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Abstract: A new orthogonal projection method for computing the minimum distance between
a point and a spatial parametric curve is presented. It consists of a geometric iteration which
converges faster than the existing Newton’s method, and it is insensitive to the choice of initial
values. We prove that projecting a point onto a spatial parametric curve under the method is globally
second-order convergence.
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1. Introduction

In this paper, we discuss how to compute the minimum distance between a point and a spatial
parametric curve and return the nearest point on the curve as well as its corresponding parameter,
which is also called the point projection problem (the point inversion problem) of a spatial parametric
curve. It is an interesting problem due to its importance in geometric modeling, computer graphics
and computer vision [1]. Both projection and inversion are essential for the interactively selecting
curves [1,2], the curve fitting problem [1,2], and the reconstructing curves problem [3–5]. It is also a
key issue in the ICP (iterative closest point) algorithm for shape registration and rendering of solid
models with boundary representation and projecting of a spatial curve onto a surface for curve surface
design [6]. Many algorithms have been developed by using various techniques including turning into
solving a root problem of a polynomial equation, geometric methods, subdivision methods, circular
clipping algorithm. For more details, see [1–23] and the references therein. In the various methods
mentioned above, there are two key issues in the projection and the inversion problems: seeking a
good initial value and using a Newton-type iterative method for computing the root.

In order to avoid the sensitivity of the initial point, we use the geometric iterative method
with the global convergence. The main objective of this paper is to analyze a geometric iterative
method, which solves the projection and has second-order approximation properties. It uses only
the second-order information of the curve under consideration. We compute the parameter values
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by projecting points onto an osculating plane and use the second-order Taylor expansion of the
curve to compute the parameter increments. We have proved that projecting a point onto a spatial
parametric curve is globally second-order convergence. Numerical examples show the efficiency and
the robustness of the new method.

2. Orthogonal Projection onto a Spatial Parametric Curve

Assume that c(t) is a C2 curve in three-dimensional Euclidean space R3, and p is a test point.
The scalar product of vectors x, y ∈ R3 will be denoted by 〈x, y〉, and the norm of a vector x by
‖x‖. The curve’s curvature will be denoted by the symbol k which is computed by the formula

k(t) =
‖c′(t)× c′′(t)‖
‖c′(t)‖3 . Recall that the osculating sphere has a radius |1/k| and its center is

determined by Equation (10).
A first-order geometric iterative method which computes the footpoint q of the test point p is as

follows: The intersection of the osculating sphere s̄ of the curve c(t) at t = t0 and the line segment
which connects the test point p and the center of the osculating sphere is the footpoint q. The footpoint
q is expressed in terms of c(t0) and the derivative c′(t0) (see Figure 1):

q = c(t0) + ∆tc′(t0) (1)

Then,

∆t =
〈c′(t0), q− c(t0)〉
〈c′(t0), c′(t0)〉

(2)

c(t )0

m

p

q

Figure 1. Illustration of the first-order geometric iteration for computing the minimum distance
between a point and a spatial parametric curve.

We increase t0 by ∆t and repeat the above procedure until ∆t is less than a given tolerance. Thus,
we can compute the projection of the test point p onto the curve in a simple way.

In order to improve the efficiency of the geometric iteration, we present a second-order iterative
method to compute the minimum distance between the test point p and a spatial parametric curve
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c(t). This geometric second-order iterative method which computes the footpoint q of the test point
p is as follows: orthogonal projecting of the test point p onto an osculating plane of the spatial
parametric curve c(t) at t = t0 yields a point v. Then, the intersection of an osculating sphere s̄ and a
line segment which connects the point v and a center of the osculating sphere s̄ is the footpoint q. The
intersection of the osculating plane of the spatial parametric curve c(t) at t = t0 and the osculating
sphere s̄ of the spatial parametric curve c(t) at t = t0 is a osculating circle c̄ of the spatial parametric
curve c(t) at t = t0. We assume that, for the moment, the osculating circle c̄ is parameterized such
that it has the same Taylor polynomial as the curve c(t). Similar to the first-order geometric iterative
method, we get (see Figure 2):

q = c̄(t0 + ∆t) = c(t0) + ∆tc′(t0) (3)

Then

∆t =
〈c′(t0), q− c(t0)〉
〈c′(t0), c′(t0)〉

(4)

c(t)

c(t )0

m
q v

p

Figure 2. Illustration of the second-order geometric iteration for computing the minimum distance
between a point and a spatial parametric curve.

We increase t0 by ∆t and repeat the above procedure until ∆t is less than a given tolerance. This
equation now can be used to compute the parameter increment ∆t. Iteration yields a second-order
algorithm for computing the footpoint q which is determined by the given parameter value. This
algorithm also fits to solve the inversion problem, e.g., computing the parameter value t for a point
which is known to lie on the curve.

Remark 1. During the process of calculating the footpoint q, since the footpoint q only depends on
the projection point v, which is the projection of the test point p onto the osculating plane, while the
osculating plane is given by the osculating sphere s̄ of the spatial parametric curve c(t) at t = t0.
In addition, it is not necessary to compute the osculating circle c̄ which is the intersection of the
osculating plane and the osculating sphere s̄ of the spatial parametric curve c(t) at t = t0. Hence, our
proposed method improves the efficiency and stability for computing q.
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Remark 2. If the denominator of the iterative Equation (4) becomes 0, i.e., c′(t0) = 0 for some
non-negative integer, first, we compute the distance between the test point p and the point c(t0)

of the spatial parametric curve c(t), namely, d1 = ‖p− c(t0)‖. At the same time, we employ the
parameter perturbation method, and the parameter t0 is incremented by a small positive constant
ε, i.e., t0 = t0 + ε, so the iteration can continue. In the process of the iteration, if the derivative of
the spatial parametric curve c(t) at t = t0 is zero, we adopt the same processing method. Finally,
d = min{d1, d2, d3, ...} is the minimum distance between the test point p and the spatial parametric
curve c(t).

Remark 3. If the curvature k of the spatial parametric curve c(t) at t = t0 becomes 0, i.e., for
some non-negative integer, the processing method of this special case is similar to the method in
Remark 1.

Remark 4. The iterative method in the iterative Equation (4) is an orthogonal projection method
which projects a test point onto a spatial parametric curve c(t). For the multiple orthogonal points
situation, we use the method in the reference [14] to calculate all the orthogonal projection points,
and then calculate all the distances between the test point p and all the orthogonal projection points.
In the end, the minimum distance is the minimum one of all the distances between the test point p
and all the orthogonal projection points.

3. Convergence Analysis

In this section, we consider the convergence analysis of the iterative technique given in
Equation (4). Namely, we consider the problem of projecting a point onto a spatial parameter curve.

In order to prove that the method defined by Equation (4) is quadratically convergent, we firstly
derive the expression of the foot point q. We assume that the parameter α is the corresponding
parameter which we get from the orthogonal projection of a test point p onto a parameter curve
c(t). According to the calculation of the minimum distance between a point and a spatial parameter
curve, we can get the following relationship

〈p− h, n〉 = 0 (5)

where h = ( f1(α), f2(α), f3(α)) and the tangent vector. n = ( f ′1(α), f ′2(α), f ′3(α)) Therefore, the
Equation (5) can be rewritten as

〈p− c(α), n〉 = 0 (6)

The unit normal vector, the curvature and the radius of the osculating sphere of the curve c(t)
can be represented respectively by the following formulas,

β(t) = γ(t)×Ω(t) =
‖c′(t)‖

‖c′(t)× c′′(t)‖ c′′(t)− 〈c′(t), c′′(t)〉
‖c′(t)‖ · ‖c′(t)× c′′(t)‖ c′(t) (7)

k(t) =
‖c′(t)× c′′(t)‖
‖c′(t)‖3 =

B(t)
A(t)3 (8)

R(t) =
∣∣∣∣ 1
k(t)

∣∣∣∣ = ∣∣∣∣ A(t)3

B(t)

∣∣∣∣ (9)

where γ(t) =
c′(t)× c′′(t)
‖c′(t)× c′′(t)‖ , Ω(t) =

c′(t)
‖c′(t)‖ , A(t) = ‖c′(t)‖ B(t) = ‖c′(t)× c′′(t)‖.
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In this paper, we prove the case in which R(t) =
∣∣∣∣ 1
k(t)

∣∣∣∣ = 1
k(t)

. In addition, the proof method is

also valid for the case R(t) =
∣∣∣∣ 1
k(t)

∣∣∣∣ = −1
k(t)

only with an opposite sign. The center of the osculating

sphere of the spatial parametric curve c(t) is defined by

m(t) = c(t) + β(t)/k(t) (10)

Now substituting Equations (7) and (8) into Equation (10), we obtain

m(t) =c(t) +
A3(t)
B(t)

[
A(t)
B(t)

c′′(t)− 〈c
′(t), c′′(t)〉
A(t)B(t)

c′(t)]

=c(t) +
A(t)2

B(t)2 [c
′′(t)− A(t)

〈
c′(t), c′′(t)

〉
c′(t)]

(11)

The equation of the osculating plane of the spatial parametric curve c(t) can be expressed as
following

〈x− c(t), γ(t)〉 = 0 (12)

where x = (x, y, z). Assume that the orthogonal projection of the test point p onto the osculating
plane of the spatial parametric curve c(t) yields a point v. Thus, the equation of line segment −→pv is
the following

x = p +
γ(t)
‖γ(t)‖w (13)

where w is the parameter. Substituting Equation (13) into (12), we can obtain the parameter w as the
following,

〈p− c(t), γ(t)〉+ w ‖γ(t)‖ = 0

hence,

w =
〈γ(t), c(t)− p〉
‖γ(t)‖ (14)

Substituting Equation (14) into Equation (13), we can get the coordinate value of the projection
point v as the following

v = p +
γ(t)
‖γ(t)‖w (15)

where parameter w is the same as that of Equation (14). The corresponding parametric equation of
the line segment that connects the projecting point v and the center m(t) of the osculating sphere can
be expressed as

x = v + (m(t)− v)u(t) (16)

where u(t) is a parameter for the line segment between the center m of the osculating sphere and the
projection point v. We know that the equation of the osculating sphere is

‖x−m‖ = R (17)

Because the footpoint q is the intersection of the line segment Equation (16) and the osculating
sphere Equation (17), we get

‖v + (m(t)− v)u(t)−m(t)‖ = R(t) (18)
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i.e., |1− u(t)| ‖m(t)− v‖ = R(t).
There, we have

u(t) = 1± R(t)
‖m(t)− v‖ (19)

Because the footpoint q is located between the center m(t) of the osculating sphere and the
projecting point v, so the parameter u(t) should be

u(t) = 1− R(t)
‖m(t)− v‖ (20)

Substituting Equation (20) into Equation (18), we get the footpoint coordinate

q(t) = v + (m(t)− v)u(t) (21)

Secondly, we present the proof of the theorem, our proof method used in the following is
distinguished from that literature [23]. We use the method of the numerical analysis similar to those
in the literature [24–28].

Theorem 1 Let q(t) − c(t) be a three-dimensional real parametric curve function, assume that
q(t)− c(t) has first, second derivatives in an interval I. If q(t)− c(t) has a simple root α ∈ I, and tn is
close to α, then the iterative method Equation (4) is quadratically convergent.

Proof. Let en = tn − α, and let α be a simple root of q(t) − c(t) = 0, i.e., q(α) − c(α) = 0, q′(α) −
c′(α) 6= 0. For c(t), using the Taylor’s expansion around α, we get

c(tn) = B0 + B1en + B2e2
n + o(e3

n) (22)

c′(tn) = B1 + 2B2en + o(e2
n) (23)

c′′(tn) = 2B2 + o(en) (24)

where Bi = (1/i!)c(i)(α), i = 0, 1, 2, ....
For convenience, we employ the symbolic computation of the Maple 18 package to compute

the Taylor’s expansion as follows. Combining the derivation Equation (7)–(21) with the condition
of orthogonal projection Equation (6), as well as Equation (22)–(24), and after simplifying, we get a
formula of the parameter increment ∆t,

∆t = −en +
〈B1, B2〉 (〈B1, B1〉+ 4 〈B2, p〉 − 4 〈B0, B2〉)
〈B1, B1〉 (〈B1, B1〉 − 2 〈B2, p〉+ 2 〈B0, B2〉)

e2
n + o(e3

n) (25)

since
∆t = en+1 − en. (26)

Substituting Equation (26) into Equation (25), we can get the following error equation

en + 1 =
〈B1, B2〉 (〈B1, B1〉+ 4 〈B2, p〉 − 4 〈B0, B2〉)
〈B1, B1〉 (〈B1, B1〉 − 2 〈B2, p〉+ 2 〈B0, B2〉)

e2
n + o(e3

n) (27)

This means that the method defined by Equation (4) is quadratically convergent.

In the following, we prove that Equation (4) is globally convergent.
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Theorem 2 For the test point p, if there only exists one orthogonal projection point, then the
Equation (4) is globally convergent.

Proof. This proof is analogous to the proof in the literature [29,30]. If we start from an initial point on
the left-hand side of α, then the footpoint q must be located on the right-hand side of the initial point,
so ∆t is a positive real number. By Equation (4), we define the following iterative sequence:

tn = tn−1 + ∆tn−1 (28)

where

∆tn−1 =
〈c′(tn−1), q− c(tn−1)〉
〈c′(tn−1), c′(tn−1)〉

For tn < α, the sequence {tn} is strictly monotonic increasing. If tn > α, and then, by at most
three iterations, the sequence {tn} converges to α. We should note that this iterative sequence {tn} is
similar to an attenuated pendulum. Moreover, if the initial point is to the right-hand side of the root
α, the convergence works in a similar way.

On the other hand, the footpoint q is jointly determined by the center of the osculating sphere
and the orthogonal projection point v. Furthermore, the footpoint q is always associated with the
test point p, but it is not restricted by the initial iteration point. Therefore, Equation (4) is globally
convergent.

Remark 5. The global convergence of the method in the iterative Equation (4) only requires that
c(t) is C2, however, the global convergence of the method in the literature [26–28] must satisfy some
stronger sufficient conditions.

4. Numerical Examples

This section shows the numerical evidence comparing the behavior of the Newton’s iterative
algorithm and our second-order geometric algorithm discussed above.

Example 1. We consider the curve c(t) = (t, t2, sin(t)). Table 1 shows the results of Newton’s
iteration and geometric iteration. The experimental data shows our second-order algorithm has good
convergence and robustness, but the convergence rate of Newton’s method is sometimes slower.

Table 1. Stepsizes ∆t1, ∆t2 in Example 1 for the Newton’s method and our second-order algorithm.

p = (1, 1, 1), t0 = 1.5
Step 1 2 3 4 5 6 7
∆t1 −3.4e−1 −1.2e−1 −1.7e−2 −2.9e−4 −8.3e−8 −6.7e−15 0
∆t2 −4.2e−1 −6.3e−2 −1.3e−3 −5.0e−7 −7.8e−14 7.3e−18 0

p = (1, 1, 1), t0 = −0.85
Step 1 2 3 4 5 6 7
∆t1 1.03 6.3 −2.1 −1.43 −9.1e-1 −5.6e−1 −3.1e−1
Step 8 9 10 11 12
∆t1 −1.1e−2 −1.3e−4 −1.6e−8 −2.2e−16 0
Step 1 2 3 4 5 6 7
∆t2 1.2 6.5e−1 1.2e−2 −4.1e−5 −5.2e−10 7.4e−18 0

Example 2. We consider the curve c(t) = (t, sin(t), 0). Table 2 shows the results of Newton’s iteration
and geometric iteration. The experimental data shows that our second-order algorithm has good
convergence and robustness, the convergence of Newton’s method is sensitive to the choice of initial
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values and unstable compared with our Euqation (4). Note that NC in Table 2 means the Newton’s
second-order iterative method does not converge to the root.

Table 2. Stepsizes ∆t1, ∆t2 in Example 2 for the Newton’s method and our second-order algorithm.

p = (2, 2, 0), t0 = −0.32
Step 1 2 3 4 5 6
∆t1 NC NC NC NC NC NC
∆t2 1.82 2.8e−1 2.1e−3 8.3e−7 1.4e−13 0

p = (2, 2, 0), t0 = 4.2
Step 1 2 3 4 5 6 7
∆t1 NC NC NC NC NC NC NC
∆t2 −7.2e−1 −1.65 −4.1e−2 3.5e−4 2.5e−8 2.2e−16 0

5. Conclusions

This paper investigates the problem related to a point projection onto spatial parametric curves
by using curvature information. This method is globally second-order convergence. Experimental
results show that the algorithm under consideration is robust and efficient. An area for future research
is to develop a more efficient algorithm with higher-order convergence for computing the minimum
distance between a point and a spatial parametric curve.
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