
Algorithms 2015, 8, 754-773; doi:10.3390/a8030754

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Modified Classical Graph Algorithms for the DNA Fragment
Assembly Problem

Guillermo M. Mallén-Fullerton 1,†, J. Emilio Quiroz-Ibarra 2,†, Antonio Miranda 3,† and

Guillermo Fernández-Anaya 3,†,*

1 Engineering Department, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la

Reforma 880, Lomas de Santa Fe, Distrito Federal 01219, Mexico;

E-Mail: guillermo.mallen@ibero.mx
2 Universidad Iberoamericana Ciudad de México, DCI, Prolongación Paseo de la Reforma 880,

Lomas de Santa Fe, Distrito Federal 01219, Mexico; E-Mail: quirozem@yahoo.com.mx
3 Physics and Mathematics Department, Universidad Iberoamericana Ciudad de México,

Prolongación Paseo de la Reforma 880, Lomas de Santa Fe, Distrito Federal 01219, Mexico;

Email: antonio.miranda@ibero.mx

† These authors contributed equally to this work.

* Author to whom correspondence should be addressed; E-Mail: guillermo.fernandez@ibero.mx;

Tel.: +52-55-5950-4000.

Academic Editors: Giuseppe Lancia and Alberto Policriti

Received: 24 June 2015 / Accepted: 26 August 2015 / Published: 10 September 2015

Abstract: DNA fragment assembly represents an important challenge to the development

of efficient and practical algorithms due to the large number of elements to be assembled.

In this study, we present some graph theoretical linear time algorithms to solve the

problem. To achieve linear time complexity, a heap with constant time operations was

developed, for the special case where the edge weights are integers and do not depend on

the problem size. The experiments presented show that modified classical graph theoretical

algorithms can solve the DNA fragment assembly problem efficiently.

Keywords: DNA fragment assembly; minimum spanning tree; heap; linear complexity

OPEN ACCESS

Algorithms 2015, 8 755

1. Introduction

Since its discovery by Watson and Crick [1], the importance of DNA to biology, medicine and

human kind has been evident. However, we had to wait some time until it was possible to sequence the

DNA bases, which was accomplished by Sanger in the mid-1970s [2], by detecting small dark bands

on a thin gel layer. This method severely constrains the length of the DNA to be sequenced due to the

limited resolution of the dark bands. In order to solve this problem, the DNA is first cut in known

places by using restriction enzymes, which will divide the DNA at the point where a specific base

sequence is found. The resulting sub-sequences, are divided again, this time using a different

restriction enzyme, and this process is repeated until the resulting fragments can be divided in random

places yielding sub-fragments that are small enough as to provide the complete sequence of bases

using Sanger’s method. This process was slow and expensive because every time that a sequence was

divided, each resulting subsequence had to be cloned in order to have enough material for the next

division. This problem prompted scientists to start dividing sequences in random positions from the

beginning, instead of doing it after several divisions, saving time and money [3]. This method, in turn,

created a severe computational problem since there is no information about the order of the fragments.

If one starts with many copies of the original problem and the derived fragments are sequenced, then

each base of the original problem could appear in several fragments. The sum of the lengths of the

fragments divided by the length of the original problem is known as its coverage. We hope that if we

have a large enough coverage, the fragments will overlap in such a way that the sequence at the end of

a fragment overlaps with the sequence at the beginning of another one. Hence, in theory, we should be

able to use this information to sort the fragments and reconstruct the original DNA sequence.

What really happens is not very simple since, by chance, there are a huge number of false overlaps

amongst the fragments. There is also the problem that fragment sequencing is not perfect. Two percent

error is common, as well as having fragments that do not belong to the original problem, some due to

contamination with DNA foreign to the problem, and others because of the appearance of chimeras

from the process of DNA cloning, in which bacteria DNA is used, so that we could get fragments with

portions of bacteria DNA. On top of what was said, we have repeats, which are DNA sections that

appear tens or hundreds of times one after another (tandem repeats) or in far away parts of the original

DNA (interspersed repeats) [4].

As far as we know, at this point there is no good probabilistic model of DNA. Simple, or relatively

simple ones do not explain the repeats. For instance, in the real life problem that we will present later

in this paper, there are sequences of A bases that are extremely long. Figure 1 show some examples of

fragments that come from the sample problem that we will use in Section 4 of this paper and Table 1

shows the probability that it happens considering that among the total number of fragments, the

A bases occurs with probability 0.3249. As can be seen from the figure, the number of times that the

A chain occurs in the real data is much larger than the expected value according to a simple

probabilistic model. Despite these anomalies and some others, some of the parameters that are used in

the assembly of fragments, such as the minimum number of bases that an overlap must have to be

considered important, have an empirical basis [5].

There is also the problem that in real situations, sections of the original DNA problem have no

coverage since fragments are obtained by a random process and it is not possible guarantee that there

Algorithms 2015, 8 756

are fragments from every part of the genome under study. This is the reason why the resulting

assembly of all fragments is a set of contigs or subsequences and almost never the entire sequence of

the problem. It is the job of specialized biologists to fill in the gaps and correct assembly errors made

during the automated process.

Figure 1. Some fragments from the S. aureus strain MW2 problem.

Table 1. Observed frequency on n bases A vs. expected value for p = 0.3249 and

5,324,340 fragments.

n Observed Probability Expected Value

15 101 0.000000475 2.528889873
16 74 0.000000147 0.784225487
17 65 0.000000046 0.242640081
18 51 0.000000014 0.074884674
19 40 4.32861E−09 0.023046972
20 39 1.32807E−09 0.007071095
21 18 4.06052E−10 0.002161959
22 28 1.23662E−10 0.000658416
23 14 3.74924E−11 0.000199622
24 15 1.13089E−11 0.000060212
25 22 3.3908E−12 0.000018054
26 15 1.00958E−12 0.000005375
27 22 2.9809E−13 0.000001587
28 11 8.71281E−14 0.000000464
29 15 2.51495E−14 0.000000134
30 10 7.14487E−15 3.80417E−08
31 9 1.98796E−15 1.05846E−08
32 6 5.37563E−16 2.86217E−09
33 4 1.3946E−16 7.42531E−10
34 4 3.38757E−17 1.80366E−10
35 1 7.29107E−18 3.88201E−11

DNA fragment sequencing technology has continued to advance while costs continue to go down.

The original shotgun technology has been called “long reads” because the fragments would normally

have more than 500 bases. Using new technologies, commonly known as Next Generation Sequencing,

Algorithms 2015, 8 757

the cost to sequence a million bases is about $1 [6]. Unfortunately, the length of the fragments is

shorter using this newer technology. Today, 150 bases reads are common with the Illumina sequencers.

To compensate for the problems derived from the short size of each fragment, coverage of about 40 is

needed instead of a coverage of about 10 in the case of long reads. If we consider the number of

fragments to be sequenced with newer technologies, we need to assemble three to four million

fragments to sequence a bacterium, while using long reads, only 50,000 fragments were enough. These

are really bad news due to the combinatorial nature of the solutions to the problem.

Since the very beginning of DNA fragment sequencing, greedy algorithms have been used; for

instance, we pick a random fragment and connect to it the one that has the longest overlap. This

process is repeated until no overlapping fragments are available. Nowadays, this technique would be

difficult to use, since fragments are too short, which often produces several different fragments with

the same overlap size. Another popular technique is the use of De Bruijn graphs [7]. In order to build

these graphs, all possible k-mers (subsequence of k consecutive bases) of each fragment are used to

find all possible overlaps among them. Using these graphs, several problems can be solved by using

heuristics; for instance, given a k-mer, there might be two parallel paths to other k-mer, creating what

is called a bubble. The bubble is then popped by removing the shortest side or projecting one side onto

the other when they have the same length. Short sequences that originate from long ones are

eliminated. It is common to use a value of k close to 20 in order to obtain the k-mers.

An approach based on genetic algorithm optimization was suggested by Parsons in 1993 [8]. Later,

other scientists applied similar metaheuristics [9–12], but their results were based on very small

benchmarks, the largest had about 1000 fragments, and even though results were improving slowly,

they were still far from real problems, including the long reading ones, with tens of thousands of

fragments. In 2013, a reduction from fragment DNA sequencing to the Traveling Salesman Problem

(TSP) was used [13]. Taking advantage of formal heuristics and algorithms for the TSP, optimal values

were found for the most commonly used benchmarks, and, for the first time, a real life problem was

solved using optimization.

The remainder of this paper is organized as follows: Section 2 provides the basic ideas on the use of

graph theory for the solution of DNA sequencing problems; Section 3 explains those algorithms that

are necessary to tackle the problem; Section 4 illustrates the use of our algorithms on real life problem

benchmarks; and, in Section 5, we give our conclusions and future work.

2. Use of Graph Theory

2.1. Generalities

In reference [13], a graph theory approach was used by means of the TSP, where the solution

obtained from the assembly of fragments is a series of contigs rather than a Hamiltonian Path. In TSP,

all possible edges of the graph are considered, but when there is no possible connection between two

nodes, it is usually represented using a very large weight to prevent it from showing up in the final

solution. Applying TSP to DNA fragment assembly might be considered excessive, even though the

expected results are obtained, since the fraction of real connections is very small. A graph theoretical

approach using other algorithms might give better results.

Algorithms 2015, 8 758

The size of real life DNA fragment assembly problems is huge, with 35 base fragments and a

coverage of 40, we get about 700 million fragments for human chromosome number 1, which has

245 million base pairs. It is known that the DNA fragment assembly problem is NP-hard

(Non-deterministic Polynomial time hard), since it can be reduced from the shortest common

superstring problem [14]; in practice, we must only use linear time algorithms, even if by doing so we

sacrifice correctness and obtain only an approximate solution.

2.2. DNA Fragment Assembly as a Graph

The DNA fragment assembly problem can be transformed into a directed graph: we need to find a

sequence of fragments where each one is always the prefix of the next one. We know that DNA comes

in pairs of strands (double helix) that run in opposite directions, where in front of each base of one

strand, there is a base of the reverse-complement on the other; for instance, an A in front of a T and a

C in front of a G, which clearly means that the information contained in each one of the strands is the

same. When DNA fragment overlaps are obtained, it is not known what strand they come from, i.e.,

every time that an overlap is computed, the strand and its reverse-complement must be considered.

This means that a prefix of a normal overlap becomes a suffix of the reverse-complement. At first,

it might seem that this case could be represented by a simple non-directed edge between the

two fragments. However, this is not so if we consider that each node or fragment that is a

reverse-complement must also be a reverse-complement for every edge that connects to it.

As a small example, we present a set of 13 fragments, Table 2, the associated overlap matrix,

Table 3 and the resulting graph, Figure 2.

Table 2. Graph example: fragments.

Fragment
number

Sequence

1 GTGTACCACGTACTGATGTACTATTTGAAGCTTAT

2 CCCAATTCCTAATGTACTATTTGAAGCTTATTCGG

3 CATAAGCTTCATGATGAAGCTTATTCGGCCAATCG

4 TTTGATTCCTGCTGATGTACTATTTGATGAAGCTT

5 ATGTACTATTTGAAGCTTATTCGGCCAATCGTACT

6 GAAGCTTATTCGGCCAATCGTACTGATGTACTATT

7 CTTATTCGGCCAATCGTACTATTTACTGATGTACA

8 TGATGAAGCTTATTCGGCCAATCGTACTGATGTAC

9 GGCCAATCGTACTGATGTACTATTTGATGAAGCTT

10 CTGATGTACTATTTGATGAAGCTTATTCGGCCAAT

11 TGTACTATTTGATGAAGCTTATCAGTACGTGGAAC

12 AATCGTACTGATGTACTATTTACTGATGTACAATA

13 CTATTTACTGATGTACAATAGTACATCAGTAAAAA

Algorithms 2015, 8 759

Table 3. Graph example: overlaps matrix.

 1 2 3 4 5 6 7 8 9 10 11 12 13

1 20
2 24
3 20 24
4 24
5 20 20
6 24 20
7 17
8 20
9 24 20
10 22
11
12 20
13

Figure 2. Graph example: graph.

2.3. Objective Function

In the literature, using nature inspired algorithms to solve the DNA fragment assembly problem

published after Parsons [8], the associated graph has been considered to be an undirected graph. Other

literature considered bi-directed graphs, especially when De Bruijn graphs were proposed. It is

common to use a Hamiltonian path, even though sometimes Eulerian paths have been used too [7]. In

any case, it is not entirely clear how many times each one of the fragments should be used, since, from

the physical point of view, it is feasible for a sequence to repeat in different sections of the DNA,

and for identical fragments to come from different places. Thinking that a fragment and it

reverse-complement are the same, creates too much complexity from the algorithmic point of view as

well as from the programming one, and would only be justified as long as it was strictly required to

Algorithms 2015, 8 760

consider Hamiltonian paths. Hence, we consider each reverse-complement fragment as an independent

fragment. Another possibility might be to trust the huge cover that is customary in Next Generation

Sequencing (NGS) and not use reverse-complements.

With respect to the objective function for the optimization, in many papers, the sum of the overlaps

of each fragment with the next one is used, which has probably been inherited from the use of some

greedy algorithms. In addition to this objective function, we propose to maximize the sum of the

lengths of the contigs. This can be achieved by considering that each time that a new fragment is added

at the end of a contig, its length is incremented by an amount equal to the length of the fragment minus

the overlap length. So we would have the following objective functions:
1

1
1

max (, 1)
n

i

F w i i
−

=

= +

(1)

−

=

+−=
1

1
2))1,((max

n

i

iiwLF

(2)

where w(i, i + 1) is the number of overlapped bases between fragment i and the next one in the

sequence, n is the number of fragments, and L is the length of the fragment. Notice that Equation (2)

can easily be transformed into a minimization:

−

=

+=
1

1

'
2)1,(min

n

i

iiwF (3)

Because
'

22)1(FLnF −−= (4)

The boundary between contigs appears because there are values of w(i, i + 1) that are equal to 0.

Since there is usually some contamination with foreign DNA and there might be chimeras, some of the

obtained contigs do not belong to the original DNA, and, at some point, which is not within the scope

of this paper, useful contigs must be separated from the useless ones.

In order to obtain each contig, an agreement must be reached (computed) for each base, i.e., since

we know that there might be redundancy for each base (due to the original cover) and that there might

be sequencing errors in the fragments, it is possible for each base in each contig to have several

versions, from which the most frequent value must be accepted, even if it is the minimum acceptable

value. Since most of the errors in the contigs are at the ends, due to chemical problems in the

sequencing equipment or because of the lack of enough redundancy, it might be necessary to cut

them off.

3. Algorithms

3.1. Basic Algorithm for F1 and F2

For the objective function F1, we propose an algorithm similar to topological sorting. Let G = (V, E)

be a directed acyclic graph (DAG) where V is the set of vertices, E is the set of edges and w(u, v) is the

weight of edge u→v. In this graph, the longest path will go from a node that has no edge going in

(initial vertex) and those nodes that are connected to it. Notice that there might be several “initial

Algorithms 2015, 8 761

vertices”, and that there is no single privileged node. Let VS ⊆ be the set of vertices with in-degree

din(v) = 0 and let Q be a stack. The algorithm to determine the longest distance from a given vertex to

each of the other vertices is the following (Algorithm 1):

Algorithm 1. Longest distance from initial vertices
1. For each vertex Sv ∈ with din(v) = 0

1.1. push(Q,v)
1.2. d(v):=0
1.3. origin(v):=v

2. While Q is not empty
2.1. u:=pop(Q)
2.2. for each vertex v Evu ∈),(

2.2.1. din(v):=din(v)−1
2.2.2. if din(v)=0

2.2.2.1. push(Q,v)
2.2.2.2. ()vxwxdvd

Evx
,()(max:)(

),(
+=

∈

2.2.2.3. father(v):=x

This algorithm only works if the graph is acyclic. In real life DNA fragment assembly problems,

there are cycles. When this algorithm is applied to a graph with cycles, neither the cycles nor the nodes

that are further from the cycles are detected. Later we will discuss how to take care of cycles.

3.2. Constant Time Heap

Aside from a modified version of the algorithm of Section 3.1, there are other ways to tackle the

cycle problem. One way, not necessarily the best way, would be to build a minimum spanning tree,

even if it ignores the direction of the edges. It is clear that if there are no undirected cycles in the

equivalent undirected graph, there should be no directed cycles in its directed version. So we could use

one of several algorithms like Prim [15] and Kruskal [16], both with time complexity in O(|E| log|V|)

when using a Fibonacci Heap.

In order to achieve the linear time complexity that we require, we notice that in the case of the DNA

fragment sequencing problem, we should use a heap that can insert and extract-min in constant time,

thus improving the time complexity of other data structures where the extract-min operation is in O(log n).

Our heap requires that the ordering values are integers independent from the number of nodes in the

graph. In the DNA fragment sequencing problem, the edges of the graph are the fragment overlaps,

hence it is an integer value representing the number of bases, and its value is also bounded by

0 < w(u, v) < L, where L does not depend of the number of fragments, and has a value of at most a few

hundred bases. The heap that we propose is based on a Stack Pi for each possible value to be

introduced. The heap operations are:

Algorithm 2. Stack heap insert and extract min
insert x

1. push(Px,x)
2. if x<xmin

Algorithms 2015, 8 762

2.1. xmin:=x
3. if x > xmax

3.1. xmax:=x

extract-min

1. x:=pop(Pxmin)
2. While the stack Pxmin is empty and xmin ≤ xmax

2.1. xmin: = xmin + 1

In the extract-min operations shown, the value that is in the stack corresponding to xmin is extracted.

If the stack is empty, the next non-empty stack smaller than the maximum value is used. When the

number of stacks is large enough, it is useful to use some other kind of heap, such as a binary or a

Fibonacci heap instead of sequential search. In the example that we provide in Section 4, we use no

more than 34 stacks (0 ≤ x ≤ 34), hence sequential search turns out to be faster. The time complexity of

the insert operation is constant because Steps 1 through 3.1 always require the same amount of time. In

the extract-min operation, Step 1 is of constant time and Step 2, which is only executed when the stack

with the minimum values is empty, in the worst case depends on the value xmax, and could be linear, in

the case of sequential search, or logarithmic if a heap is used. In the case of DNA fragment assembly,

millions of edges or nodes will be inserted into the heap, hence the value of xmax should be close to a

few hundred, which makes the probability of Step 2 executing more than once negligible. In any case,

since the time complexity of our heap is independent from the number of nodes or vertices inserted

into it, then Prim’s algorithm [15] as well as Kruskal’s [16] algorithm become linear. Even though our

technique is designed to work in the particular case of DNA fragment assembly, it is possible that it

could also be used in other problems.

3.3. MST in Linear Time

As mentioned before, when using our heap, Algorithm 2, Prim’s algorithm as well as Kruskal’s

algorithm become linear, and even though it is possible to implement operations such as delete-key

and decrease-key in our heap, it is more convenient to allow the edge values to create a cycle and

discard them when leaving the heap, since this is more efficient and is also of constant time. Let

M(F, V) be the MST of graph G(E, V) and let S be the set of vertices that have been added to the MST

at some point during the execution of Prim’s algorithm. Here is our version of Prim’s algorithm:

Algorithm 3. Prim’s algorithm
1. For some vertex u

1.1. Put u in S
1.2. For each Evu ∈),(

1.2.1. insert w(u,v) in the heap

2. While the heap is not empty
2.1. Extract the edge (u, v) from the heap

2.1.1. if Su ∉
2.1.1.1.Put u in S and (u,v) in F

Algorithms 2015, 8 763

2.1.1.1.1. For each Exu ∈),(insert w(u,x) in the heap
2.1.2. if Sv ∉

2.1.2.1. Put v in S and (v,u) in F
2.1.2.1.1. For each Exv ∈),(insert w(v,x) in the heap

Since at most |E| edges will be inserted and extracted in constant time, Algorithm 3 will have a time

complexity in O(|E|).

Now, our version of Kruskal’s algorithm (Algorithm 4):

Algorithm 4. Kruskal’s algorithm
1. Insert E in a heap in increasing order of w(u,v)
2. Create a forest F where each vertex is an independent tree
3. While the heap is not empty

3.1. Extract (u,v) from heap
3.1.1. If u and v belong to different trees, merge both trees

In order to merge the trees, we use union by rank with path compression [17]. The time complexity

of Step 1 is O(|E|), Step 2 is O(|V|). Step 3 is repeated |E| times and every time the following

operations are performed: extraction of the minimum value from the heap, a find of two nodes, and in

the worst case, the union of two trees. Find is in O(1) and the union is O(log*|E|) [17], which for

problems with 65,535 edges up to the maximum physical size of DNA fragment assembly problems

is 5; therefore, in practice the algorithm is in O(1). The total running time of Kruskal’s algorithm using

our heap, Algorithm 2, with union by rank and path compression, applied to the DNA fragment

assembly problem is in O(|E| + |V|). Once the MST has been computed, its maximum distances are

computed using Algorithm 1. In this case, there are no cycles (directed or undirected), so Algorithm 1

works correctly.

3.4. Modification of the Basic Algorithm

There are two kinds of cycles that cause trouble: cycles that are connected to a start node, and

disconnected cycles. In both cases, there might be sets of nodes that are created like attachments to

nodes of the cycle, but do not belong to them, and are not detected by Algorithm 1. In the case of

disconnected cycles, we would need to take any node as a start node, which can require some trial and

error since a randomly selected node could be attached to the cycle but not necessarily in the cycle

itself. However, disconnected cycles in real life DNA fragment sequencing problems are rare, and

when they appear, they are usually very small, two or three nodes, that lead to contigs that are too

small and that would have been discarded anyway.

A cycle connected to a start node of the graph appears when there are nodes for which, even when

paths that go from a start node to another node u in the cycle, the value of din(u) never goes to zero

because at least one edge comes from the cycle. When Algorithm 1 is done, we can take one of the

nodes that went through Step 2.2.1, but that remained with a final value of din(u) > 0, and insert it into

the stack to continue with Step 2 of the algorithm. It is necessary, however, to mark those nodes so that

they will not be considered again and to avoid the cycle being traversed more than once. The total

distance from a start node to the last processed node in the cycle is the sum of the distance from a start

Algorithms 2015, 8 764

point to the cycle entry point plus the length of the cycle, minus the edge that would close the cycle on

the start node in the cycle. So we have that if the selected node is s, the previous node in the cycle is t,

and the total length of the cycle is C then:

),()()(stwCsdtd −+= (5)

Among the distinct entry nodes to the cycle, we could select one with the longest distance to a start

node. However, it does not guarantee that we will always find the longest distance to node t since the

value of w(t, s) changes with the selection of s and there could be another cycle entry node with a

smaller value of d(s) but with a small enough value of w(t, s) to give a longest distance. In the case of

the DNA fragment assembly problem the values of w() are in a very narrow range, most of the

distances to the start node are big and it is uncommon for them to be similar, so that if our heuristic

consists of selecting an s with the longest distance to the start point, we will have a high probability of

finding the maximum distance. The modified algorithm (Algorithm 5) is as follows:

Algorithm 5. Modified maximum distance algorithm
1. For each vertex Sv ∈ with din(v) = 0

1.1. push(Q,v)
1.2. d(v):=0
1.3. origin(v):=v

2. While there are vertices v with din(v) > 0
2.1. While Q is not empty

2.1.1. u:=pop(Q)
2.1.2. For every vertex v where Evu ∈),(and v is not marked

2.1.2.1.din(v):=din(v)-1
2.1.2.2.If din(v)=0

2.1.2.2.1. push(Q,v)
2.1.2.2.2. ()vxwxdvd

Evx
,()(max:)(

),(
+=

∈

2.1.2.2.3. insert d(v) in a heap
2.1.2.2.4. father(v):=x
2.1.2.2.5. origin(v):=origin(x)

2.2. If the heap is not empty
2.2.1. extract the node v from heap

2.2.1.1. If din(v)>0
2.2.1.1.1. Make din(v)=0
2.2.1.1.2. Insert v in the stack
2.2.1.1.3. Mark the node v
2.2.1.1.4. Go to step 2.1

Notice that Step 2.2.1.1 is required since node v could have gone through Step 2.1.1 and already be

in a path. In this case, we can use the heap to keep the time complexity of the algorithm linear.

3.5. Assembly Algorithm

The output from Algorithms 1 and 4 is a sequence of directed edges and nodes that allow us to

directly build the contigs. Considering reverse-complement fragments as independent of the original

Algorithms 2015, 8 765

ones makes the job easier. The reconstruction of the sequence of DNA in the contig consists of placing

the first fragment, and then adding the overlap-free portion of the next fragment. In our method, we do

not need to reach a computed agreement as in other methods [18] since we do not differentiate among

overlapped bases from one or other fragment. However, the ends of the contig might have sequencing

errors and there is nothing to verify that there are no such errors. The solution is to cut off the ends in

such a way that a minimum agreement is reached, i.e., that the bases must appear in at least a given

number of fragments.

4. Experiments

In order to test our algorithms, we used several benchmarks that are available for use by

researchers [19]. We selected the benchmarks of S. aureus MW2 with short reads. The benchmarks

that we used have the following number of fragments: 2,278,504, 730,201, 298,194, 89,718 and

22,447. From now on, we will refer to each one of these problems by its number of fragments. In order

to have something to compare our results to, we ran the Edena assembler using the same data, Table 4.

This comparison has some limitations due to the fact that Edena uses a series of heuristics in order to

refine its solution, by eliminating contigs that have no real meaning, while our results are those directly

generated by our algorithms with no refinement. Refining the raw results from our algorithms might be

part of our future research.

Table 4. Edena benchmark results.

 Problem

Fragments 22,448 89,718 298,194 730,201 2,278,504

Contigs Obtained 186 258 575 837 2046

Total Number of Bases 26,284 102,684 314,120 788,198 2,526,278

Contigs

Found

Contigs Found 184 256 565 823 1920

% 98.9 99.2 98.3 98.3 93.8

Bases Found 26,024 102,249 310,965 777,583 2,463,563

% 99 99.6 99 98.7 97.5

N50 188 1247 2911 4132 5250

Average Length 141.4 399.4 550.4 944.8 1283.10

Minimum Length 52 52 52 52 52

Maximum Length 880 7295 10,985 20,521 20,579

Contigs

not Found

Contigs not Found 2 2 10 14 126

% 1.1 0.8 1.7 1.7 6.2

Bases not Found 260 435 3155 10,615 62,715

% 1 0.4 1 1.3 2.5

N50 NA NA NA NA 5599

Average Length 130 217.5 315.5 758.2 497.7

Minimum Length 99 99 56 56 52

Maximum Length 161 336 2521 5941 18,158

Algorithms 2015, 8 766

From each benchmark, we took only the fragment file in FASTA format, and from it we computed

the overlaps among all fragments considering that reverse-complement fragments are also independent

fragments (In the original benchmarks, there is a file of overlaps where reverse-complements are not

considered as independent fragments). To compute overlaps, we used a trie (prefix tree). The

computed overlaps are all larger than 20 bases. From these overlaps other sets of test data were

obtained: one discarding redundant overlaps because of transitivity, and the other one, computing the

MST. In all of the cases, the minimum agreement in Algorithm 5 was 4. The contigs obtained in each

experiment were searched in the complete genome [20].

In Experiment 1, we used all of the overlaps larger than 20 bases and executed Algorithm 1 for the
two objective functions. The results are presented in Tables 5–7.

Table 5. Experiments summary.

 Problem

Algorithm Fragments 22,448 89,718 298,194 730,201 2,278,504

Edena Edena

Contigs Found 74 101 149 204 480

% 90.2 88.6 91.4 91.1 94.1

Bases Found 15,822 70,250 206,826 463,582 1,102,152

% 81.8 83 86.1 83.9 83.4

Algorithm 1
F1 Objective Function, all

Overlaps.

Contigs Found 74 101 149 204 480

% 90.2 88.6 91.4 91.1 94.1

Bases Found 15,822 70,250 206,826 463,582 1,102,152

% 81.8 83 86.1 83.9 83.4

Algorithm 1
F2 Objective Function, all

Overlaps

Contigs found 74 102 146 189 450

% 90.2 89.5 89.6 84.4 88.2

Bases found 15,515 70,843 189,927 369,001 931,343

% 81.5 83.8 79 66.8 69.9

Algorithm 1
F1 Objective Function, no

Transitive overlaps

Contigs found 74 102 149 204 481

% 90.2 89.5 91.4 91.1 93.9

Bases found 15,806 71,652 206,826 462,774 1,103,587

% 83.7 84.6 86.1 83.9 82.7

Algorithm 1
F2 Objective Function, no

Transitive Overlaps

Contigs found 75 103 142 181 417

% 91.5 90.4 87.1 80.8 81.4

Bases found 15,599 72,245 174,244 320,502 791,376

% 84 85.4 72.5 58.1 58.9

Algorithm 1
F1 Objective Function,

MST

Contigs found 304 1827 5980 15,443 46,187

% 91 97 98.4 98.9 95.7

Bases found 35,980 256,641 815,994 2,081,306 6,208,258

% 89.8 96.6 98.1 98.7 93.9

Algorithm 5
F1 Objective function, no

Transitive Edges

Contigs found 74 102 150 205 480

% 90.2 88.7 91.5 91.1 94.1

Bases found 15,822 70,318 206,927 463,684 1,102,152

% 81.8 83 86.1 83.9 83.4

Algorithms 2015, 8 767

Table 6. Algorithm 1, F1 objective function, all overlaps.

 Problem

Fragments 22,448 89,718 298,194 730,201 2,278,504
Contigs Obtained 82 114 163 224 510

Total Number of Bases 19,343 84,659 240,314 552,408 1,321,969

Contigs
Found

Contigs Found 74 101 149 204 480
% 90.2 88.6 91.4 91.1 94.1

Bases Found 15,822 70,250 206,826 463,582 1,102,152
% 81.8 83 86.1 83.9 83.4

N50 360 1614 3326 4937 4499
Average Length 213.8 695.5 1388.10 2272.50 2296.20

Minimum Length 54 58 54 62 53
Maximum Length 882 7261 10,943 22,745 24,396

Contigs
not Found

Contigs not Found 8 13 14 20 30
% 9.8 11.4 8.6 8.9 5.9

Bases not Found 3521 14,409 33,488 88,826 219,817
% 18.2 17 13.9 16.1 16.6

N50 758 2308 3954 7258 11,798
Average Length 440.1 1108.40 2392.00 4441.30 7327.20

Minimum Length 95 95 95 181 255
Maximum Length 826 3703 6809 9542 23,614

Table 7. Algorithm 1, F2 objective function, all overlaps.

 Problem

Fragments 22,448 89,718 298,194 730,201 2,278,504
Contigs Obtained 82 114 163 224 510

Total Number of Bases 19,028 84,584 240,280 552,509 1,331,757

Contigs
Found

Contigs Found 74 102 146 189 450

% 90.2 89.5 89.6 84.4 88.2

Bases Found 15,515 70,843 189,927 369,001 931,343

% 81.5 83.8 79 66.8 69.9

N50 356 1527 3184 4298 4201

Average Length 209.7 694.5 1300.90 1952.40 2069.70

Minimum Length 54 58 54 59 53

Maximum Length 882 7261 10,943 21,185 16,135

Contigs
not Found

Contigs not Found 8 12 17 35 60

% 9.8 10.5 10.4 15.6 11.8

Bases not Found 3513 13,741 50,353 183,508 400,414

% 18.5 16.2 21 33.2 30.1

N50 758 2308 6336 7620 9472

Average Length 439.1 1145.10 2961.90 5243.10 6673.60

Minimum Length 95 96 103 181 251

Maximum Length 826 3703 7626 22,745 24,396

Algorithms 2015, 8 768

From the DNA fragment assembly point of view, we are interested in large contigs with no errors. The

most important elements to be computed are the number of bases and the contigs that were found in

the complete genome, as well as the mean length of each contig. When we compare the results

obtained by Algorithm 1 for F1 and F2 using all overlaps, we find that F1 is a little bit better than F2,

except in the number of bases found for problem 89,718. In terms of multi objective function

optimization, the solution obtained for F1 is not enough to dominate the solution obtained by F2, but

since it is better in most of the test, we can say that it is almost dominant. In the other experiments, we

find a similar situation, where F1 is almost dominant with respect to F2.

For Experiment 2, we excluded transitive overlaps and used Algorithm 1 for F1 and F2. The results

are given in Tables 5, 8 and 9.

Table 8. Algorithm 1, F1 objective function, no transitive overlaps.

 Problem

Fragments 22,448 89,718 298,194 730,201 2,278,504
Contigs Obtained 82 114 163 224 512

Total Number of Bases 18,879 84,646 240,314 551,600 1,333,881

Contigs
Found

Contigs Found 74 102 149 204 481

% 90.2 89.5 91.4 91.1 93.9

Bases Found 15,806 71,652 206,826 462,774 1,103,587

% 83.7 84.6 86.1 83.9 82.7

N50 360 1527 3326 4937 4499

Average Length 213.6 702.5 1388.10 2268.50 2294.40

Minimum Length 54 58 54 62 53

Maximum Length 882 7261 10,943 22,745 24,396

Contigs
not Found

Contigs not Found 8 12 14 20 31

% 9.8 10.5 8.6 8.9 6.1

Bases not Found 3073 12,994 33,488 88,826 230,294

% 16.3 15.4 13.9 16.1 17.3

N50 539 2308 3954 7258 11,657

Average Length 384.1 1082.80 2392.00 4441.30 7428.80

Minimum Length 95 95 95 181 255

Maximum Length 826 3703 6809 9542 23,614

In general, we found that F1 is better than F2 without dominating it. Comparing the results where

transitive overlaps are excluded (Tables 8 and 9 or Table 5) to those where they are not (Tables 6 and 7

or Table 5), we can see that the results are similar for F1, hence it is not clear whether it is better to

exclude or not to exclude transitive overlaps. There is, however, an obvious advantage of excluding

transitive overlaps, which is that the problem size is reduced and requires less computational resources.

So, our recommendation is to exclude transitive overlaps.

Comparing our results so far to Edena, we find out that we obtained fewer correct bases and more

contigs that are not in the genome, but the length of our contigs is better.

Algorithms 2015, 8 769

Table 9. Algorithm 1, F2 objective function, no transitive overlaps.

 Problem

Fragments 22,448 89,718 298,194 730,201 2,278,504
Contigs Obtained 82 114 163 224 512

Total Number of Bases 18,579 84,571 240,265 551,701 1,343,637

Contigs
Found

Contigs Found 75 103 142 181 417

% 91.5 90.4 87.1 80.8 81.4

Bases Found 15,599 72,245 174,244 320,502 791,376

% 84 85.4 72.5 58.1 58.9

N50 356 1527 2984 3910 4135

Average Length 208 701.4 1227.10 1770.70 1897.80

Minimum Length 54 58 54 59 53

Maximum Length 882 7,261 10,943 10,648 16,135

Contigs
not Found

Contigs not Found 7 11 21 43 95

% 8.5 9.6 12.9 19.2 18.6

Bases not Found 2980 12,326 66,021 231,199 552,261

% 16 14.6 27.5 41.9 41.1

N50 539 2308 6336 8135 7554

Average Length 425.7 1120.50 3143.90 5376.70 5813.30

Minimum Length 95 96 103 181 251

Maximum Length 826 3703 10,648 22,745 24,396

Table 10. Algorithm 1, F1 objective function, Minimum Spanning Tree (MST).

 Problem

Fragments 22,448 89,718 298,194 730,201 2,278,504
Contigs Obtained 334 1883 6080 15,618 48,263

Total Number of Bases 40,076 265,584 831,449 2,109,070 6,613,747

Contigs
Found

Contigs Found 304 1827 5980 15,443 46,187

% 91 97 98.4 98.9 95.7

Bases Found 35,980 256,641 815,994 2,081,306 6,208,258

% 89.8 96.6 98.1 98.7 93.9

N50 135 165 154 153 153

Average Length 118.4 140.5 136.5 134.8 134.4

Minimum Length 62 62 61 57 57

Maximum Length 446 660 747 894 1152

Contigs
not Fund

Contigs not Found 30 56 100 175 2076

% 9 3 1.6 1.1 4.3

Bases not Found 4096 8943 15,455 27,764 405,489

% 10.2 3.4 1.9 1.3 6.1

N50 154 199 198 194 245

Average Length 136.5 159.7 154.6 158.7 195.3

Minimum Length 64 65 65 64 63

Maximum Length 362 481 481 493 1130

Algorithms 2015, 8 770

In Experiment 3, we obtained the Minimum Spanning Tree (MST) from all overlaps using our

version of Kruskal’s algorithm. We only show the results for F1 (Tables 5 and 10). In this case, we

were able to find much more bases in the genome than in previous experiments, including Edena, but

the size of our contigs is small. There appears to be a tradeoff between the number of bases that can be

found and contig length.

In other experiments, we used Algorithm 4 without transitive overlaps, obtaining similar results to

those of Algorithm 1 for F1 (F1 was again better than F2). Analyzing the contigs obtained by the

algorithm, we found that if the contig is split at the edge that joins the cycle with the path, we have a

better chance of finding both contigs. Therefore, we modified Algorithm 4 making d(v) = 0 in

Step 2.2.1.1 and repeated Experiment 4 without transitive overlaps. In this case, the objective function

F1 was better than F2 without being dominant. These results are given in Tables 5 and 11.

Table 11. Algorithm 4 (modified), F1 objective function, no transitive edges.

 Problem

Fragments 22,448 89,718 298,194 730,201 2,278,504
Contigs Obtained 82 115 164 225 510

Total Number of Bases 19,343 84,727 240,415 552,510 1,321,969

Contigs
Found

Contigs Found 74 102 150 205 480

% 90.2 88.7 91.5 91.1 94.1

Bases Found 15,822 70,318 206,927 463,684 1,102,152

% 81.8 83 86.1 83.9 83.4

N50 360 1614 3326 4937 4499

Average Length 213.8 689.4 1379.50 2261.90 2296.20

Minimum Length 54 58 54 62 53

Maximum Length 882 7261 10,943 22,745 24,369

Contigs
not Found

Contigs not Fund 8 13 14 20 30

% 9.8 11.3 8.5 8.9 5.9

Bases not Found 3521 14,409 33,488 88,826 219,817

% 18.2 17 13.9 16.1

N50 758 2308 3954 7258 11,798

Average Length 440.1 1108.40 2392.00 4441.30 7327.20

Minimum Length 95 95 95 181 255

Maximum Length 826 3703 6809 9542 23,614

In an analysis of those contigs that were not found in the genome, we considered the possibility of

splitting them in two or more pieces hoping that all of them could be found. There are few cases in

which contigs should be divided; in problem 730,201, using the modified Algorithm 4 with F1, there

were 513 contigs from which 414 were found directly, 76 were split in two to be found, 14 in three, 10

in four or more pieces, and two produced pieces that were too small to be considered. With appropriate

rules, it should be possible to find the correct split points in most of the cases, as other assemblers do.

We also analyzed residual paths, after removing paths of maximum length, from which we considered

the possibility of recovering several long contings, which we will do in the future.

Algorithms 2015, 8 771

5. Conclusions and Future Work

In order to assemble DNA, it is possible to use traditional graph theory concepts being careful to

use only linear algorithms due to the large amount of data that is handled. With this idea, we developed

a constant time heap, appropriate for this particular case (and maybe to other cases as well), which

allowed us to reduce the time complexity of other algorithms, such as Prim’s and Kruskal’s, making

them linear.

If we compare the results of the objective functions F1 and F2, even though one does not dominate

over the other, better results are obtained using F1, hence we recommend its use. We also recommend

the removal of transitive overlaps because of resource reduction considerations, even though the

results of the assembly are almost the same for function F1. The use of the MST considerably improves

the number of correct bases, but the contigs obtained in this way are too small. It can be seen from the

experiments that there is a tradeoff between contig length and the number of bases detected.

Comparing our results to those of Edena is not completely objective since we do not apply heuristics

after the algorithms are executed in order to refine the solutions, but Edena (as well as the Velvet

assembler) do so intensively. In any case, compared to Edena, our method produced, in some cases,

less bases but longer contigs, while, in other cases, we found more bases, but shorter contigs,

especially when using MST. Therefore, the problem must be considered as a multi objective

optimization, with an objective function that is able to maximize the number of mean contig length,

giving the user a Pareto Front from which he can obtain the most convenient solution according to his

particular criteria.

Our future work includes:

• Developing rules to split contigs in such a way that most of the pieces can be found.

• Attempting to recover other contigs after extracting the longest ones.

• Implementing a solution to DNA fragment assembly as a multi objective optimization problem.

Acknowledgments

This work has been developed with the support of Universidad Iberoamericana.

Author Contributions

Guillermo Mallén-Fullerton started the idea and developed the algorithms. Emilio Quiroz-Ibarra

developed test programs and provided helpful observations about the implementation problems

associated with some of the algorithms. Antonio Miranda and Guillermo Fernández-Anaya provided

algorithms complexity analysis and observations to improve it. Guillermo Fernández-Anaya

collaborated in the experiments design and interpretation and Antonio Miranda wrote the English

version of the article. All authors approved the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

Algorithms 2015, 8 772

References

1. Watson, J.D.; Crick, F.H. Molecular structure of nucleic acids. Nature 1953, 171, 737–738.

2. Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors.

Proc. Natl. Acad. Sci. 1977, 74, 5463–5467.

3. Staden, R. A strategy of DNA sequencing employing computer programs. Nucl. Acid. Res. 1979,

6, 2601–2610.

4. Van Belkum, A.; Scherer, S.; van Alphen, L.; Verbrugh, H. Short-sequence DNA repeats in

prokaryotic genomes. Microbiol. Mol. Biol. Rev. 1998, 62, 275–293.

5. Salzberg, S.L.; Phillippy, A.M.; Zimin, A.; Puiu, D.; Magoc, T.; Koren, S.; Yorke, J.A. GAGE: A
critical evaluation of genome assemblies and assembly algorithms. Gen. Res. 2012, 22, 557–567.

6. Shendure, J.; Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 2008, 26, 1135–1145.

7. Pevzner, P.A.; Tang, H.; Waterman, M.S. An Eulerian path approach to DNA fragment assembly.
Proc. Natl. Acad. Sci. 2001, 98, 9748–9753.

8. Parsons, R.J.; Forrest, S.; Burks, C. Genetic algorithms for DNA sequence assembly. In

Proceedings of the First International Conference on Intelligent Systems for Molecular Biology
(ISMB), Bethesda, MD, USA, 6–9 July 1993; pp. 310–318.

9. Krause, J.; Cordeiro, J.; Parpinelli, R.S.; Lopes, H.S. A Survey of Swarm Algorithms Applied to

Discrete Optimization Problems. In Swarm Intelligence and Bio-inspired Computation: Theory

and Applications; Elsevier Science Publishers: Amsterdam, The Netherlands, 2013.

10. Alba, E.; Luque, G. A new local search algorithm for the DNA fragment assembly problem. In

Evolutionary Computation in Combinatorial Optimization; Springer: Berlin/Heidelberg,
Germany, 2007; pp. 1–12.

11. Luque, G.; Alba, E. Metaheuristics for the DNA fragment assembly problem. Int. J. Comput.
Intel. Res. 2005, 1, 98–108.

12. Firoz, J.S.; Rahman, M.S.; Saha, T.K. Bee algorithms for solving DNA fragment assembly

problem with noisy and noiseless data. In Proceedings of the 14th ACM Annual Conference on
Genetic and Evolutionary Computation, Philadelphia, PA, USA, 7–11 July 2012; pp. 201–208.

13. Mallen-Fullerton, G.M.; Fernandez-Anaya, G. DNA fragment assembly using optimization. In

Proceedings of the 2013 IEEE Congress on Evolutionary Computation (CEC), Cancun, Mexico,
20–23 June 2013; pp. 1570–1577.

14. Gallant, J.; Maier, D.; Astorer, J. On finding minimal length superstrings. J. Comput. Syst. Sci.
1980, 20, 50–58.

15. Prim, R.C. Shortest connection networks and some generalizations. Bell Syst. Tech. J. 1957, 36,
1389–1401.

16. Kruskal, J.B. On the shortest spanning subtree of a graph and the traveling salesman problem.
Proc. Am. Math. Soc. 1956, 7, 48–50.

17. Hopcroft, J.E.; Ullman, J.D. Set merging algorithms. SIAM J. Comput. 1973, 2, 294–303.

18. Bonfield, J.K.; Smith, K.; Staden, R. A new DNA sequence assembly program. Nucl. Acid. Res.
1995, 23, 4992–4999.

Algorithms 2015, 8 773

19. Mallén-Fullerton, G.M.; Hughes, J.A.; Houghten, S.; Fernández-Anaya, G. Benchmark datasets
for the DNA fragment assembly problem. Int. J. Bio-Inspir. Comput. 2013, 5, 384–394.

20. Staphylococcus aureus subsp. aureus MW2 DNA, complete genome, GenBank: BA000033.2.

Available online: http://www.ncbi.nlm.nih.gov/nuccore/47118312?report=fasta (accessed on

3 June 2015).

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

