
Article

A Family of Iterative Methods for Solving Systems of
Nonlinear Equations Having Unknown Multiplicity

Fayyaz Ahmad 1,2,*, S. Serra-Capizzano 1,3, Malik Zaka Ullah 1,4 and A. S. Al-Fhaid 4

Received: 8 December 2015; Accepted: 22 December 2015; Published: 31 December 2015
Academic Editors: Alicia Cordero, Juan R. Torregrosa and Francisco I. Chicharro

1 Dipartimento di Scienza e Alta Tecnologia, Universita dell’Insubria, Via Valleggio 11, Como 22100, Italy;
s.serracapizzano@uninsubria.it (S.S.-C); malik.zakaullah@uninsubria.it (M.Z.U.)

2 Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Comte d’Urgell 187,
08036 Barcelona, Spain

3 Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala, Sweden
4 Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia; aalfhaid@kau.edu
* Correspondence: fayyaz.ahmad@upc.edu; Tel.: +34-63-206-6627

Abstract: The singularity of Jacobian happens when we are looking for a root, with multiplicity
greater than one, of a system of nonlinear equations. The purpose of this article is two-fold. Firstly,
we will present a modification of an existing method that computes roots with known multiplicities.
Secondly, will propose the generalization of a family of methods for solving nonlinear equations
with unknown multiplicities, to the system of nonlinear equations. The inclusion of a nonzero
multi-variable auxiliary function is the key idea. Different choices of the auxiliary function give
different families of the iterative method to find roots with unknown multiplicities. Few illustrative
numerical experiments and a critical discussion end the paper.

Keywords: systems of nonlinear equations; singular Jacobian; roots with multiplicity;
auxiliary function

1. Introduction

We are interested in computing a real root ααα of a function F : D ⊆ Rn −→ Rn, that is a vector
ααα belonging to D such that F(ααα) = 0. The most classical iterative method for solving a system of
nonlinear equations, especially in the case of simple zeros, is the Newton method that offers quadratic
convergence [1,2], under certain local regularity conditions. Many researchers have proposed further
iterative methods for solving a system of nonlinear equations, that are efficient and with a high order
of convergence [3–9]. However, as far as we are concerned with roots having multiplicity m (≥ 2),
the classical Newton method deteriorates and its convergence rate is linear with convergence factor
deteriorating when the multiplicity is higher: modified variants of the Newton method can offer
a good alternative, by recovering quadratic convergence, under the hypothesis that the multiplicity
is known in advance.

The most classical modified Newton, for scalar nonlinear equations, can be written asx0 = initial guess

xk+1 = xk – m f(xk)
f′(xk)

, k = 0, 1, · · ·
(1)

Algorithms 2016, 9, 5; doi:10.3390/a9010005 www.mdpi.com/journal/algorithms

Algorithms 2016, 9, 5 2 of 10

The straightforward generalization of Equation (1) is presented in [10]{
x0 = initial guess,

xk+1 = xk – F′(xk)–1 diag(m) F(xk), k = 0, 1, · · ·
(2)

where m = [m1, m2, · · · , mn]T is a vector of multiplicities for system of nonlinear equations F(x) = 0
and diag(·) represents a diagonal matrix that keeps the input vector at its main diagonal. The proof of
quadratic convergence of Equation (2) is established in [10]. Wu [11] proposed a variant of Newton
method with the help of an auxiliary function. To complete the reference, we give new details of
developments proposed by Wu. Suppose we have a system of nonlinear equations F(x) = 0 and we
define a new system of nonlinear equation that have the same root

U(x) = ev�x � F(x) = 0 (3)

where � is the component-wise multiplication of two vectors and v = [v1, v2, · · · , vn]T. The Fréchet
derivative of U(x) is

U′(x) = diag
(
ev�x) F′(x) + diag (F(x)) v� ev�x

U′(x) = diag
(
ev�x) (F′(x) + diag (v� F(x))

) (4)

The application of Newton method for Equation (3) is

xk+1 = xk – U′(xk)–1 U(xk)

xk+1 = xk –
(
diag

(
ev�x) (F′(x) + diag (v� F(x))

))–1 ev�x � F(x)

xk+1 = xk –
(
F′(x) + diag (v� F(x))

)–1 diag
(
ev�x)–1 ev�x � F(x)

xk+1 = xk –
(
F′(x) + diag (v� F(x))

)–1 F(x)

(5)

The rate of convergence of Equation (5) is quadratic, just because the proposed iteration coincides
with the Newton method. Notice that vector v is a parameter that provides a degree of freedom in
Equation (5). Jose et al. [10] proposed a modification in Equation (1) by defining a modified function

U(x) = ev�x � F(x)1/m = 0 (6)

where 1/m = [1/m1, 1/m2, · · · , 1/mn]T and power of F(x) is component-wise. The application of
Newton method to Equation (6) leads to the scheme

xk+1 = xk –
(
F′(x) + diag (v� F(x))

)–1 diag(m) F(x) (7)

2. Some Generalizations

The original idea of using a auxiliary function was proposed in [11]. The auxiliary function
employed in Equation (3) is the exponential function. The question is, why we choose the exponential
function? The answer is: it is a non-zeros function with non-zero derivative. So generalization
is straightforward, we can choose any function that is non-zero everywhere in the vicinity of the
root and in this way we will ensure the roots of F(x) = 0 are not affected by the auxiliary function
multiplicity. Let G(x) be a non-zero auxiliary function in the neighborhood of the root of the system
of nonlinear equations with unknown multiplicity and define a new system of nonlinear equations
associated with F(x) as below

U(x) = G(x)� F(x) = 0 (8)

Algorithms 2016, 9, 5 3 of 10

Notice that the roots of U(x) = 0 and F(x) = 0 are the same because G(x) 6= 0 for all x in the
neighborhood of root. The first order Fréchet derivative of Equation (8) can be computed as

Ui(x) = Fi(x) Gi(x)

∇Ui(x)T = Fi(x)∇Gi(x)T + Gi(x)∇Fi(x)T, i = 1, 2, · · · , n

∇U1(x)T

∇U2(x)T

∇U3(x)T

...

∇Un(x)T

=

F1(x) 0 · · · 0

0 F2(x) · · · 0

0 0 · · · 0

...
...

...
...

0 0 · · · Fn(x)

∇G1(x)T

∇G2(x)T

∇G3(x)T

...

∇Gn(x)T

+

G1(x) 0 · · · 0

0 G2(x) · · · 0

0 0 · · · 0

...
...

...
...

0 0 · · · Gn(x)

∇F1(x)T

∇F2(x)T

∇F3(x)T

...

∇Fn(x)T

(9)

From Equation (9), the Fréchet derivative of F(x)�G(x) is

(F(x)�G(x))′ = diag (F(x)) G′(x) + diag (G(x)) F′(x) (10)

U′(x) = diag (G(x)) F′(x) + diag (F(x)) G′(x)

U′(x) = diag (G(x))
(

F′(x) + diag (F(x)) diag (G(x))–1 G′(x)
) (11)

If we apply the Newton method to the system in Equation (8), then we obtain

xk+1 = xk –
(

F′(x) + diag (F(x)) diag (G(x))–1 G′(x)
)–1

diag (G(x))–1 G(x)� F(x)

xk+1 = xk –
(

F′(x) + diag (F(x)) diag (G(x))–1 G′(x)
)–1

F(x)
(12)

The convergence order of Equation (12) is two, under the usual regularity assumptions.
The iterative method Equation (7) can be written as

xk+1 = xk –
(

F′(x) + diag (F(x)) diag (G(x))–1 G′(x)
)–1

diag(m) F(x) (13)

Again the convergence order of Equation (13) is two. In numerical simulations, we show that
numerical results can improve by choosing appropriate auxiliary functions: in other words, the use
of an auxiliary function can improve the constant hidden in the quadratic convergence.

3. Proposed Method

For the purpose of motivation, we present some developments for single nonlinear equations
and subsequently we establish results for the multi-dimensional case. Recently Noor et al. [12]
constructed a family of methods for solving nonlinear equations with unknown multiplicities and
this represents a crucial improvement wit respect to procedures requiring this information. What they
have established is the following. Let g(x) be a non-zero function and let us define a new function

q(x) =
f(x) g(x)

f′(x)
(14)

Algorithms 2016, 9, 5 4 of 10

The application of a classical Newton method to the equation q(x) = 0 leads to the iteration

xk+1 = xk –
q(xk)
q′(xk)

xk+1 = xk –
f′(xk) f(xk) g(xk)

f′(xk)(f(xk) g(xk))′ – f′′(xk) f(xk) g(xk)

(15)

The order of convergence of Equation (15) is two, under suitable regularity assumptions both on
f(·) and g(·). We are interested in developing a possible multidimensional version of Equation (15).
Let F(x) = 0 be a system of nonlinear equations and having a root of unknown multiplicities. With the
help of a non-zero auxiliary function G(x), we define a new function Q(x).

Q(x) = F′(x)–1 (G(x)� F(x)) = 0 (16)

The first order Fréchet derivative of Equation (16) can be written as

Q′(x) =
(

F′(x)–1
)2 (

F′(x) (F(x)�G(x))′ – F′(x)F′′(x)F′(x)–1 (F(x)�G(x))
)

(17)

Further simplification of Q′(x)–1 Q(x) gives

Q′(x)–1 Q(x) =
(

F′(x) (F(x)�G(x))′ – F′(x)F′′(x)F′(x)–1 (F(x)�G(x))
)–1

F′(x) (F(x)�G(x)) (18)

When comparing the underlined expressions in Equations (15) and (18), we clearly see that it
is not possible to simplify the expression F′(x)F′′(x)F′(x)–1 (F(x)�G(x)), simply because F′(x) and
F′′(x) do not commute in general. Clearly in the scalar case the elimination of f′(x) is possible
due to commutativity.

Our idea amounts in artificially eliminating F′(x) and F′(x)–1 from the expression
F(x)′F′′(x)F′(x)–1 (F(x)�G(x)): in this way we obtain a new iterative method for solving system of
nonlinear equations with unknown multiplicities

xk+1 = xk –
(
F′(xk) (F(xk)�G(xk))′ – F′′(xk) (F(xk)�G(xk))

)–1 F′(xk) (F(xk)�G(xk)) (19)

We clearly state that our proposed scheme i.e., the iterative method in Equation (19) is not the
application of Newton method to Equation (16). However, our procedure is simpler and preserves
the same quadratic convergence as the Newton method, under the very same regularity assumptions.
In the next section, we will establish the proof of quadratic convergence for Equation (19).

4. Convergence

If we substitute G(x) = 111 in Equation (19), then we obtain

xk+1 = xk –
(

F′(xk)2 – F′′(xk) F(xk)
)–1

F′(xk) F(xk) (20)

First we will establish the proof of quadratic convergence of the iterative
procedure in Equation (20) and then for the main iterative method reported in
Equation (19). Let ααα = [α1, α2, · · · , αn]T be the root of F(x) = 0 with corresponding vector
of multiplicities m = [m1, m2, · · · , mn]T. As a consequence, there exists H(x) such that
H(ααα) = [h1(ααα), h2(ααα), · · · , hn(ααα)]T 6= 0 for which the system of nonlinear equations can be written as

F(x) = (x – ααα)m �H(x) (21)

Algorithms 2016, 9, 5 5 of 10

where (x –ααα)m = [(x1 – α1)m1 , (x2 – α2)m2 , · · · , (xn – αn)mn]T. The first order and second order Fréchet
derivatives of Equation (21) can be computed as

F′(x) = diag
(
(x – ααα)m)H′(x) + diag

(
m� (x – ααα)m–1 �H(x)

)
F′(x) w = diag

(
(x –ααα)m)H′(x) w + diag

(
m� (x –ααα)m–1 �H(x)

)
w

F′′(x) w =
(
F′(x) w

)′ = diag
(

m� (x –ααα)m–1 �H′(x) w
)

+ diag
(
(x –ααα)m)H′′(x) w

+ diag
(

m� (x – ααα)m–1 �w
)

H′(x) + diag
(

m� (m – 1)� (x –ααα)m–2 �w�H(x)
)

(22)

where w is a vector that we use to compute second order Fréchet derivative. By replacing w in
Equation (22) by F(x), we get

F′′(x) F(x) = diag
(

m2 � (x – ααα)2m–2 �H(x)2
)

– diag
(

m� (x – ααα)2m–2 �H(x)2
)

+ diag
(

m� (x – ααα)m–1
)

diag
(
H′(x)

(
(x – ααα)m �H(x)

))
+ diag

(
m(x – ααα)2m–1 �H(x)

)
H′(x)

F′(x)2 = diag
(

m2 � (x –ααα)2m–2 �H(x)2
)

+ diag
(
(x – ααα)m)H′(x) diag

(
(x –ααα)m)H′(x)

+ diag
(
(x – ααα)m)H′(x) diag

(
m� (x – ααα)m–1 �H(x)

)
+ diag

(
m� (x –ααα)m–1 �H(x)

)
diag

(
(x – ααα)m)H′(x)

(23)

By using Equations (22) and (23), and after proper simplifications, we have

F′(x)F(x) = diag
(

m� (x – ααα)2m–1 �H(x)
)(

I + O(x – ααα)
)

F′(x)2 – F′′(x)F(x) = diag
(

m� (x –ααα)2m–2 �H(x)
)(

I + O(x – ααα)
)

(
F′(x)2 – F′′(x)F(x)

)–1
F′(x)F(x) = (x – ααα) + O

(
(x – ααα)2

) (24)

Theorem 1. Let F : D ⊆ Rn −→ Rn and ααα = [α1, α2, α3, · · · , αn]T ∈ D is a root
of F(x) = (x – ααα)m �H(x) = 0 with corresponding multiplicities vector m = [m1, m2, · · · , mn]T and
H(ααα) = [h1(ααα), h2(ααα), · · · , hn(ααα)]T 6= 0 with hi(x) ∈ C2 (D). Then there exists a subset S ⊆ D such that, if
we choose x0 ∈ S , the iterative method in Equation (20) has quadratic convergence in S.

Proof. We can write Equation (20) as

xk+1 = R(xk) = xk –
(

F′(xk)2 – F′′(xk) F(xk)
)–1

F′(xk) F(xk) (25)

By dropping the index k, we obtain

R(x) = x –
(

F′(x)2 – F′′(x) F(x)
)–1

F′(x) F(x) (26)

By using Equations (24) and (26), the simplified expression for R(x) is

R(x) = x – (x – ααα) + O
(

(x – ααα)2
)

R′(x) = O + O
(

diag(x –ααα)
) (27)

Algorithms 2016, 9, 5 6 of 10

By substituting x = ααα in Equation (27), we deduce the crucial relationships

R(ααα) = ααα

R′(ααα) = O
(28)

and from Equation (28) we conclude that the iterative method in Equation (20) has at least
quadratic convergence.

Finally, the quadratic convergence of the method reported in Equation (19) can be proven as
follows. Let e = x – ααα and after applying few simplifications, we can write Equation (19) in the form

M(x) = diag(G(x))–1F′(x)–1F′′(x) (F(x)�G(x))

L(x) = F′(x) + diag
(
F′(x)

)
diag(G(x))–1G′(x)

ek+1 = ek –
(

L(x) – M(x)
)–1

F(x)

ek+1 = ek –
(

I – L(x)–1M(x)
)–1

L(x)–1F(x)

ek+1 ≈ ek –
(

I + L(x)–1M(x)
)

L(x)–1F(x)

ek+1 ≈
(

ek – L(x)–1F(x)
)

– L(x)–1M(x)L(x)–1F(x)

(29)

From Equation (12), we can see the term ek – L(x)–1F(x) = O
(

e2
)

and hence L(x)–1F(x) = O(e).

Moreover, It can be seen easily that L(x)–1M(x) = O(e). It means L(x)–1M(x)L(x)–1F(x) = O
(

e2
)

.
Hence we conclude that

ek+1 = O
(

e2
k

)
(30)

Notice that in Equation (24), we shows that the expression
(

F′(xk)2 – F′′(xk) F(xk)
)–1

F′(xk) F(xk)
is independent from factor m and in Equation (29) the inclusion of auxiliary function does
not disturb the quadratic convergence. The auxiliary function G(x) works as a parameter
that helps in rapid convergence by changing the path of convergence. And it is the vector

quotient
(

F′(xk)2 – F′′(xk) F(xk)
)–1

F′(xk) F(xk) that actually makes the method independent from the
information contained in the multiplicity.

5. Numerical Testing

It is important to test the computational convergence order (COC) of the iterative methods
discussed so far. In all our simulations, we adopt the following definition of COC

COC =
log
(
||F(xk+1)||∞/||F(xk)||∞

)
log
(
||F(xk)||∞/||F(xk–1)||∞

) or
log
(
||xk+1 – ααα||∞/||xk – ααα||∞

)
log
(
||xk –ααα||∞/||xk–1 –ααα||∞

) (31)

Next, we explain how to compute the term F′′(x)(G(x)� F(x)). Suppose, we have a system of
three nonlinear equations

Problem 1 =

F1(x) = (x1 – 1)4 exp(x2) = 0

F2(x) = (x2 – 2)5 (x1 x2 – 1) = 0

F3(x) = (x3 + 4)6 = 0

(32)

Algorithms 2016, 9, 5 7 of 10

The Jacobian F′(x) of Equation (32) is

F′(x) =

4 exp(x2) (x1 – 1)3 exp(x2) (x1 – 1)4 0

x2 (x2 – 2)5 x1 (x2 – 2)5 + 5 (x1 x2 – 1) (x2 – 2)4 0

0 0 6 (x3 + 4)5

(33)

Now we take a constant vector w = [w1, w2, w3]T. By multiplying F′(x) and w, we get

F′(x) w =

4 w1 exp(x2) (x1 – 1)3 + w2 exp(x2) (x1 – 1)4

w2 (x1 (x2 – 2)5 + 5 (x1 x2 – 1) (x2 – 2)4) + w1 x2 (x2 – 2)5

6 w3 (x3 + 4)5

(34)

Now again, we take the Jacobian of F′(x) w

F′′(x) w =
(
F′(x) w

)′ =[
12 w1 exp(x2) (x1–1)2+4 w2 exp(x2) (x1–1)3 4 w1 exp(x2) (x1–1)3+w2 exp(x2) (x1–1)4 0

w2 (5 x2 (x2–2)4+(x2–2)5) w1 (x2–2)5+w2 (10 x1 (x2–2)4+20 (x1 x2–1) (x2–2)3)+5 w1 x2 (x2–2)4 0
0 0 30 w3 (x3+4)4

] (35)

By replacing w with F(x)�G(x) = [f1, f2, f3]T in Equation (35), we obtain

F′′(x)
(

F(x)�G(x)
)

=[
12 f1 exp(x2) (x1–1)2+4 f2 exp(x2) (x1–1)3 4 f1 exp(x2) (x1–1)3+f2 exp(x2) (x1–1)4 0

f2 (5 x2 (x2–2)4+(x2–2)5) f1 (x2–2)5+f2 (10 x1 (x2–2)4+20 (x1 x2–1) (x2–2)3)+5 f1 x2 (x2–2)4 0
0 0 30 f3 (x3+4)4

] (36)

For a large system of nonlinear equations, it is not practical that we compute symbolically
second order Fréchet derivatives. There is a way to approximate the second order Fréchet derivative
numerically by using the history of iterations [13]. However, then, it is hard to keep the quadratic
convergence of the iterative method. On the other hand, the methods that do not use the second
order Fréchet derivative, require the knowledge of multiplicities of roots. Again practically, it is hard
to have the knowledge of root multiplicities for a general system of nonlinear equations. For single
nonlinear equations, many authors propose some recipes to approximate the multiplicity of roots
iteratively. Finally, we have two kinds of iterative method with quadratic convergence and with the
inclusion of auxiliary function G(x). We list them as

xk+1 = xk –
(

F′(xk)
(

diag(F(xk)) G′(xk) + diag(G(xk)) F′(xk)
)

– F′′(xk)
(

F(xk)�G(xk)
))–1

F′(xk)
(

F(xk)�G(xk)
)

(37)

xk+1 = xk –
(

F′(xk) + diag(F(xk)) diag(G(xk))–1 G′(xk)
)–1

diag(m) F(x) (38)

When we take G(x) = 1, the iterative methods Equations (37) and (38) reduce to the
following forms

Algorithms 2016, 9, 5 8 of 10

xk+1 = xk –
(

F′(xk)2 – F′′(xk) F(xk)
)–1

F′(xk) F(xk) (39)

xk+1 = xk – F′(xk)–1 diag(m) F(x) (40)

respectively.

Problem 2 =

F1(x) = x1 x2 = 0

F2(x) = x2 x3 = 0

F3(x) = x3 x4 = 0

F4(x) = x4 x1 = 0

(41)

Problem 3 =

F1(x) =

√
x1 – 1 x2 x3 = 0

F2(x) =
√

x2 – 1 x1 x3 = 0

F3(x) =
√

x3 – 1 x1 x2 = 0

(42)

In most of the cases, the iterative methods Equations (39) and (40) are badly conditioned.
In Tables 1–3, we have shown that the exponential function is not the only and best choice to use as
auxiliary function for rapid convergence. In the tables, one can see that a particular choice of auxiliary
function for method Equation (37) gives the order of convergence greater than two. The multiplicities
of roots in problem 3 are less than one and the iterative method in Equation (37) provides better
accuracy in the solution of this problem. In the majority of cases, the performance of iterative method
in Equation (37) with unknown multiplicity is better than that of the procedure in Equation (38).

Table 1. Problem 1: initial guess = [2, 1, –2], m = [4, 5, 6].

G(x) Iter ||x –ααα||∞ Num. Stability COC

Iterative method Equaiton (37) 1 6 O
(
10–43) Badly-conditioned 2.0

6 + cos(x)/10 6 O
(
10–51) Well-conditioned 2.05

1 + x3/1000 6 O
(
10–42) Well-conditioned 2.0

exp(–x/100) 6 O
(
10–46) Well-conditioned 2.0

Iterative method Equaiton (38) 1 6 O
(
10–30) Badly-conditioned 2.0

6 + cos(x)/10 6 O
(
10–30) Well-conditioned 2.0

1 + x3/1000 6 O
(
10–30) Well-conditioned 2.0

exp(x/100) 6 O
(
10–30) Well-conditioned 2.0

Table 2. Problem 2: initial guess = [1, 2, 4, 3], m = [2, 2, 2, 2].

G(x) Iter ||F(x)||∞ Num. Stability COC

Iterative method Equation (37) 1 1 - Badly-conditioned -

6 + cos(x)/10 7 O
(
10–1551) Well-conditioned 2.98

1 + x3/1000 7 O
(
10–8482) Well-conditioned 3.98

exp(x/100) 7 O
(
10–376) Well-conditioned 2.00

Iterative method Equation (38) 1 1 - Badly-conditioned -

6 + cos(x)/10 20 O
(
10–23) Well-conditioned 1.0

1 + x3/1000 20 Not converging Well-conditioned -

exp(x/100) 7 O
(
10–443) Well-conditioned 2.0

Algorithms 2016, 9, 5 9 of 10

Table 3. Problem 3: initial guess = [2, 4, 3], m = [1/2, 1/2, 1/2].

G(x) Iter ||F(x)||∞ Num. Stability COC

Iterative method Equation (37) 1 12 O
(
10–2011) Well-conditioned 2.00

6 + cos(x)/10 12 O
(
10–1914) Well-conditioned 2.00

1 + x3/1000 12 O
(
10–1248) Well-conditioned 2.00

exp(–x/10) 12 O
(
10–2767) Well-conditioned 2.00

Iterative method Equation (38) 1 1 - Badly-conditioned -

6 + cos(x)/10 12 O
(
10–56) Well-conditioned 2.00

1 + x3/1000 20 Not converging Well-conditioned -

exp(–x/10) 7 O
(
10–35) Well-conditioned 2.00

6. Conclusions

We have shown that the exponential function is not the only choice to use as an auxiliary
function (compare our conclusions with [10]). The scalar version of iterative method Equation (37)
was developed in [12]. Moreover, we have shown that the vector method can not be constructed
plainly by the same procedure. Even the iterative method Equation (37) is not a direct consequence
of the Newton method, but our analysis shows that we have quadratic convergence as well.
The computed COC confirms our claims regarding the order of convergence of different iterative
methods. The validity and accuracy of constructed iterative methods are clearly depicted in our
computed results for different problems.

Acknowledgments: The work of the second author was partially supported by INdAM-GNCS Gruppo
Nazionale per il Calcolo Scientifico and by the Donation KAW 2013.0341 from the Knut & Alice Wallenberg
Foundation in collaboration with the Royal Swedish Academy of Sciences, supporting Swedish research
in mathematics.

Author Contributions: Fayyaz Ahmad and S. Serra-Capizzano conceived the idea and developed the proofs;
Malik Zaka Ullah and A. S. Al-Fhaid performed the experiments, analyzed the data and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964.
2. Ortega, J.M.; Rheinbodt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press:

London, UK, 1970.
3. Ahmad, F.; Tohidi, E.; Carrasco, J.A. A parameterized multi-step Newton method for solving systems of

nonlinear equations. Numer. Algorithms 2015, doi:10.1007/s11075-015-0013-7.
4. Ullah, M.Z.; Serra-Capizzano, S.; Ahmad, F. An efficient multi-step iterative method for computing the

numerical solution of systems of nonlinear equations associated with ODEs. Appl. Math. Comput. 2015,
250, 249–259.

5. Ahmad, F.; Tohidi, E.; Ullah, M.Z.; Carrasco, J.A. Higher order multi-step Jarratt-like method for solving
systems of nonlinear equations: Application to PDEs and ODEs. Comput. Math. Appl. 2015, 70, 624–636.

6. Alaidarous, E.S.; Ullah, M.Z.; Ahmad, F.; Al-Fhaid, A.S. An Efficient Higher-Order Quasilinearization
Method for Solving Nonlinear BVPs. J. Appl. Math. 2013, 2013, 259371.

7. Ullah, M.Z.; Soleymani, F.; Al-Fhaid, A.S. Numerical solution of nonlinear systems by a general class of
iterative methods with application to nonlinear PDEs. Numer. Algorithms 2014, 67, 223–242.

8. Montazeri, H.; Soleymani, F.; Shateyi, S.; Motsa, S.S. On a New Method for Computing the Numerical
Solution of Systems of Nonlinear Equations. J. Appl. Math. 2012, 2012, 751975, doi:10.1155/2012/751975.

9. Cordero, A.; Hueso, J.L.; Martinez, E.; Torregrosa, J.R. A modified Newton-JarrattâĂŹs composition.
Numer. Algorithms 2010, 55, 87–99.

Algorithms 2016, 9, 5 10 of 10

10. Hueso, J.L.; Martinez, E.; Torregrosa, J.R. Modified Newton’s method for systems of nonlinear equations
with singular Jacobian. J. Comput. Appl. Math. 2009, 224, 77–83.

11. Wu, X. Note on the improvement of Newton’s method for systems of nonlinear equations. Appl. Math.
Comput. 2007, 189, 1476–1479.

12. Noor, M.A.; Shah, F.A. A Family of Iterative Schemes for Finding Zeros of Nonlinear Equations having
Unknown Multiplicity. Appl. Math. Inf. Sci. 2014, 8, 2367–2373.

13. Schnabel, R.B.; Frank, P.D. Tensor methods for nonlinear equations. SIAM J. Numer. Anal. 1984, 21, 815–843.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open
access article distributed under the terms and conditions of the Creative Commons by
Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

	Introduction
	Some Generalizations
	Proposed Method
	Convergence
	Numerical Testing
	Conclusions

