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Abstract: In this paper, a family of Steffensen-type methods of optimal order of convergence
with two parameters is constructed by direct Newtonian interpolation. It satisfies the
conjecture proposed by Kung and Traub (J. Assoc. Comput. Math. 1974, 21, 634–651) that
an iterative method based on m evaluations per iteration without memory would arrive at
the optimal convergence of order 2m−1. Furthermore, the family of Steffensen-type methods
of super convergence is suggested by using arithmetic expressions for the parameters with
memory but no additional new evaluation of the function. Their error equations, asymptotic
convergence constants and convergence orders are obtained. Finally, they are compared with
related root-finding methods in the numerical examples.
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1. Introduction

Solving the nonlinear equation f(x) = 0 is a fundamental problem in scientific computation.
Besides Newton’s method (NM), Steffensen’s method (SM):

xn+1 = xn −
f 2(xn)

f(xn + f(xn))− f(xn)
, n = 0, 1, 2, . . . (1)

is also a famous method for dealing with such a problem, because it is derivative free and maintains
quadratic convergence (see [1]). Since Kung and Traub conjectured in 1974 that a multipoint iteration
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based on m evaluations without memory has optimal order 2m−1 of convergence (see [2]), NM and SM
are methods of optimal order. The efficiency index of them is

√
2 = 1.4142.

In order to achieve higher order of convergence, the self-acceleration of SM (SASM) was introduced
in Traub’s book as follows (see [3]):

xn+1 = xn −
γnf

2(xn)

f(xn + γnf(xn))− f(xn)
(2)

where γn = − γn−1f(xn−1)
f(xn−1+γn−1f(xn−1))−f(xn−1)

, which was obtained recursively by using memory. SASM

achieves super convergence of order 1 +
√

2 = 2.4142. Its efficiency index is
√

1 +
√

2 = 1.5538.
The other two choices were also introduced for Steffensen-type methods by Zheng, et al., (see [4,5]):
γn = − xn−xn−1

f(xn)−f(xn−1)
and γn = xn−xn−1

f(xn−1)
. The latter is the same as the above expression of γn for SASM,

but different from the above for the multi-step methods. These expressions of γn ensure the methods to
achieve super convergence by using the same number of evaluations of f as before. Local and semilocal
convergence of Steffensen-type methods and their applications in the solution of nonlinear systems and
nonlinear differential equations were discussed in the literature (see [1,5,6]).

Moreover, Džunić, Petković introduced generalized biparametric multipoint methods as follows
(DPM, see [7]): 

yk,1 = yk,0 + γkf(yk,0), yk,0 = xk,

yk,2 = yk,0 − f(yk,0)

f [yk,0,yk,1]+pkf(yk,1)
,

yk,j = yk,j−1 − f(yk,j−1)

N ′j−1(yk,j−1;yk,0,yk,1,...,yk,j−1)
, j = 3, . . . , n,

xk+1 = yk,n − f(yk,n)

N ′n(yk,n;yk,0,yk,1,...,yk,n)
, k = 0, 1, . . . ,

(3)

where γk = − 1
N ′m(yk,0)

, pk = − N ′′m+1(yk,1)

2N ′m+1(yk,1)
, (m = 1, . . . , n + 1), and Nj(x; yk,0, yk,1, . . . , yk,j)

(j = 2, . . . , n) was Newton’s interpolating polynomial of degree j.
This paper is organized as the following. In Section 2, by using Newton’s method for the

direct Newtonian interpolation of the function, we construct an optimal Steffensen-type method of
second-order which has one more parameter than that in SASM, establish an optimal Steffensen-type
method of fourth-order which generalizes Ren-Wu-Bi’s method (RWBM, see [8]), deduce their error
equations and asymptotic convergence constants, and induce to a general optimal Steffensen-type family
of 2m−1th-order without memory. Furthermore, in Section 3, we obtain the family of Steffensen-type
methods by accelerating with memory, and Steffensen-type methods of super second-order and super
fourth-order of convergence by doubly accelerating with memory. In Section 4, we compare the proposed
families with NM, SM, SASM, RWBM and DPM by solving nonlinear equations in numerical examples.
Finally we make conclusions in Section 5.

2. A Steffensen-Type Family of Optimal Order without Memory

Let xn be an approximation of the simple root of a nonlinear equation f(x) = 0 and
zn = xn + γnf(xn). By direct Newtonian interpolatory polynomial of degree one, such that
N1(xn) = f(xn) and N1(zn) = f(zn), we have

N1(x) = f(xn) + f [xn, zn](x− xn)
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and f(x) ≈ N1(x), where R1(x) = f(x)−N1(x) = f [xn, zn, x](x− xn)(x− zn).
So, for some µn ≈ f [xn, zn, x], we have

Ñ2(x) = f(xn) + f [xn, zn](x− xn) + µn(x− xn)(x− zn)

and f(x) ≈ Ñ2(x), which is a polynomial of degree two based still on f(xn) and f(zn),
but f(x) ≈ Ñ2(x) could be better than f(x) ≈ N1(x) by adding a higher-order term. We suggest
that the next approximation xn+1 of the root of f(x) be obtained from Newton’s iteration for Ñ2(x) as
xn+1 = xn − Ñ2(xn)

Ñ ′2(xn)
= xn − f(xn)

f [xn,zn]+µn(xn−zn)
. Then, we have an optimal second-order Steffensen-type

method:
xn+1 = xn −

f(xn)

f [xn, zn] + µn(xn − zn)
, n = 0, 1, 2, . . . (4)

where zn = xn+γnf(xn), {γn} and {µn} are bounded constant sequences. This method gives SM when
γn ≡ 1 and µn ≡ 0.

Similarly, an optimal fourth-order Steffensen-type method is obtained as follows: yn = xn −
f(xn)

f [xn, zn]
,

xn+1 = yn − f(yn)
f [yn,xn]+f [yn,xn,zn](yn−xn)+αn(yn−xn)(yn−zn)

, n = 0, 1, 2, . . .
(5)

where zn = xn + γnf(xn), {γn} and {αn} are bounded constant sequences. This method gives RWBM
when γn ≡ 1 and αn ≡ α.

Theorem 1. Let f : D → < be a sufficiently differentiable function with a simple root a ∈ D, D ⊂ < be
an open set, x0 be close enough to a, then the method Equations (4) and (5) are at least of second-order
and fourth-order, respectively, and satisfy the error equations:

en+1 = [(1 + γnf
′(a))c2 − µnγn]e2

n +O(e3
n) (6)

en+1 = (1 + γnf
′(a))2c2[c2

2 − c3 +
αn
f ′(a)

]e4
n +O(e5

n) (7)

respectively, where ck = f (k)(a)
k!f ′(a)

, en = xn − a, n = 0, 1, 2, · · · .

Proof. The theorem can be proved by the definition of divided difference and Taylor formula, see [9] or
the proof of Theorem 2.

By successive Newtonian interpolatory polynomials up to m + 1 points, we can derive the optimal
2mth-order Steffensen-type family, moreover we are able to write it in a preferable explicit form as
follows: for any m > 0, xn+1 = ym is obtained for n = 0, 1, · · · , by

y1 = y0 − f(y0)
f [y0,y−1]

,

y2 = y1 − f(y1)
f [y1,y0]+f [y1,y0,y−1](y1−y0)

,

· · ·
ym = ym−1 − f(ym−1)

f [ym−1,ym−2]+···+f [ym−1,··· ,y−1](ym−1−ym−2)···(ym−1−y0)+νn(ym−1−ym−2)···(ym−1−y−1)

(8)

where y−1 = xn + γnf(xn), y0 = xn, {γn} and {νn} are bounded constant sequences. When νn ≡ 0, it
gives the general optimal Steffensen-type family in [9].
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Theorem 2. Let f : D → < be a sufficiently differentiable function with a simple root a ∈ D, D ⊂ <
be an open set, x0 be close enough to a, then the family Equation (8) converges with at least 2mth-order,
and moreover satisfies the error equation:

en+1 = Dme
2m

n +O(e2m+1
n ) (9)

where
D1 = (1 + γnf

′(a))c2 − νnγn, for m = 1

and
Dm = Dm−1[c2Dm−1 + (−1)m−1(cm+1 −

νn
f ′(a)

)Dm−2 · · ·D−1], for m > 1

here D−1 = 1 + γnf
′(a), D0 = 1, D1 = (1 + γnf

′(a))c2, · · · , Dm−1 = Dm−2[c2Dm−2 + (−1)m−2

cmDm−3 · · ·D−1], cm = f (m)(a)
m!f ′(a)

, and en = xn − a for n = 0, 1, · · ·

Proof. We prove the theorem by induction. For m = 1, the theorem is valid by Theorem 1. For m > 1,
let dk = yk − a, k = −1, 0, · · · ,m, then d−1 = D−1en +O(e2

n), d0 = D0en, d1 = D1e
2
n +O(e3

n), · · · ,

dm−1 = Dm−1e
2m−1

n +O(e2m−1+1
n )

and noting that dm−2 · · · d−1 = O(e1+1+2+···+2m−2

n ) = O(e2m−1

n ), we have

dm = dm−1
f [ym−1,ym−2,a]dm−2+f [ym−1,ym−2,ym−3](dm−1−dm−2)+···+νn(dm−1−dm−2)···(dm−1−d−1)
f [ym−1,ym−2]+···+f [ym−1,··· ,y−1](dm−1−dm−2)···(dm−1−d0)+νn(dm−1−dm−2)···(dm−1−d−1)

= dm−1
f [ym−1,ym−2,ym−3]dm−1−f [ym−1,ym−2,ym−3,a]dm−2dm−3+···+(−1)mνndm−2···d−1+O(e2

m−1+1
n )

f ′(a)+O(en)

= dm−1
f [ym−1,ym−2,ym−3]dm−1+(−1)m−1(f [ym−1,··· ,y−1,a]−νn)dm−2···d−1+O(e2

m−1+1
n )

f ′(a)+O(en)

= Dm−1[c2Dm−1 + (−1)m−1(cm+1 − νn
f ′(a)

)Dm−2 · · ·D−1]e2m

n +O(e2m+1
n )

3. A Steffensen-Type Family of Super Convergence with Memory

The added high-order terms in the denominators in Equations (4) and (5) at least have no bad effect
by now. Furthermore, by adjusting these coefficients of the high-order terms, i.e., only using several
arithmetic operations of old evaluations of f to express the parameters, the asymptotic convergence
constants of the optimal second-order and fourth-order methods can tend to zero, respectively, and the
obtained methods of super-convergence can exceed SASM and RWBM, respectively. For example:

The super second-order method: Iterate Equation (4) with

µn =
1 + γnf [xn, zn]

γnf [xn, zn]
f [zn−1, xn, zn] (10)

The super fourth-order method: Iterate Equation (5) with

αn = f [xn−1, xn, zn, yn]− f [xn, zn, yn]2

f [xn, yn]
(11)

Theorem 3. Let f : D → < be a sufficiently differentiable function with a simple root a ∈ D, D ⊂ <
be an open set, x0 be close enough to a, then the methods Equations (10) and (11) satisfy the following
error equations:

en+1 = −(1 + γnf
′(a))[c3en−1e

2
n +O(e2

n−1e
2
n)] (12)
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en+1 = (1 + γnf
′(a))2[c2c4en−1e

4
n +O(e2

n−1e
4
n)] (13)

where ck = f (k)(a)
k!f ′(a)

, en = xn − a, n = 0, 1, 2, . . ., and achieve convergence of order at least 1 +
√

2 and
2 +
√

5 respectively.

Proof. By the definition of divided difference and Taylor formula, we also have

f [zn−1, xn, zn] = f ′′(a)
2

+ f ′′′(a)
6
en−1 +O(e2

n−1),

f [xn−1, xn, zn, yn] = f ′′′(a)
6

+ f (4)(a)
4!

en−1 +O((en−1)2)

Equation (12) follows from Equation (6) by

µn = 1+γnf ′(a)
γnf ′(a)

(f
′′(a)
2!

+ f ′′′(a)
3!

en−1 +O(e2
n−1))

The order 1 +
√

2 ≈ 2.4142 is obtained as the positive root by solving s2 − 2s− 1 = 0.
Equation (13) follows from Equation (7) by

αn = f ′(a)[c3 − c2
2 + c4en−1 +O(e2

n−1)]

The order 2 +
√

5 ≈ 4.2361 is obtained as the positive root by solving s2 − 4s− 1 = 0.
Generally, we have the super 2mth-order Steffensen-type family: Iterate Equation (8) with

νn = f [ym−2, ym−1](c̃m+1 + (−1)m−1 c̄2D̄m−1

D̄−1 · · · D̄m−2

) (14)

where D̄−1 = 1 + γnf [ym−2, ym−1], D̄0 = 1, D̄1 = (1 + γnf [ym−2, ym−1])c̄2, · · · ,
D̄m−1 = D̄m−2[c̄2D̄m−2 +(−1)m−2 c̄mD̄m−3 · · · D̄−1], c̄m = f [y−1,··· ,ym−1]

f [ym−2,ym−1]
and c̃m+1 = f [xn−1,y−1,··· ,ym−1]

f [ym−2,ym−1]
.

Theorem 4. Let f : D → < be a sufficiently differentiable function with a simple root a ∈ D, D ⊂ <
be an open set, x0 be close enough to a, then the family Equation (14) is super 2mth-order convergent,
and satisfies the following error equation:

en+1 = (−1)mDm−1 · · ·D−1cm+2en−1e
2m

n +O(e2
n−1e

2m

n ),m > 1 (15)

where D−1 = 1 + γnf
′(a), D0 = 1, D1 = (1 + γnf

′(a))c2, · · · , Dm−1 = Dm−2[c2Dm−2 + (−1)m−2

cmDm−3 · · ·D−1], cm = f (m)(a)
m!f ′(a)

, and en = xn − a for n = 0, 1, · · · .
Proof. Since

νn = f [ym−2, ym−1](c̃m+1 + (−1)m−1 c̄2D̄m−1

D̄−1···D̄m−2
)

= f ′(a)(cm+1 + (−1)m−1 c2Dm−1

D−1···Dm−2
+ cm+2en−1) +O(e2

n−1)

we obtain Equation (15) by Theorem 2 from

Dm = Dm−1[c2Dm−1 + (−1)m−1(cm+1 −
νn
f ′(a)

)Dm−2 · · ·D−1], for m > 1

Furthermore, we propose two doubly-accelerated Steffensen-type methods:

compute Equation (10) with γn = − 1

f [xn, zn−1]
(16)
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compute Equation (11) with γn = − 1

f [xn, zn−1]
(17)

Theorem 5. Let f : D → < be a sufficiently differentiable function with a simple root a ∈ D, D ⊂ < be
an open set, x0 be close enough to a, then the doubly-accelerated Steffensen-type methods Equations (16)
and (17) achieve third-order and 4.74483 order convergence, respectively.
Proof. Denoting ezn := zn − a and en := xn − a, if zn converges to a with order p > 1 and satisfies the
error equation

ezn = Cne
p
n + o(epn)

where Cn tends to the asymptotic convergence constant C, and if xn converges to a with order r > 2 and
satisfies the error equation

en+1 = Dne
r
n + o(ern)

where Dn tends to the asymptotic convergence constant D, then

ezn = Cn(Dn−1e
r
n−1)p + o(erpn−1) = CnD

p
n−1e

rp
n−1 + o(erpn−1),

en+1 = Dn(Dn−1e
r
n−1)r + o(er

2

n−1) = DnD
r
n−1e

r2

n−1 + o(er
2

n−1)

By Taylor formula, for Equations (10) and (16), we also have

ezn = en − f [xn,a]en
f [xn,zn−1]

= f [xn,zn−1,a]
f [xn,zn−1]

ezn−1en = c2Cn−1Dn−1e
p+r
n−1 + o(ep+rn−1)

and

en+1 = en − f [xn,a]en

f [xn,zn]+(1− f [xn,zn−1]

f [xn,zn]
)f [zn−1,xn,zn]

f [xn,a]en
f [xn,zn−1]

= en
f [xn,zn,a](zn−a)+(

f [xn,a]
f [xn,zn−1]

− f [xn,a]
f [xn,zn]

)f [zn−1,xn,zn]en

f [xn,zn]+(
f [xn,a]

f [xn,zn−1]
− f [xn,a]

f [xn,zn]
)f [zn−1,xn,zn]en

= e2
n

f [xn,zn,a](1− f [xn,a]
f [xn,zn−1]

)+(
f [xn,a]

f [xn,zn−1]
− f [xn,a]

f [xn,zn]
)f [zn−1,xn,zn]

f [xn,zn]+(
f [xn,a]

f [xn,zn−1]
− f [xn,a]

f [xn,zn]
)f [zn−1,xn,zn]en

= e2
n
f [xn,zn,a]f [xn,zn](f [xn,zn−1]−f [xn,a])+f [zn−1,xn,zn]f [xn,a](f [xn,zn]−f [xn,zn−1])

f [xn,zn]2f [xn,zn−1]+(f [xn,zn]−f [xn,zn−1])f [xn,a]f [zn−1,xn,zn]en

= e2
n

(f [xn,zn,a]f [xn,zn]−f [zn−1,xn,zn]f [xn,a])f [xn,zn−1]+(f [zn−1,xn,zn]−f [xn,zn,a])f [xn,zn]f [xn,a]
f [xn,zn]2f [xn,zn−1]+(f [xn,zn]−f [xn,zn−1])f [xn,a]f [zn−1,xn,zn]en

= e2
n

(f [zn−1,xn,zn]f [xn,zn,a]ezn−f [zn−1,xn,zn,a]f [xn,zn]ezn−1)f [xn,zn−1]+f [zn−1,xn,zn,a]f [xn,zn]f [xn,a]ezn−1

f [xn,zn]2f [xn,zn−1]+(f [xn,zn]−f [xn,zn−1])f [xn,a]f [zn−1,xn,zn]en

= e2
n

f [zn−1,xn,zn]f [xn,zn,a]f [zn−1,xn]ezn−f [zn−1,xn,a]f [zn−1,xn,zn,a]f [xn,zn](ezn−1)2

f [xn,zn]2f [zn−1,xn]+(f [xn,zn]−f [zn−1,xn])f [xn,a]f [zn−1,xn,zn]en

= −c2c3C
2
n−1D

2
n−1e

2r+2p
n−1 + o(e2r+2p

n−1 ).

Comparing the exponents of en−1 in two expressions of ezn and two expressions of en+1 respectively,
we have two equations in the following system:{

rp = p+ r,

r2 = 2r + 2p

From its non-trivial solution p = 3
2

and r = 3, we prove that Equation (16) achieves
third-order convergence.
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For Equations (11) and (17), we have

ezn = en − f [xn,a]en
f [xn,zn−1]

= f [xn,zn−1,a]
f [xn,zn−1]

ezn−1en = c2Cn−1Dn−1e
p+r
n−1 + o(ep+rn−1),

eyn = en − f [xn,a]en
f [xn,zn]

= f [xn,zn,a]
f [xn,zn]

eznen = c2
2Cn−1D

2
n−1e

p+2r
n−1 + o(ep+2r

n−1 )

and

en+1 = eyn −
f [yn,a]eyn

f [yn,xn]+f [yn,xn,zn](yn−xn)+(f [xn−1,xn,zn,yn]− f [xn,zn,yn]2

f [xn,yn]
)(yn−xn)(yn−zn)

= eyn
f [xn,yn,a]en+f [yn,xn,zn](yn−xn)+(f [xn−1,xn,zn,yn]− f [xn,zn,yn]2

f [xn,yn]
)(yn−xn)(yn−zn)

f [yn,xn]+f [yn,xn,zn](yn−xn)+(f [xn−1,xn,zn,yn]− f [xn,zn,yn]2

f [xn,yn]
)(yn−xn)(yn−zn)

= eyn
f [yn,xn,zn]eyn−f [xn,yn,zn,a]eznen+(f [xn−1,xn,zn,yn]− f [xn,zn,yn]2

f [xn,yn]
)(eyn−en)(eyn−ezn)

f [yn,xn]+f [yn,xn,zn](yn−xn)+(f [xn−1,xn,zn,yn]− f [xn,zn,yn]2

f [xn,yn]
)(yn−xn)(yn−zn)

= eyn
(
f [yn,xn,zn]f [xn,zn,a]

f [xn,zn]
− f [xn,zn,yn]2

f [xn,yn]
)eznen+(f [xn−1,xn,zn,yn]−f [xn,yn,zn,a])eznen+o(eznenen−1)

f [yn,xn]+f [yn,xn,zn](yn−xn)+(f [xn−1,xn,zn,yn]− f [xn,zn,yn]2

f [xn,yn]
)(yn−xn)(yn−zn)

= eyn

f [yn,xn,zn](f [xn,zn,a]f [xn,yn]−f [xn,zn,yn]f [xn,zn])
f [xn,zn]f [xn,yn]

eznen+f [xn−1,xn,zn,yn,a]eznenen−1+o(eznenen−1)

f [yn,xn]+f [yn,xn,zn](yn−xn)+(f [xn−1,xn,zn,yn]− f [xn,zn,yn]2

f [xn,yn]
)(yn−xn)(yn−zn)

= eyn

f [yn,xn,zn](f [xn,zn,yn]f [xn,yn,zn](e
y
n−ezn)−f [xn,zn,yn,a]f [xn,yn]e

y
n)

f [xn,zn]f [xn,yn]
eznen+f [xn−1,xn,zn,yn,a]eznenen−1+o(eznenen−1)

f [yn,xn]+f [yn,xn,zn](yn−xn)+(f [xn−1,xn,zn,yn]− f [xn,zn,yn]2

f [xn,yn]
)(yn−xn)(yn−zn)

= c2
2Cn−1D

2
n−1e

p+2r
n−1 c4c2Cn−1Dn−1e

p+r
n−1Dn−1e

r
n−1en−1 = c3

2c4C
2
n−1D

4
n−1e

2p+4r+1
n−1

Comparing the exponents of en−1 in two expressions of ezn and two expressions of en+1 respectively,
we have two equations in the following system:{

rp = p+ r,

r2 = 2p+ 4r + 1

From its non-trivial solution r = 4.74483 and p = 1.26704, we prove that Equation (17) achieves
4.74483 order convergence.

4. Numerical Examples

The proposed families are compared with NM, SM, SASM, RWBM and DPMs by solving some
nonlinear equations in the following examples. We compute Equation (4) with γn ≡ 1 and µn ≡ 1,
Equation (5) with γn ≡ 1 and αn ≡ 0 or γn ≡ 1 and αn ≡ 1, Equation (16) with γn ≡ 1 and µ0 = 0,
Equation (17) with γn ≡ 1 and α0 = 0, Equation (16) with γ0 = 1 and µ0 = 0, and Equation (17)
with γ0 = 1 and α0 = 0. DPM1(1) is denoted as one-step DPM without memory where γn ≡ 1 and
pn ≡ 1; DPM1(2) is denoted as one-step DPM with memory where γn ≡ 1 and p0 = 1 and DPM1(3) is
denoted as one-step DPM with memory where γ0 = 1 and p0 = 1. DPM2(1), DPM2(2) and DPM2(3)
are denoted similarly. The computational order of convergence is defined as:

COC =
log(|en|/|en−1|)

log(|en−1|/|en−2|)

Example 1. The numerical results in Table 1 agree with the theoretical error equations and asymptotic
convergence constants in the theorems.
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Table 1. f(x) = x2 − e−x − 3x+ 1, a = 0, x0 = 0.2.

Method n 1 2 3 4 5

NM |en| 0.12618e-1 0.39224e-4 0.38462e-9 0.36982e-19 0.34192e-39
COC 1.71685 2.08950 1.99746 2.00000 2.00000

SM |en| 0.90483e-2 0.20376e-4 0.10379e-9 0.26931e-20 0.18132e-41
COC 1.92349 1.96916 1.99926 2.00000 2.00000

SASM |en| 0.10005e-1 0.27820e-5 0.42758e-14 0.31858e-35 0.27123e-86
COC 1.86107 2.73351 2.47855 2.39725 2.41719

DPM1(1) |en| 0.35098e-1 0.89701e-3 0.60310e-6 0.27280e-12 0.55816e-25
COC 1.08123 2.10714 1.99216 1.9999 2.00000

DPM1(2) |en| 0.35098e-1 0.17051e-4 0.85716e-12 0.1044e-29 0.77854e-73
COC 1.08123 4.38445 2.2027 2.45446 2.40742

DPM1(3) |en| 0.11379 0.58486e-4 0.45402e-15 0.14730e-44 0.49933e-136
COC 0.350412 13.4287 3.07383 3.01572 3.0001

Equation (4) |en| 0.90483e-2 0.83467e-4 0.69659e-8 0.48524e-16 0.23546e-32
COC 1.92349 1.51366 2.00414 1.99999 2.00000

Equation (16) |en| 0.90483e-2 0.12295e-5 0.11371e-14 0.13249e-36 0.16634e-89
COC 1.92349 2.87612 2.33626 2.42792 2.41188

Equation (16) |en| 0.90483e-2 0.49807e-7 0.69167e-23 0.2069e-70 0.55353e-213
COC 1.92349 3.9118 3.01513 2.99697 3.0000

DPM2(1) |en| 0.19766e-3 0.1919e-15 0.15768e-64 0.48294e-260 0.42497e-1042
COC 4.29934 4.0663 3.99998 4.0000 4.00000

DPM2(2) |en| 0.19766e-3 0.37718e-18 0.16139e-85 0.64139e-393 0.34726e-1795
COC 4.29934 4.89812 4.57687 4.56296 4.56169

DPM2(3) |en| 0.19766e-3 0.61235e-21 0.17871e-109 0.18862e-556 0.37821e-2814
COC 4.29934 5.82639 5.05656 5.04859 5.04881

RWBM |en| 0.47770e-4 0.18986e-18 0.47372e-76 0.18361e-306 0.41433e-1228
(Equation (5), γn = 1, αn ≡ 0) COC 5.18173 3.97604 4.00000 4.00000 4.00000

RWBM |en| 0.11363e-3 0.14757e-16 0.41995e-68 0.27538e-274 0.50918e-1099
(Equation (5), γn = 1, αn ≡ 1) COC 4.64333 3.97050 4.00000 4.00000 4.00000

Equation (17) |en| 0.47770e-4 0.52156e-20 0.1841e-87 0.31207e-373 0.90942e-1584
COC 5.18173 4.40707 4.22584 4.23664 4.23604

Equation (17) |en| 0.47770e-4 0.8438e-23 0.29043e-111 0.32054e-531 0.86331e-2524
COC 5.18172 5.17772 4.71725 4.74726 4.7447

Example 2. The numerical results of self-acceleration of Steffensen’s method (SASM),
Equations (16) and (17), DPM1(3), Equations (16) and (17) and DPM2(3) are in Table 2 for the following
nonlinear functions:

f1(x) = 1
2
(ex−2 − 1), a = 2, x0 = 2.5,

f2(x) = ex
2

+ sinx− 1, a = 0, x0 = 0.25

f3(x) = e−x
2+x+2 − 1, a = −1, x0 = −0.85,

f4(x) = e−x − arctanx− 1, a = 0, x0 = 0.2

Table 2. Numerical results for fi(x), i = 1, 2, 3, 4.

SASM Equation (16) Equation (16) DPM1(3) Equation (17) Equation (17) DPM2(3)

f1 : |e4| 0.245e-40 0.784e-14 0.107e-28 0.164e-23 0.101e-195 0.727e-273 0.426e-231
COC 2.41353 2.45350 3.00734 2.98211 4.23599 4.74517 5.04588

f2 : |e4| 0.396e-44 0.194e-17 0.177e-35 0.304e-29 0.524e-176 0.148e-254 0.188e-283
COC 2.41316 2.32334 3.01791 2.94762 4.23567 4.74606 5.04155

f3 : |e4| 0.380e-49 0.346e-14 0.300e-38 0.172e-32 0.168e-168 0.689e-258 0.618e-265
COC 2.41295 2.51251 3.16594 3.12621 4.23622 4.74895 5.04542

f4 : |e4| 0.344e-86 0.696e-37 0.112e-70 0.326e-60 0.111e-399 0.115e-560 0.437e-555
COC 2.41721 2.43146 3.00078 2.99954 4.24283 4.7598 5.04856
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5. Conclusions

In this paper, the general optimal 2m−1th-order Steffensen-type family with two parameters is
constructed by using Newton’s iteration for the direct Newtonian interpolatory polynomial of the
function, and its corresponding accelerated Steffensen-type family is derived by using the expression
of one of the parameters with memory but no additional new evaluation of the function. In the
theoretical analysis and the numerical examples, the proposed families without and with memory only
use m evaluations of f to achieve optimal 2m−1th-order of convergence and super 2m−1th-order of
convergence for solving a simple root of nonlinear functions, respectively. Their asymptotic convergence
constants and orders of convergence compared with NM, SM, SASM, RWBM, DPM are verified.
The advantage of the proposed methods is that they can offer high precision roots in scientific and
engineering computation efficiently.

The biparametric Steffensen-type family Equation (8) is not only an alternative to the biparametric
multipoint root finding family Equation (3) from [7], but also brings about methods Equations (16) and
(17), which doubly accelerate SM and RWBM, respectively. Moreover, when the second parameter
νn ≡ 0, the family Equation (8) gives the single-parametric Steffensen-type family in [9]. Furthermore,
this single-parametric Steffensen-type family was improved to be the self-accelerating method in [10] by
self-correcting the parameter γn with memory. Additionally, one-step Steffensen methods with memory
were derived from Equation (4) in [11,12], and a general multi-step Steffensen method with memory
different from Equations (3) and (8) was proposed in [13].
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