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Abstract: The fireworks algorithm (FA) is a new parallel diffuse optimization algorithm to simulate
the fireworks explosion phenomenon, which realizes the balance between global exploration and
local searching by means of adjusting the explosion mode of fireworks bombs. By introducing the
grouping strategy of the shuffled frog leaping algorithm (SFLA), an improved FA-SFLA hybrid
algorithm is put forward, which can effectively make the FA jump out of the local optimum and
accelerate the global search ability. The simulation results show that the hybrid algorithm greatly
improves the accuracy and convergence velocity for solving the function optimization problems.

Keywords: fireworks algorithm; shuffled frog leaping algorithm; grouping strategy;
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1. Introduction

The nature of the function optimization problem is to find the optimal solution of an objective
function through iteration [1]. The function features are usually described as continuous, discrete,
linear, non-linear, convex function, etc. In that the constraint function optimization problem can
be converted into an unconstrained problem by using the designed special operators and penalty
functions to make the solution always feasible, the unconstrained function optimization problem is
the main research focus. The swarm intelligent optimization algorithm [2] is a kind of random search
algorithm to simulate the biological population evolution and evolution, which solves the complex
global optimization problems through individual cooperation and competition between species, and
is applied in many fields, such as multi-objective optimization, data mining, network routing, signal
processing, pattern recognition, etc. The typical swarm intelligence optimization algorithms include
the ant colony optimization (ACO) algorithm [3], the genetic algorithm (GA) [4], the particle swarm
optimization (PSO) algorithm [5], and the artificial bee colony (ABC) algorithm [6].

The fireworks algorithm (FA) is a new swarm intelligence algorithm that was proposed by Tan
in 2010 [7], which has excellent optimization performance and aroused widespread concern in the
world [8]. A hybrid fireworks-differential evolution (FWA-DE) algorithm was proposed by introducing
the mutation operator, crossover operator and selection operator in the DE algorithm [9]. An enhanced
fireworks algorithm (EFWA) was put forward by improving the minimum radius detection, mapping
rules and spark selection strategy of the explosion sparks [10]. An adaptive firework algorithm
(AFWA) was proposed to carry out the self-tuning for the blast radius [11]. That is to say, the distance
between the optimal individual and the discussed individual is set as the next blast radius of the
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best individual. Through this kind of adaptive step size adjustment, the improved FWA shows good
optimization performance. A dynamic search firework algorithm (DFWA) was proposed, which
divides the fireworks population into core fireworks with optimal fitness value and non-core fireworks.
By doing so, the former carries out the local search and the latter proceeds with the global search
effectively [12]. In this paper, by balancing the global exploration and local search capability of FA
through adjusting the explosion of fireworks, an improved fireworks algorithm based on grouping
strategy of SFLA is proposed. The simulation experiments are carried out by comparing it with the
SFLA and FA. The simulation results show that the hybrid algorithm can make the FA jump out of local
optimum effectively and achieve the global convergence quickly. The paper is organized as follows.
In Section 2, the fireworks algorithm is introduced. The FA-SFLA hybrid algorithm is introduced
in Section 3. The simulation experiments and results analysis are introduced in details in Section 4.
Finally, the conclusion illustrates the final part.

2. Fireworks Algorithm

2.1. Basic Principle of FA

The fireworks algorithm (FA) is a new parallel diffuse optimization algorithm to simulate the
fireworks explosion phenomenon, which realizes the balance between global exploration and local
searching by means of adjusting the explosion mode of fireworks bombs. Its algorithm procedure is
shown in Figure 1.
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Figure 1. Two kinds of different phenomenon after fireworks explode. (a) Good fireworks explode; 
(b) bad fireworks explode. 

Through generating a certain number of fireworks shells in the function searching scope, the 
bombing operation is carried out for each fireworks bomb, which realizes the random search on the 
certain neighborhood scope of the original fireworks (burst points) by the explosion Mars. It can 
been seen form Figure 1 that good quality fireworks explosions will produce a lot of Mars 
concentrated in the center of the explosion and poor quality fireworks after the explosions will only 
produce less and messy Mars in space. Seen from the perspective of the algorithm searching, when 
producing a good fireworks explosion, Mars should be located near the optimal position, which is 
conducive to using more Mars for searching the local area of fireworks. A bad fireworks explosion 
means that the optimal position may be a great distance from the fireworks, so its search space will 
be larger. 

When fireworks explode, the produced Mars are spread in the air and are filled with the local 
neighborhoods. In order to obtain the point x  in the target function yxf =)( , fire and explosion 
can be made in a potential searching area continually until Mars hits the point x  or very close to the 
point x . In order to make each fireworks explode, N locations of the explosion are selected firstly. 
Then N fireworks are detonated. According to the results after the explosion of fireworks, the 
position is roughly estimated until the best position is obtained. Otherwise, N different explosion 

Figure 1. Two kinds of different phenomenon after fireworks explode. (a) Good fireworks explode;
(b) bad fireworks explode.

Through generating a certain number of fireworks shells in the function searching scope, the
bombing operation is carried out for each fireworks bomb, which realizes the random search on the
certain neighborhood scope of the original fireworks (burst points) by the explosion Mars. It can been
seen form Figure 1 that good quality fireworks explosions will produce a lot of Mars concentrated in
the center of the explosion and poor quality fireworks after the explosions will only produce less and
messy Mars in space. Seen from the perspective of the algorithm searching, when producing a good
fireworks explosion, Mars should be located near the optimal position, which is conducive to using
more Mars for searching the local area of fireworks. A bad fireworks explosion means that the optimal
position may be a great distance from the fireworks, so its search space will be larger.

When fireworks explode, the produced Mars are spread in the air and are filled with the local
neighborhoods. In order to obtain the point x in the target function f pxq “ y, fire and explosion can be
made in a potential searching area continually until Mars hits the point x or very close to the point
x. In order to make each fireworks explode, N locations of the explosion are selected firstly. Then
N fireworks are detonated. According to the results after the explosion of fireworks, the position is
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roughly estimated until the best position is obtained. Otherwise, N different explosion locations are
selected and fireworks explosions are produced again. The flowchart of FA is shown in Figure 2.
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2.2. Design of FA

2.2.1. Description of FA

FA is to solve a kind of optimization problem min f pxq, xmin < x < xmax, where x “ x1, x2, ¨ ¨ ¨ , xd
represents a potential solution. f pxq is the target function, xmin and xmax represent the scope of the
solution space. Thus, the number of sparks produced by each firework xi is described as follows:

si “ m
ymax ´ f pxiq ` ε

řn
i“1 pymax ´ f pxiqq ` ε

(1)

where m is to control the total number of sparks produced by n fireworks.

ymax “ maxp f pxiqqpi “ 1, 2, ¨ ¨ ¨ , nq (2)

where ymax is the maximum of objective functions under the worst case in n fireworks, and ε is the
minimum computer constant.

In order to avoid worse cases under bad firework explosions, its scope si is defined as:

ŝi “

$

’

&

’

%

roundpaˆmq i f si ă aˆm
roundpbˆmq i f si ą bˆm
roundpsiq otherwise a ă b ă 1

(3)

where a and b are fixed constant parameters.
The explosion amplitude of each firework is defined as follows:

Ai “ Aˆ
f pxiq ´ ymin ` ε

řn
i“1 p f pxiq ´ yminq ` ε

(4)
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where A represents the maximum explosion amplitude, and ymin “ minp f pxiqqpi “ 1, 2, ¨ ¨ ¨ , nq is the
minimum objective function value in n fireworks.

During the explosion process, sparks may be affected by any direction (dimension). In FA, the
number of arbitrary affected directions is defined as:

z “ roundpdˆ randp0, 1qq (5)

where d is the dimension of position x, and randp0, 1q is a uniform distribution on the interval r0, 1s.

2.2.2. Determination of Spark Locations

Spark location of firework xi can be obtained by Algorithm 1. By imitating the explosion process,
the position x̂j of a spark is produced. Then, if the obtained position is beyond the potential space, it is
changed into the potential space by Algorithm 1.

Algorithm 1: Obtain the Spark Location

Initialize position xj “ xi;
z “ roundpdˆ randp0, 1qq;
Randomly select x̂j with z dimension and calculate shift h “ Airandp´1, 1q;
For each dimension xj

k P t pre´ selected z dimesion´ xj u

Set xj
k “ xj

k ` h. If xj
k ă xmin

k or xj
k ą xmax

k
Convert xj

k to the potential space xj
k “ xmin

k ` xj
kpx

max
k ´ xmin

k q;
For each dimension xj

k P
 

pre´ selected z o f xj
(

xj
k “ xj

k ` h
x̂j

k “ x̂j
k ` h

i f xj
k ă xmin

k or xj
k ą xmax

k then
Map xj

k to the potential space.
End if

End for

In order to keep the spark diversity, a Gauss explosion method shown in Algorithm 2 is adopted
to produce sparks. m̂ sparks are produced in each Gauss explosion.

Algorithm 2: Obtain a Certain Spark Position

Initialize the spark position x̂j “ xi;
z “ roundpdˆ randp0, 1qq;
Randomly select x̂j with z dimension;
Calculate the coefficient of Gauss explosion g “ Gaussianp1, 1q;
For each dimension xj

k P t pre´ selected z o f xj u

x̂j
k “ x̂j

k ¨ g;
If xj

k ă xmin
k or xj

k ą xmax
k then

Map xj
k to the potential space.

End if
End for

2.2.3.Selection of Explosion Positions

At the beginning of each explosion, n location should be chosen to realize the fireworks explosion.
In FA, the best location x˚ according to the best objective function f px˚q is retained for the next
explosion. From then, the selection of n´ 1 position is based on the distance with other positions
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to keep the diversity of sparks. In general, the distance between position xi and other positions is
calculated as follows:

Rpxiq “
ÿ

jPk

dpxi, xjq ´
ÿ

jPk

pxi ´ xjq (6)

where, k is the current position set of all fireworks and sparks.
A selection probability of position xi is defined as follows:

ppxiq “
Rpxiq

ř

jPk Rpxjq
(7)

Algorithm 3: Construction of FA

Initialize n positions of fireworks randomly.
While Stop criterion is false

Detonate n fireworks in n positions respectively.
For Each firework xi

Calculate the spark number ŝi produced by those fireworks by Equation (3).
Obtain the position of spark si of firework xi based on Algorithm 1.

End for
For k “ 1 : m̂

Select a firework xi randomly
Produce a certain spark of the above firework based on Algorithm 2;
Save the best position to the next explosion;
Based on the given probability by Equation (7), select n´ 1 position randomly from

two sparks and the current firework.
End for

End while

In FA, each generation carries out about n`m` m̂ function estimations. If the optimum of a
certain function can be found in generation T, the complexity of FA is opn`m` m̂q.

Algorithm 3 summarizes the framework of FA. In each of the explosions, according to Algorithms
1 and 2, two kinds of sparks are produced, respectively. For the first kind of spark, the number of
sparks and the amplitude of the explosion depend on the quality of the fireworks. In contrast, other
sparks are generated by using the Gauss explosion process in a local Gauss space of the fireworks for
searching. After obtaining two kinds of spark positions, n locations for the next explosion are selected.

3. FA-SFLA Hybrid Algorithm

3.1. Principle of Shuffled Frog Leaping Algorithm

In 2003, the shuffled frog leaping algorithm (SFLA) was proposed to simulate the foraging
process of frogs based on the transferring information according to the thought of ethnic groups [13].
The memetic algorithm (MA) is a swarm intelligence algorithm proposed by Moscato in 1989 to solve
the optimization problem through a heuristic search [14]. SFLA is a hybrid swarm optimization
algorithm combining the advantage of MA and PSO algorithm to obtain the balance between the
global exploration and local exploitation [15,16]. The flowchart of the SFLA is described in Figure 3.
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For D dimensional problems, a frog i can be expressed as Fi “ p fi1, fi2, ¨ ¨ ¨ , fiDq. Firstly, the
frog population is initialized as S. Then, the fitness of each frog is calculated and sorted in the
descending order. Next, the entire population is divided into m memeplexes, each containing n frogs
(i.e., S “ mˆ n), in such a way that the first frog belongs to the first memeplex, the second frog goes to
the second memeplex, the mth frog goes to the mth memeplex, and the (m` 1)th frog goes back to the
first memeplex, etc. Let Mk be the set of frogs in the kth memeplex, and this dividing process can be
described by the following expression:

Mk “
!

Xk`mpl´1q P P
ˇ

ˇ

ˇ
1 ď l ď n

)

, 1 ď k ď m (8)

The frog with the best and worst fitness in each subgroup are named Fb and Fw, respectively. Fg is
the frog with the best fitness in the population. For each iteration in the evolution of the subgroup, the
position of Fw is updated based on the following equation:

Ci “ randpq ˆ pFb ´ Fwq (9)

F1w “ Fw ` Cip||Ci|| ď Cmaxq (10)

where randpq is a random number between 0 and 1 and Cmax is the maximum allowed change of the
frog’s position in one jump.

If the new frog F1w is better the original frog Fw, it replaces the worst frog. Otherwise, Fb is replaced
by Fg, and the local search is carried out again according to Formulas (9) and (10). If no improvement
is obtained in this case, the worst frog is deleted and a new frog is randomly generated to replace
the worst frog Fw. The local search continues for a predefined number of memetic evolutionary steps
Cmax within each memeplex, and then the whole population is mixed together in the shuffling process.
The local evolution and global shuffling continue until convergence iteration number Gmax is reached.

3.2. FA-SFLA Hybrid Algorithm

Although FA has a good ability to balance between global search and local search, the simulation
experiments show that the running time it needs to reach its optimal value is relatively long. On the
other hand, SFLA combines the calculus genetics of the mimetic algorithm (MA) and the group
foraging behavior of the particle swarm optimization (PSO), which has a strong local search ability and
stability through the sub cooperative search heuristic. Therefore, an improved fireworks algorithm
based on the grouping strategy of SFLA is proposed based on the fireworks algorithm and the shuffled
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frog leaping algorithm. The procedure of the proposed fireworks algorithm based on shuffled frog
leaping algorithm (FA-SFLA) is shown in Figure 4.
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The proposed FA-SFLA algorithm selects a certain number of individuals as the next generation of
fireworks from the explosion spark, Gaussian mutation sparks and fireworks. The selection operator of
sun-generation fireworks is based on the calculation of the original FA. Considering the number of the
optimized spark generations located between maximum and minimum values, the grouping strategy
of SFLA is introduced. Set the maximum value as Pb, the minimum value as Ps and the optimal value
as Pg. The candidate individuals are grouped to loop for the local search. According to the initial spark
selection rule, the updating module is described as follows:

Pg “ Ps ´ c ¨ r ¨ pPb ´ Psq (11)

where r is a random number located in the scope r0, 1s, and the coefficient factor c is a constant and
c P r1, 2s. By introducing the group searching mechanism of SFLA, the search area of the FA is
increased to a certain extent, so the proposed FA-SFLA can quickly jump out of local minima, explore
towards the global optimum, and thus greatly improve the efficiency to obtain the global optimum.

4. Simulation Results and Analysis

In order to discuss the performance influence of FA-SFLA, four benchmark functions (Sphere,
Griewank, Rosenbrock and Rrastrigin) shown in Table 1 are adopted to carry out the simulation
experiments with FA and SFLA. The algorithm convergence, robustness, efficiency and performance
of the proposed improved FA are compared with FA and SFLA on two performance indexes (average
cost function and corresponding standard deviation) after simulation 30 times. The initialization of
algorithm parameters are shown in Table 2. The simulation results are shown in Table 3, and the
simulation curves under FA and FA-SFLA are shown in Figure 5a–d.

From the simulation results, it can be seen that the operation time of the proposed FA-SFLA hybrid
algorithm was less than FA and SFLA. On the other hand, the optimal solution is less than or equal to
the optimal solution of SFLA. This indicates that the FA-SFLA has feasibility and high efficiency for
optimal seeking. By comparing the simulation results between FA and FA-SFLA, for the first three
kinds of single peak function, the convergence velocity of FA-SFLA algorithm is relatively large. Except
for the Griewank function, three other functions have the delay phenomena in later iterations but did
not affect the polymorphic Rastrigin function converging to the optimum. The convergence velocity of
the sphere function in FA and FA-SFLA is almost simultaneous, and Rosenbrock function with the use
of the FA-SFLA algorithm exists apparent hysteretic convergence phenomena.
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Table 1. Testing functions.

Function Name Expression Scope Dimension

F1 Sphere
n
ř

i“1
xi [–100,100]n 30

F11 Griewank
n
ř

i“1

x2
i

4000
´

n
ś

i“1
cos

ˆ

xi
?

i

˙

` 1 [–32,32]n 30

F5 Rosenbrock
n´1
ř

i“1

”

100px2
i ´ xi`1q

2
` pxi ´ 1q2

ı

[–30,30]n 30

F9 Rrastrigin
n
ř

i“1

“

x2
i ´ 10cosp2πxiq ` 10

‰

[´5.12,5.12]n 30

Table 2. Parameter set-up of three optimization algorithms.

Parameters Set-Up of FA and FA-SFLA Parameters Set-Up of SFLA

Parameter Value Parameter Value

Number of fireworks 8 Number of population grouping 8

Number of offspring 64 Number of frogs in each group
contains a number of frogs 12

Dimension of optimized problem 30 Iteration number in inner group 15

Number of maximum iterations 100 Maximum step-length 100

Number of maximum evaluations 10,000 Amount of total population evolution 10,000

Coefficient factor 1.5 Dimension of optimized problem 30

Table 3. Simulation results under three optimization algorithms.

Function Algorithms Average Cost Function Standard Deviation

Sphere
FA 2.62 ˆ 10´18 8.75 ˆ 10´19

FA-SFLA 1.38 ˆ 10´30 5.21 ˆ 10´30

SFLA 8.25 ˆ 10´14 6.73 ˆ 10´14

Griewank
FA 0.006437 0.008332

FA-SFLA 0.000352 0.002783
SFLA 0.02414 0.03564

Rosenbrock
FA 35.65643 15.53476

FA-SFLA 28.54633 0.84352
SFLA 58.23524 46.23514

Rrastrigin
FA 3.84563 2.45623

FA-SFLA 0 0
SFLA 45.43652 13.32451
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5. Conclusions

The fireworks algorithm (FA) is a new parallel diffuse optimization algorithm to simulate the
fireworks explosion phenomenon by means of adjusting the explosion mode of fireworks bombs.
In order to realize the balance between global exploration and local searching, an improved fireworks
algorithm based on the grouping strategy of the shuffled frog leaping algorithm (SFLA) is proposed in
this paper. The simulation experiments are carried out on four benchmark functions (Sphere, Griewank,
Rosenbrock and Rrastrigin). The algorithm convergence, robustness, efficiency and performance of
the proposed improved FA are compared with FA and SFLA on two performance indices (average
cost function and corresponding standard deviation) after simulation 30 times. These data should be
compared with FA and SFLA. The simulation results show that the proposed method can effectively
make the FA jump out of the local optimum and accelerate the global search ability. The simulation
results show that the hybrid algorithm greatly improves the accuracy and convergence velocity for
solving the function optimization problems.
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