussian noise into consideration, then the stable version of 
tensor completion is given as below [19]: 

*
min , s. t . ( ) ( ) ,   

F
P P


    (5) 

or its corresponding unconstrained formulation: 

2

*

1min ( ) ( ) ,
2    

F
P P


    (6) 

where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 
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Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
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component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
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, n “ 1, 2, . . . , N.
(17)

We can design a corresponding ADMM algorithm by revising Algorithm 1, namely, the update
formulation of X is replaced by X “ D. In fact, the revised algorithm is an inexact version of ADMM.
Subsequently, we give the iterative formulations of exact ADMM for Equation (17):

$

’

’

&

’

’

%

M :“ arg min
M

LµpD,M,
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 
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section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
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The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
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where I is an identity matrix of size I1 ˆ I1. If we integrate Gp1q and Ep1q into one block of variables,
then Equation (20) is re-expressed as below:
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We denote M “

!

M1p1q, M2p1q, ¨ ¨ ¨ , MNp1q

)

and partition all variables in Equation (17) into two

parts in form of matrices: M and
´

Ep1q, Gp1q
¯

. Essentially, M, Ep1q and Gp1q are the matricizations of

M,
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error, and   is a known estimate of the noise level. 
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Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
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case that some entries of   are missing. To recover simultaneously the above three terms, we 
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
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and G, respectively. Let gpMq “
N
ř

n“1
wn||Mnpnq||

˚
, hpEp1q, Gp1qq “ λ||Ep1q||

1
` τ||Gp1q||2

F
.

Then, the objective function in Equation (17) can be expressed as gpMq ` hpEp1q, Gp1qq. It is obvious
that gpMq and hpEp1q, Gp1qq are two closed, proper and convex functions. According to the basic
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convergence result given in [24], we have lim
kÑ`8

gpMpkqq+hpEpkq
p1q , Gpkq

p1qq “ f˚, where f˚ is the minimum

value of gpMq ` hpEp1q, Gp1qq under the linear Constraint (21). This ends the proof. ˝

In the following, we discuss the detailed iterative procedure of
!

M, Ep1q, Gp1q
)

or tM,

Algorithms 2016, 9ms 2016, 9, 28 

4 

if 1 2( , , , ) Ni i i ,  
1 21 2

( )  P d
NN

i i ii i i
; otherwise,  

1 2
( ) 0 P 

Ni i i
, where 

[ ] {1,2,..., }n nI I . Then, the original tensor nuclear norm minimization model for tensor completion 
[13] is described as: 

*
min , s.t . ( ) ( ). P P

    (4) 

To tackle problem (4), Liu et al. [13] developed three different algorithms and demonstrated 
experimentally that the ADMM is the most efficient algorithm in obtaining a high accuracy 
solution. If we further take the dense Gaussian noise into consideration, then the stable version of 
tensor completion is given as below [19]: 

*
min , s. t . ( ) ( ) ,   

F
P P


    (5) 

or its corresponding unconstrained formulation: 

2

*

1min ( ) ( ) ,
2    

F
P P


    (6) 

where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 

* 1,
min , s . t . .   
 
      (7) 

In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 

2

* 1, ,
min , s. t . ( ) ( ),       

F  
      P P  (8) 

where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

,Gu in
Equation (18). It is easy to verify that the update formulation of M in Equation (18) is equivalent to:

pM1p1q, M2p1q, ¨ ¨ ¨ , MNp1qq :“ arg min
M

LµpD,M,
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To tackle problem (4), Liu et al. [13] developed three different algorithms and demonstrated 
experimentally that the ADMM is the most efficient algorithm in obtaining a high accuracy 
solution. If we further take the dense Gaussian noise into consideration, then the stable version of 
tensor completion is given as below [19]: 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

` 1
µYn||2

F

¯

.
(22)

The block of variables Mnp1q can be solved in parallel because the objective function in
Equation (22) is separable with respect to M1p1q, M2p1q, ¨ ¨ ¨ , MNp1q. Hence, the iterative formulation of
Mn is similar to that of Equation (13).

For fixed M and Y , we can get the optimal block of variables p
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 
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To tackle problem (4), Liu et al. [13] developed three different algorithms and demonstrated 
experimentally that the ADMM is the most efficient algorithm in obtaining a high accuracy 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 
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To tackle problem (4), Liu et al. [13] developed three different algorithms and demonstrated 
experimentally that the ADMM is the most efficient algorithm in obtaining a high accuracy 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 
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To tackle problem (4), Liu et al. [13] developed three different algorithms and demonstrated 
experimentally that the ADMM is the most efficient algorithm in obtaining a high accuracy 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 
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To tackle problem (4), Liu et al. [13] developed three different algorithms and demonstrated 
experimentally that the ADMM is the most efficient algorithm in obtaining a high accuracy 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 
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the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 
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To tackle problem (4), Liu et al. [13] developed three different algorithms and demonstrated 
experimentally that the ADMM is the most efficient algorithm in obtaining a high accuracy 
solution. If we further take the dense Gaussian noise into consideration, then the stable version of 
tensor completion is given as below [19]: 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 

2

* 1, ,
min , s. t . ( ) ( ),       

F  
      P P  (8) 

where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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where the regularization coefficients   and   are nonnegative. ε 
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 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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where the regularization coefficients   and   are nonnegative. ε 
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 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
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the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

||2
F `

µ
2

N
ř

n“1
||pD´Mn `Yn{µq ´

Algorithms 2016, 9ms 2016, 9, 28 

4 

if 1 2( , , , ) Ni i i ,  
1 21 2

( )  P d
NN

i i ii i i
; otherwise,  

1 2
( ) 0 P 

Ni i i
, where 

[ ] {1,2,..., }n nI I . Then, the original tensor nuclear norm minimization model for tensor completion 
[13] is described as: 

*
min , s.t . ( ) ( ). P P

    (4) 
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error, and   is a known estimate of the noise level. 
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of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 
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Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  
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The datasets contaminated by Gaussian noise are very universal in practical engineering 
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component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
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tensor   has the same dimensionality as  . If only the constraint    is considered, then 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 
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Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  
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The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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tensor   has the same dimensionality as  . If only the constraint    is considered, then 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
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4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  
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applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 

2

* 1, ,
min , s. t . ( ) ( ),       

F  
      P P  (8) 

where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

´ 1
p1´δNqN

N
ř

n“1
pD´Mn `Yn{µ´ δT q||

2

F

“ arg min
E
λ||

Algorithms 2016, 9ms 2016, 9, 28 

4 

if 1 2( , , , ) Ni i i ,  
1 21 2

( )  P d
NN

i i ii i i
; otherwise,  

1 2
( ) 0 P 

Ni i i
, where 

[ ] {1,2,..., }n nI I . Then, the original tensor nuclear norm minimization model for tensor completion 
[13] is described as: 

*
min , s.t . ( ) ( ). P P

    (4) 

To tackle problem (4), Liu et al. [13] developed three different algorithms and demonstrated 
experimentally that the ADMM is the most efficient algorithm in obtaining a high accuracy 
solution. If we further take the dense Gaussian noise into consideration, then the stable version of 
tensor completion is given as below [19]: 

*
min , s. t . ( ) ( ) ,   

F
P P


    (5) 

or its corresponding unconstrained formulation: 

2

*

1min ( ) ( ) ,
2    

F
P P


    (6) 

where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
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A standard extension of the classic ADMM is to use varying parameter µ for each iteration. The
goal of this extension is to improve the convergence and reduce the dependence on the initial choice of
µ. In the context of the method of multipliers, this approach is proven to be superlinearly convergent
if µpkq Ñ `8 [25], which inspires us to adopt the non-decreasing sequence

!

µpkq
)

. Furthermore,
large values of µ result in a large penalty on violations of primal feasibility and are thus inclined to
produce small primal residuals. However, it is difficult to prove the convergence of ADMM [24]. A
commonly-used choice for

!

µpkq
)

is µpk`1q :“ minpρµpkq,µmaxq, where ρ ą 1 and µmax is the upper

limit of µ. Due to the fact that µpkq is fixed after a finite number of iterations, the corresponding ADMM
is convergent according to Theorem 1.

6. Experimental Results

We perform experiments on synthetic data and two real-world video sequences, and validate the
feasibility and effectiveness of the proposed method. The experimental results of GLRTR are compared
with that of MRPCA, where the missing values in MRCPA are replaced by zeros.
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6.1. Synthetic Data

In this subsection, we synthesize data tensors with missing entries. First, we generate an Nth-order
low-rank tensor as follows: A “ CˆN

n“1 Upnq, with the core tensor C P RJ1ˆJ2ˆ¨¨¨ˆJN and mode matrices
Upnq P RInˆJnpJn ă Inq. The entries of C and Upnq are independently drawn from the standard normal
distribution. Then, we generate randomly a dense noise tensor G P RI1ˆI2ˆ¨¨¨ˆIN whose entries
also obey the standard normal distribution. Next, we construct a sparse noise tensor PΩ1p
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 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
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P RI1ˆI2ˆ¨¨¨ˆIN is produced by a uniform distribution on the interval p´a, aq and the index set Ω1 is
produced by uniformly sampling on rI1s ˆ rI2s ˆ ¨ ¨ ¨ ˆ rINswith probability p1%. Finally, the generation
of the sampling index set Ω is similar to Ω1 and the corresponding sampling rate is set to be p%.
Therefore, an incomplete data tensor is synthesized as DΩ “ PΩpA`G `
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q.
For given data tensor DΩ with missing values, its low-rank component recovered by some method

is denoted by Â. The Relative Error (RE) is employed to evaluate the recovery performance of the
low-rank structure and its definition is given as follows: RE “ ||Â´A||F{||A||F . Small relative
error means good recovery performance. The experiments are carried out on 50 ˆ 50 ˆ 50 tensors and
20 ˆ 20 ˆ 20 ˆ 20 tensors, respectively. Furthermore, we set a = 500 and J1 “ J2 “ ¨ ¨ ¨ “ JN “ r.

For convenience of comparison, we design three groups of experiments. In the first group of
experiments, we only consider the case that there are no missing entries, that is, Ω “ rI1s ˆ rI2s ˆ

¨ ¨ ¨ ˆ rINs or p = 100. The values of ||
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where the regularized parameter ( 0)   is used to balance the low-rankness and the approximate 
error, and   is a known estimate of the noise level. 

In RPCA, a data matrix is decomposed into the sum of a low-rank component and a sparse 
component, and it is possible to recover simultaneously the two components by principal 
component pursuit under some suitable assumptions [2]. Shi et al. [14] extended RPCA to the case 
of tensors and presented the framework of MRPCA, which regards the data tensor   as the sum 
of a low-rank tensor   and a sparse noise term  . Mathematically, the low-rank and the sparse 
components can be simultaneously recovered by solving the following tensor nuclear norm 
minimization problem: 
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In [22], MRPCA is also called as robust low-rank tensor recovery. 

4. Generalized Low-Rank Tensor Recovery 

Both tensor completion and MRPCA do not consider dense Gaussian noise corruptions. In this 
section, we investigate the model of Generalized Low-Rank Tensor Recovery (GLRTR) and develop 
a corresponding iterative scheme.  

4.1. Model of GLRTR 

The datasets contaminated by Gaussian noise are very universal in practical engineering 
applications. In view of this, we assume the data tensor   to be the superposition of the low-rank 
component  , the large sparse corruption  and the Gaussian noise  . We also consider the 
case that some entries of   are missing. To recover simultaneously the above three terms, we 
establish a convex GLRTR model as follows: 
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

||F{||A||F and ||G||F{||A||F are adopted to indicate the
Inverse Signal-to-Noise Ratio (ISNR) with respect to the sparse and the Gaussian noise respectively.
Three different degrees of sparsity are taken into account, that is, p1 = 5, 10 and 15. In addition, we
take λ “ 0.025,τ “ 0.02, r P t3, 5u for 3rd-order tensors and λ “ 0.03,τ “ 0.01, r P t2, 4u for 4th-order
tensors. For given parameters, we repeat the experiments ten times and report the average results. As
a low-rank approximation method for tensors, the Higher-Order SVD (HOSVD) truncation [12] to
rank-pr1, r2, . . . , rNq is not suitable for gross corruptions owing to the fact that its relative error reaches
up to 97% or even 100%. Hence, we do not compare this method with our GLRTR in subsequent
experiments. The experimental results are shown in Tables 1 and 2 respectively.

Table 1. Comparison of experimental results on 50 ˆ 50 ˆ 50 tensors.
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

||F{||A||F (%) ||G||F{||A||F (%) RE of MRPCA (%) RE of GLRTR (%)

(3, 5) 1253 18.33 9.71 ˘ 0.98 6.60 ˘ 0.69
(3, 10) 1769 19.20 8.04 ˘ 0.84 7.99 ˘ 0.84
(3, 15) 2218 20.05 9.84 ˘ 1.97 8.75 ˘ 1.87
(5, 5) 569 8.79 7.39 ˘ 0.79 3.74 ˘ 0.42

(5, 10) 855 9.40 8.55 ˘ 0.97 4.47 ˘ 0.52
(5, 15) 1040 9.16 9.13 ˘ 0.52 5.05 ˘ 0.31

Table 2. Comparison of experimental results on 20 ˆ 20 ˆ 20 ˆ 20 tensors.
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where the regularization coefficients   and   are nonnegative. ε 
If we reinforce the constraints   (or equivalently    ) and   (or equivalently 

 ), then the GLRTR is transformed into the tensor completion model (4), where the zero 
tensor   has the same dimensionality as  . If only the constraint    is considered, then 
the GLRTR is equivalent to Equation (6). Furthermore, if we take    and 

||F{||A||F (%) ||G||F{||A||F (%) RE of MRPCA (%) RE of GLRTR (%)

(2, 5) 1722 24.05 29.24 ˘ 7.95 13.90 ˘ 4.68
(2, 10) 2823 37.72 48.07 ˘ 18.47 23.98 ˘ 9.66
(2, 15) 3052 27.17 44.71 ˘ 13.66 23.10 ˘ 8.52
(4, 5) 448 6.97 12.00 ˘ 1.60 8.96 ˘ 1.15

(4, 10) 563 6.04 15.12 ˘ 1.98 6.26 ˘ 0.87
(4, 15) 758 6.58 24.22 ˘ 2.61 12.16 ˘ 2.90

From the above two tables, we have the following observations: (I) Although the values of ISNR
on sparse noise are very large, both MRPCA and GLRTR remove efficiently sparse noise to some extent.
Meanwhile, large values of ISNR on Gaussian noise are disadvantageous for recovering the low-rank
components; (II) GLRTR has better recovery performance than MRPCA. In an average sense, the
relative error of GLRTR is 2.68% smaller than that of MRPCA for 50 ˆ 50 ˆ 50 tensors, and 14.17% for
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20 ˆ 20 ˆ 20 ˆ 20 tensors; (III) For 3rd-order tensors, GLRTR removes effectively Gaussian noise, and,
on average, its relative error is 5.96% smaller than the value of ISNR on Gaussian noise; for 4th-order
tensors, GLRTR effectively removes Gaussian noise only in the case r = 2. In summary, GLRTR is more
effective than MRPCA in recovering the low-rank components.

The second group of experiments considers four different sampling rates for Ω and one fixed
degree of sparsity for Ω1, that is, p P t30, 50, 70, 90u and p1 = 5. We set τ = 0.02 for both 3rd-order
and 4th-order tensors, and choose the superior tradeoff parameter λ for each p. The comparisons of
experimental results between MRPCA and GLRTR are shown in Tables 3 and 4 respectively. We can see
from these two tables that MRPCA is very sensitive to the sampling rate p%, and it hardly recovers the
low-rank components. In contrast, GLRTR achieves better recovery performance for 3rd-order tensors.
As for 4th-order tensors, it also has smaller relative error when the sampling rate p% is relatively large.
These observations show that GLRTR is more robust to missing values than MRPCA.

Table 3. Comparison of experimental results on incomplete 50 ˆ 50 ˆ 50 tensors for r = 5.

(p, λ) (30,0.07) (50, 0.05) (70, 0.03) (90,0.03)

RE of MRPCA
(%) 87.81 ˘ 0.27 77.02 ˘ 0.46 60.64 ˘ 1.77 11.49 ˘ 1.73

RE of GLRTR (%) 11.58 ˘ 1.72 6.62 ˘ 0.82 5.51 ˘ 0.83 4.27 ˘ 0.47

Table 4. Comparison of experimental results on incomplete 20 ˆ 20 ˆ 20 ˆ 20 tensors for r = 4.

(p, λ) (30, 0.03) (50, 0.035) (70, 0.03) (90, 0.03)

RE of MRPCA
(%) 88.38 ˘ 0.25 78.94 ˘ 0.34 65.06 ˘ 0.59 40.03 ˘ 1.34

RE of GLRTR (%) 62.51 ˘ 1.72 20.09 ˘ 2.63 9.14 ˘ 0.12 8.58 ˘ 1.11

We will evaluate the sensitivity of GLRTR to the choice of λ and τ in the last group of experiments.
For convenience of designing experiments, we only perform experiments on 50 ˆ 50 ˆ 50 tensors and
consider the case that p = 100. The values of λ and τ are set according to the following manner: we
vary the value of one parameter while letting the other be fixed. In the first case, the parameter τ is
chosen as 0.01. Under this circumstance, the relative errors versus different λ of MRPCA and GLRTR
are shown in Figure 1. We take λ = 0.01 in the second case and the relative errors versus different τ of
GLRTR are shown in Figure 2.
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It can be seen from Figure 1 that the relative errors of MRPCA and GLRTR are about 9.90% and
4.62%, respectively, if 0.02 ď λ ď 0.07, which means the latter has better recovery performance than the
former. Furthermore, their relative errors are relatively stable when λ lies within a certain interval.
Figure 2 illustrates that the relative error has the tendency to increase monotonically, and it becomes
almost stationary when τ ě 1. At this moment, the relative errors lie in the interval (0.037, 0.080).
This group of experiments implies that, for our synthetic data, GLRTR is not very sensitive to the
choice of λ and τ.

6.2. Influence of Noise and Sampling Rate on the Relative Error

This subsection will evaluate the influence of noise and sampling rate on the relative error. For
this purpose, we design four groups of experiments and use the synthetic data generated in the same
manner as in the previous subsection. For the sake of convenience, we only carry out experiments on
50 ˆ 50 ˆ 50 tensors.

The first group of experiments aims to investigate the influence of noise on the recovery
performance. In the data generation process, we only change the manner for generating G, that
is, each entry of G is drawn independently from the normal distribution with mean zero and standard
deviation b. Let r = 5,p1 = 10,p = 100,a = 50i and b = 0.2j, where i,j P {0,1,. . .,10}. For different
combinations of a and b, the relative errors of GLRTR are shown in Figure 3. We can draw two
conclusions from this figure. For given b, the relative error is relatively stable with the increasing of
a, which means the relative error is not very sensitive to the magnitude of sparse noise. The relative
error monotonically increases with the increasing of Gaussian noise level, which validates that large
Gaussian noise is disadvantageous for recovering the low-rank component.

Next, we study the influence of sampling rate p% on the relative error for different r. Set
p1 = 10,a = 500,b = 1,r = 1 + 2i,i = 1,2,. . .,14 and vary the value of p% from 30 to 100 in steps of size 10.
For fixed r and p, we obtain the low-rank component according to GLRTR and then plot the relative
errors in Figure 4. From the 3-D colored surface in Figure 4, we can see that both r and p have
significant influence on the relative error. This observation indicates that small r or large p is conducive
to the recovery of low-rank term.
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The third group of experiments will validate the robustness of GLRTR to sparse noise. Concretely
speaking, we investigate the recovery performance under different ISNR on sparse noise without
consideration of Gaussian noise. Set r P { 3,5 },p1 = 10,p = 100,b = 0, a = 2i ˆ 500, i = ´15, ´14,. . .,10.
The experimental results are shown in Figure 5, where the horizontal and the vertical coordinates
represent the ISNR on sparse noise and the relative error, respectively. This figure illustrates that the
relative error is less than 4.5% for synthetic 3rd-order tensors, which verifies experimentally that our
method is very robust to sparse noise.

In the last group of experiments, we discuss the performance of GLRTR in removing the small
dense noise for given large sparse noise. We also propose a combination strategy: GLRTR + HOSVD,
that is, GLRTR is followed by HOSVD. The goal of this new method is to improve the denoising
performance of GLRTR. Let r P { 3,5 },p1 = 10,p = 100,a = 500 and b = 0.1i,i = 0,1,. . .,50. Different values
for b lead to different ISNR on Gaussian noise. We draw four curves to reflect the relationship between
the relative error and ISNR on Gaussian noise, as shown in Figure 6, where the black dashed line is
a reference line. We have two observations from this figure. When ISNR on Gaussian noise is larger
than 3.5%, GLRTR not only successfully separates the sparse noise to some extent but also effectively
removes the Gaussian noise. The GLRTR+HOSVD method has better denoising performance than
GLRTR in the presence of large Gaussian noise.
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6.3. Applications in Background Modeling

In this subsection, we test our method on two real-world surveillance videos for object detection
and background subtraction: Lobby and Bootstrap datasets [26]. For convenience of computation, we
only consider the first 200 frames for each dataset and transform the color images into the gray-level
images. The resolutions of each image in the Lobby and Bootstrap datasets are 128 ˆ 160 and 120
ˆ 160, respectively. We add Gaussian noise with mean zero and standard deviation 5 to each image.
Hence, we obtain two data tensors of order 3 and their sizes are 128 ˆ 160 ˆ 200 and 120 ˆ 160 ˆ 200,
respectively. For two given tensors, we execute random sampling on them with a probability of 50%.

Considering the fact that MRPCA fails in recovering the low-rank components on the synthetic
data with missing values, we only implement the method of GLRTR on the video datasets. Two
tradeoff parameters are set as follows: λ = 0.0072 and τ = 0.001. We can obtain the low-rank, the
sparse and the completed components from the incomplete data tensors according to the proposed
method. Actually, the low-rank terms are the backgrounds and the sparse noise terms correspond to
the foregrounds. The experimental results are partially shown in Figures 7 and 8 respectively, where
the missing entries in incomplete images are shown in white. From Figures 7 and 8 we can see that
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GLRTR can recover efficiently the low-rank images and the sparse noise images. Moreover, we observe
from the recovered images that a large proportion of missing entries are effectively completed.
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Figure 7. Background modeling from lobby video. (a) draws the images with missing entries, (b) plots
the recovered background, i.e., the low-rank images, (c) shows the recovered foreground, i.e., the sparse
noised images, and (d) displays the recovered images.
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Figure 8. Background modeling from bootstrap video. (a) draws the images with missing entries,
(b) plots the recovered background, i.e., the low-rank images, (c) shows the recovered foreground, i.e.,
the sparse noised images, and (d) diplays the recovered images.

To evaluate the completion performance of GLRTR, we define the Relative Approximate Error
(RAE) as RAE “ ||D̂ ´D||F{||D||F , where D is the original video tensor without Gaussian noise
corruptions and missing entries, and D̂ is the approximated term of D. The RAE of the Lobby dataset
is 8.94% and that of the Bootstrap dataset is 20.11%. These results demonstrate GLRTR can complete
approximately the missing entries to a certain degree. There are two reasons for that the Bootstrap
dataset has relatively large RAE: one is its more complex foreground and the other is that the entries of
the foreground can not be recovered when they are missing. In summary, GLRTR is robust to gross
corruption, Gaussian noise and missing values.

7. Conclusions

In this paper, we investigate a generalized model of LRTR in which large sparse corruption,
missing entries and Gaussian noise are taken into account. For the generalized LRTR, we establish
an optimization problem that minimizes the weighted combination of the tensor nuclear norm, the
l1 norm and the Frobenius norm. To address this minimization problem, we present an iterative
scheme based on the technique of ADMM. The experimental results on synthetic data and real-world
video datasets illustrate that the proposed method is efficient and feasible in recovering the low-rank
components and completing missing entries. In the future, we will consider the theoretical conditions
for exact recoverability and other scalable algorithms.
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