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Abstract: DNA fragment assembly represents an important challenge to the development 

of efficient and practical algorithms due to the large number of elements to be assembled. 

In this study, we present some graph theoretical linear time algorithms to solve the 

problem. To achieve linear time complexity, a heap with constant time operations was 

developed, for the special case where the edge weights are integers and do not depend on 

the problem size. The experiments presented show that modified classical graph theoretical 

algorithms can solve the DNA fragment assembly problem efficiently. 
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1. Introduction 

Since its discovery by Watson and Crick [1], the importance of DNA to biology, medicine and 

human kind has been evident. However, we had to wait some time until it was possible to sequence the 

DNA bases, which was accomplished by Sanger in the mid-1970s [2], by detecting small dark bands 

on a thin gel layer. This method severely constrains the length of the DNA to be sequenced due to the 

limited resolution of the dark bands. In order to solve this problem, the DNA is first cut in known 

places by using restriction enzymes, which will divide the DNA at the point where a specific base 

sequence is found. The resulting sub-sequences, are divided again, this time using a different 

restriction enzyme, and this process is repeated until the resulting fragments can be divided in random 

places yielding sub-fragments that are small enough as to provide the complete sequence of bases 

using Sanger’s method. This process was slow and expensive because every time that a sequence was 

divided, each resulting subsequence had to be cloned in order to have enough material for the next 

division. This problem prompted scientists to start dividing sequences in random positions from the 

beginning, instead of doing it after several divisions, saving time and money [3]. This method, in turn, 

created a severe computational problem since there is no information about the order of the fragments. 

If one starts with many copies of the original problem and the derived fragments are sequenced, then 

each base of the original problem could appear in several fragments. The sum of the lengths of the 

fragments divided by the length of the original problem is known as its coverage. We hope that if we 

have a large enough coverage, the fragments will overlap in such a way that the sequence at the end of 

a fragment overlaps with the sequence at the beginning of another one. Hence, in theory, we should be 

able to use this information to sort the fragments and reconstruct the original DNA sequence. 

What really happens is not very simple since, by chance, there are a huge number of false overlaps 

amongst the fragments. There is also the problem that fragment sequencing is not perfect. Two percent 

error is common, as well as having fragments that do not belong to the original problem, some due to 

contamination with DNA foreign to the problem, and others because of the appearance of chimeras 

from the process of DNA cloning, in which bacteria DNA is used, so that we could get fragments with 

portions of bacteria DNA. On top of what was said, we have repeats, which are DNA sections that 

appear tens or hundreds of times one after another (tandem repeats) or in far away parts of the original 

DNA (interspersed repeats) [4]. 

As far as we know, at this point there is no good probabilistic model of DNA. Simple, or relatively 

simple ones do not explain the repeats. For instance, in the real life problem that we will present later 

in this paper, there are sequences of A bases that are extremely long. Figure 1 show some examples of 

fragments that come from the sample problem that we will use in Section 4 of this paper and Table 1 

shows the probability that it happens considering that among the total number of fragments, the  

A bases occurs with probability 0.3249. As can be seen from the figure, the number of times that the  

A chain occurs in the real data is much larger than the expected value according to a simple 

probabilistic model. Despite these anomalies and some others, some of the parameters that are used in 

the assembly of fragments, such as the minimum number of bases that an overlap must have to be 

considered important, have an empirical basis [5]. 

There is also the problem that in real situations, sections of the original DNA problem have no 

coverage since fragments are obtained by a random process and it is not possible guarantee that there 
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are fragments from every part of the genome under study. This is the reason why the resulting 

assembly of all fragments is a set of contigs or subsequences and almost never the entire sequence of 

the problem. It is the job of specialized biologists to fill in the gaps and correct assembly errors made 

during the automated process. 

 

Figure 1. Some fragments from the S. aureus strain MW2 problem. 

Table 1. Observed frequency on n bases A vs. expected value for p = 0.3249 and  

5,324,340 fragments. 

n Observed Probability Expected Value 

15 101 0.000000475 2.528889873 
16 74 0.000000147 0.784225487 
17 65 0.000000046 0.242640081 
18 51 0.000000014 0.074884674 
19 40 4.32861E−09 0.023046972 
20 39 1.32807E−09 0.007071095 
21 18 4.06052E−10 0.002161959 
22 28 1.23662E−10 0.000658416 
23 14 3.74924E−11 0.000199622 
24 15 1.13089E−11 0.000060212 
25 22 3.3908E−12 0.000018054 
26 15 1.00958E−12 0.000005375 
27 22 2.9809E−13 0.000001587 
28 11 8.71281E−14 0.000000464 
29 15 2.51495E−14 0.000000134 
30 10 7.14487E−15 3.80417E−08 
31 9 1.98796E−15 1.05846E−08 
32 6 5.37563E−16 2.86217E−09 
33 4 1.3946E−16 7.42531E−10 
34 4 3.38757E−17 1.80366E−10 
35 1 7.29107E−18 3.88201E−11 

DNA fragment sequencing technology has continued to advance while costs continue to go down. 

The original shotgun technology has been called “long reads” because the fragments would normally 

have more than 500 bases. Using new technologies, commonly known as Next Generation Sequencing, 
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the cost to sequence a million bases is about $1 [6]. Unfortunately, the length of the fragments is 

shorter using this newer technology. Today, 150 bases reads are common with the Illumina sequencers. 

To compensate for the problems derived from the short size of each fragment, coverage of about 40 is 

needed instead of a coverage of about 10 in the case of long reads. If we consider the number of 

fragments to be sequenced with newer technologies, we need to assemble three to four million 

fragments to sequence a bacterium, while using long reads, only 50,000 fragments were enough. These 

are really bad news due to the combinatorial nature of the solutions to the problem. 

Since the very beginning of DNA fragment sequencing, greedy algorithms have been used; for 

instance, we pick a random fragment and connect to it the one that has the longest overlap. This 

process is repeated until no overlapping fragments are available. Nowadays, this technique would be 

difficult to use, since fragments are too short, which often produces several different fragments with 

the same overlap size. Another popular technique is the use of De Bruijn graphs [7]. In order to build 

these graphs, all possible k-mers (subsequence of k consecutive bases) of each fragment are used to 

find all possible overlaps among them. Using these graphs, several problems can be solved by using 

heuristics; for instance, given a k-mer, there might be two parallel paths to other k-mer, creating what 

is called a bubble. The bubble is then popped by removing the shortest side or projecting one side onto 

the other when they have the same length. Short sequences that originate from long ones are 

eliminated. It is common to use a value of k close to 20 in order to obtain the k-mers. 

An approach based on genetic algorithm optimization was suggested by Parsons in 1993 [8]. Later, 

other scientists applied similar metaheuristics [9–12], but their results were based on very small 

benchmarks, the largest had about 1000 fragments, and even though results were improving slowly, 

they were still far from real problems, including the long reading ones, with tens of thousands of 

fragments. In 2013, a reduction from fragment DNA sequencing to the Traveling Salesman Problem 

(TSP) was used [13]. Taking advantage of formal heuristics and algorithms for the TSP, optimal values 

were found for the most commonly used benchmarks, and, for the first time, a real life problem was 

solved using optimization. 

The remainder of this paper is organized as follows: Section 2 provides the basic ideas on the use of 

graph theory for the solution of DNA sequencing problems; Section 3 explains those algorithms that 

are necessary to tackle the problem; Section 4 illustrates the use of our algorithms on real life problem 

benchmarks; and, in Section 5, we give our conclusions and future work. 

2. Use of Graph Theory 

2.1. Generalities 

In reference [13], a graph theory approach was used by means of the TSP, where the solution 

obtained from the assembly of fragments is a series of contigs rather than a Hamiltonian Path. In TSP, 

all possible edges of the graph are considered, but when there is no possible connection between two 

nodes, it is usually represented using a very large weight to prevent it from showing up in the final 

solution. Applying TSP to DNA fragment assembly might be considered excessive, even though the 

expected results are obtained, since the fraction of real connections is very small. A graph theoretical 

approach using other algorithms might give better results. 
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The size of real life DNA fragment assembly problems is huge, with 35 base fragments and a 

coverage of 40, we get about 700 million fragments for human chromosome number 1, which has  

245 million base pairs. It is known that the DNA fragment assembly problem is NP-hard  

(Non-deterministic Polynomial time hard), since it can be reduced from the shortest common 

superstring problem [14]; in practice, we must only use linear time algorithms, even if by doing so we 

sacrifice correctness and obtain only an approximate solution. 

2.2. DNA Fragment Assembly as a Graph 

The DNA fragment assembly problem can be transformed into a directed graph: we need to find a 

sequence of fragments where each one is always the prefix of the next one. We know that DNA comes 

in pairs of strands (double helix) that run in opposite directions, where in front of each base of one 

strand, there is a base of the reverse-complement on the other; for instance, an A in front of a T and a 

C in front of a G, which clearly means that the information contained in each one of the strands is the 

same. When DNA fragment overlaps are obtained, it is not known what strand they come from, i.e., 

every time that an overlap is computed, the strand and its reverse-complement must be considered. 

This means that a prefix of a normal overlap becomes a suffix of the reverse-complement. At first,  

it might seem that this case could be represented by a simple non-directed edge between the  

two fragments. However, this is not so if we consider that each node or fragment that is a  

reverse-complement must also be a reverse-complement for every edge that connects to it. 

As a small example, we present a set of 13 fragments, Table 2, the associated overlap matrix,  

Table 3 and the resulting graph, Figure 2. 

Table 2. Graph example: fragments. 

Fragment 
number 

Sequence 

1 GTGTACCACGTACTGATGTACTATTTGAAGCTTAT 

2 CCCAATTCCTAATGTACTATTTGAAGCTTATTCGG 

3 CATAAGCTTCATGATGAAGCTTATTCGGCCAATCG 

4 TTTGATTCCTGCTGATGTACTATTTGATGAAGCTT 

5 ATGTACTATTTGAAGCTTATTCGGCCAATCGTACT 

6 GAAGCTTATTCGGCCAATCGTACTGATGTACTATT 

7 CTTATTCGGCCAATCGTACTATTTACTGATGTACA 

8 TGATGAAGCTTATTCGGCCAATCGTACTGATGTAC 

9 GGCCAATCGTACTGATGTACTATTTGATGAAGCTT 

10 CTGATGTACTATTTGATGAAGCTTATTCGGCCAAT 

11 TGTACTATTTGATGAAGCTTATCAGTACGTGGAAC 

12 AATCGTACTGATGTACTATTTACTGATGTACAATA 

13 CTATTTACTGATGTACAATAGTACATCAGTAAAAA 
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Table 3. Graph example: overlaps matrix. 

  1 2 3 4 5 6 7 8 9 10 11 12 13 

1         20                 
2         24                 
3           20   24           
4                   24       
5           20 20             
6                 24     20   
7                         17 
8                 20         
9                   24 20     
10               22           
11                          
12                          20 
13                           

 

Figure 2. Graph example: graph. 

2.3. Objective Function 

In the literature, using nature inspired algorithms to solve the DNA fragment assembly problem 

published after Parsons [8], the associated graph has been considered to be an undirected graph. Other 

literature considered bi-directed graphs, especially when De Bruijn graphs were proposed. It is 

common to use a Hamiltonian path, even though sometimes Eulerian paths have been used too [7]. In 

any case, it is not entirely clear how many times each one of the fragments should be used, since, from 

the physical point of view, it is feasible for a sequence to repeat in different sections of the DNA,  

and for identical fragments to come from different places. Thinking that a fragment and it  

reverse-complement are the same, creates too much complexity from the algorithmic point of view as 

well as from the programming one, and would only be justified as long as it was strictly required to 
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consider Hamiltonian paths. Hence, we consider each reverse-complement fragment as an independent 

fragment. Another possibility might be to trust the huge cover that is customary in Next Generation 

Sequencing (NGS) and not use reverse-complements. 

With respect to the objective function for the optimization, in many papers, the sum of the overlaps 

of each fragment with the next one is used, which has probably been inherited from the use of some 

greedy algorithms. In addition to this objective function, we propose to maximize the sum of the 

lengths of the contigs. This can be achieved by considering that each time that a new fragment is added 

at the end of a contig, its length is incremented by an amount equal to the length of the fragment minus 

the overlap length. So we would have the following objective functions: 
1
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The boundary between contigs appears because there are values of w(i, i + 1) that are equal to 0. 

Since there is usually some contamination with foreign DNA and there might be chimeras, some of the 

obtained contigs do not belong to the original DNA, and, at some point, which is not within the scope 

of this paper, useful contigs must be separated from the useless ones. 

In order to obtain each contig, an agreement must be reached (computed) for each base, i.e., since 

we know that there might be redundancy for each base (due to the original cover) and that there might 

be sequencing errors in the fragments, it is possible for each base in each contig to have several 

versions, from which the most frequent value must be accepted, even if it is the minimum acceptable 

value. Since most of the errors in the contigs are at the ends, due to chemical problems in the 

sequencing equipment or because of the lack of enough redundancy, it might be necessary to cut  

them off. 

3. Algorithms 

3.1. Basic Algorithm for F1 and F2 

For the objective function F1, we propose an algorithm similar to topological sorting. Let G = (V, E) 

be a directed acyclic graph (DAG) where V is the set of vertices, E is the set of edges and w(u, v) is the 

weight of edge u→v. In this graph, the longest path will go from a node that has no edge going in 

(initial vertex) and those nodes that are connected to it. Notice that there might be several “initial 
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vertices”, and that there is no single privileged node. Let VS ⊆  be the set of vertices with in-degree 

din(v) = 0 and let Q be a stack. The algorithm to determine the longest distance from a given vertex to 

each of the other vertices is the following (Algorithm 1): 

Algorithm 1. Longest distance from initial vertices 
1. For each vertex Sv ∈ with din(v) = 0 

1.1. push(Q,v) 
1.2. d(v):=0 
1.3. origin(v):=v 

2. While Q is not empty 
2.1. u:=pop(Q) 
2.2. for each vertex v Evu ∈),(  

2.2.1. din(v):=din(v)−1 
2.2.2. if din(v)=0 

2.2.2.1. push(Q,v) 
2.2.2.2. ( )vxwxdvd

Evx
,()(max:)(

),(
+=

∈
 

2.2.2.3. father(v):=x

This algorithm only works if the graph is acyclic. In real life DNA fragment assembly problems, 

there are cycles. When this algorithm is applied to a graph with cycles, neither the cycles nor the nodes 

that are further from the cycles are detected. Later we will discuss how to take care of cycles. 

3.2. Constant Time Heap 

Aside from a modified version of the algorithm of Section 3.1, there are other ways to tackle the 

cycle problem. One way, not necessarily the best way, would be to build a minimum spanning tree, 

even if it ignores the direction of the edges. It is clear that if there are no undirected cycles in the 

equivalent undirected graph, there should be no directed cycles in its directed version. So we could use 

one of several algorithms like Prim [15] and Kruskal [16], both with time complexity in O(|E| log|V|) 

when using a Fibonacci Heap. 

In order to achieve the linear time complexity that we require, we notice that in the case of the DNA 

fragment sequencing problem, we should use a heap that can insert and extract-min in constant time, 

thus improving the time complexity of other data structures where the extract-min operation is in O(log n). 

Our heap requires that the ordering values are integers independent from the number of nodes in the 

graph. In the DNA fragment sequencing problem, the edges of the graph are the fragment overlaps, 

hence it is an integer value representing the number of bases, and its value is also bounded by  

0 < w(u, v) < L, where L does not depend of the number of fragments, and has a value of at most a few 

hundred bases. The heap that we propose is based on a Stack Pi for each possible value to be 

introduced. The heap operations are: 

Algorithm 2. Stack heap insert and extract min 
insert x 

1. push(Px,x) 
2. if x<xmin 
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2.1. xmin:=x 
3. if x > xmax 

3.1. xmax:=x 
 
extract-min 

1. x:=pop(Pxmin) 
2. While the stack Pxmin is empty and xmin ≤ xmax 

2.1. xmin: = xmin + 1 

In the extract-min operations shown, the value that is in the stack corresponding to xmin is extracted. 

If the stack is empty, the next non-empty stack smaller than the maximum value is used. When the 

number of stacks is large enough, it is useful to use some other kind of heap, such as a binary or a 

Fibonacci heap instead of sequential search. In the example that we provide in Section 4, we use no 

more than 34 stacks (0 ≤ x ≤ 34), hence sequential search turns out to be faster. The time complexity of 

the insert operation is constant because Steps 1 through 3.1 always require the same amount of time. In 

the extract-min operation, Step 1 is of constant time and Step 2, which is only executed when the stack 

with the minimum values is empty, in the worst case depends on the value xmax, and could be linear, in 

the case of sequential search, or logarithmic if a heap is used. In the case of DNA fragment assembly, 

millions of edges or nodes will be inserted into the heap, hence the value of xmax should be close to a 

few hundred, which makes the probability of Step 2 executing more than once negligible. In any case, 

since the time complexity of our heap is independent from the number of nodes or vertices inserted 

into it, then Prim’s algorithm [15] as well as Kruskal’s [16] algorithm become linear. Even though our 

technique is designed to work in the particular case of DNA fragment assembly, it is possible that it 

could also be used in other problems. 

3.3. MST in Linear Time 

As mentioned before, when using our heap, Algorithm 2, Prim’s algorithm as well as Kruskal’s 

algorithm become linear, and even though it is possible to implement operations such as delete-key 

and decrease-key in our heap, it is more convenient to allow the edge values to create a cycle and 

discard them when leaving the heap, since this is more efficient and is also of constant time. Let  

M(F, V) be the MST of graph G(E, V) and let S be the set of vertices that have been added to the MST 

at some point during the execution of Prim’s algorithm. Here is our version of Prim’s algorithm: 

Algorithm 3. Prim’s algorithm 
1. For some vertex u 

1.1. Put u in S 
1.2. For each Evu ∈),(  

1.2.1. insert w(u,v) in the heap 
 

2. While the heap is not empty 
2.1. Extract the edge (u, v) from the heap 

2.1.1. if Su ∉  
2.1.1.1.Put u in S and (u,v) in F 
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2.1.1.1.1. For each Exu ∈),(  insert w(u,x) in the heap 
2.1.2. if Sv ∉  

2.1.2.1. Put v in S and (v,u) in F 
2.1.2.1.1. For each Exv ∈),(  insert w(v,x) in the heap 

Since at most |E| edges will be inserted and extracted in constant time, Algorithm 3 will have a time 

complexity in O(|E|). 

Now, our version of Kruskal’s algorithm (Algorithm 4): 

Algorithm 4. Kruskal’s algorithm 
1. Insert E in a heap in increasing order of w(u,v) 
2. Create a forest F where each vertex is an independent tree 
3. While the heap is not empty 

3.1. Extract (u,v) from heap 
3.1.1. If u and v belong to different trees, merge both trees 

In order to merge the trees, we use union by rank with path compression [17]. The time complexity 

of Step 1 is O(|E|), Step 2 is O(|V|). Step 3 is repeated |E| times and every time the following 

operations are performed: extraction of the minimum value from the heap, a find of two nodes, and in 

the worst case, the union of two trees. Find is in O(1) and the union is O(log*|E|) [17], which for 

problems with 65,535 edges up to the maximum physical size of DNA fragment assembly problems  

is 5; therefore, in practice the algorithm is in O(1). The total running time of Kruskal’s algorithm using 

our heap, Algorithm 2, with union by rank and path compression, applied to the DNA fragment 

assembly problem is in O(|E| + |V|). Once the MST has been computed, its maximum distances are 

computed using Algorithm 1. In this case, there are no cycles (directed or undirected), so Algorithm 1 

works correctly. 

3.4. Modification of the Basic Algorithm 

There are two kinds of cycles that cause trouble: cycles that are connected to a start node, and 

disconnected cycles. In both cases, there might be sets of nodes that are created like attachments to 

nodes of the cycle, but do not belong to them, and are not detected by Algorithm 1. In the case of 

disconnected cycles, we would need to take any node as a start node, which can require some trial and 

error since a randomly selected node could be attached to the cycle but not necessarily in the cycle 

itself. However, disconnected cycles in real life DNA fragment sequencing problems are rare, and 

when they appear, they are usually very small, two or three nodes, that lead to contigs that are too 

small and that would have been discarded anyway. 

A cycle connected to a start node of the graph appears when there are nodes for which, even when 

paths that go from a start node to another node u in the cycle, the value of din(u) never goes to zero 

because at least one edge comes from the cycle. When Algorithm 1 is done, we can take one of the 

nodes that went through Step 2.2.1, but that remained with a final value of din(u) > 0, and insert it into 

the stack to continue with Step 2 of the algorithm. It is necessary, however, to mark those nodes so that 

they will not be considered again and to avoid the cycle being traversed more than once. The total 

distance from a start node to the last processed node in the cycle is the sum of the distance from a start 
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point to the cycle entry point plus the length of the cycle, minus the edge that would close the cycle on 

the start node in the cycle. So we have that if the selected node is s, the previous node in the cycle is t, 

and the total length of the cycle is C then: 

),()()( stwCsdtd −+=  (5)

Among the distinct entry nodes to the cycle, we could select one with the longest distance to a start 

node. However, it does not guarantee that we will always find the longest distance to node t since the 

value of w(t, s) changes with the selection of s and there could be another cycle entry node with a 

smaller value of d(s) but with a small enough value of w(t, s) to give a longest distance. In the case of 

the DNA fragment assembly problem the values of w( ) are in a very narrow range, most of the 

distances to the start node are big and it is uncommon for them to be similar, so that if our heuristic 

consists of selecting an s with the longest distance to the start point, we will have a high probability of 

finding the maximum distance. The modified algorithm (Algorithm 5) is as follows: 

Algorithm 5. Modified maximum distance algorithm 
1. For each vertex Sv ∈ with din(v) = 0 

1.1. push(Q,v) 
1.2. d(v):=0 
1.3. origin(v):=v 

2. While there are vertices v with din(v) > 0 
2.1. While Q is not empty 

2.1.1. u:=pop(Q) 
2.1.2. For every vertex v where Evu ∈),(  and v is not marked 

2.1.2.1.din(v):=din(v)-1 
2.1.2.2.If din(v)=0 

2.1.2.2.1. push(Q,v) 
2.1.2.2.2. ( )vxwxdvd

Evx
,()(max:)(

),(
+=

∈
 

2.1.2.2.3. insert d(v) in a heap 
2.1.2.2.4. father(v):=x 
2.1.2.2.5. origin(v):=origin(x) 

2.2. If the heap is not empty 
2.2.1. extract the node v from heap 

2.2.1.1. If din(v)>0 
2.2.1.1.1. Make din(v)=0 
2.2.1.1.2. Insert v in the stack 
2.2.1.1.3. Mark the node v 
2.2.1.1.4. Go to step 2.1 

Notice that Step 2.2.1.1 is required since node v could have gone through Step 2.1.1 and already be 

in a path. In this case, we can use the heap to keep the time complexity of the algorithm linear. 

3.5. Assembly Algorithm 

The output from Algorithms 1 and 4 is a sequence of directed edges and nodes that allow us to 

directly build the contigs. Considering reverse-complement fragments as independent of the original 
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ones makes the job easier. The reconstruction of the sequence of DNA in the contig consists of placing 

the first fragment, and then adding the overlap-free portion of the next fragment. In our method, we do 

not need to reach a computed agreement as in other methods [18] since we do not differentiate among 

overlapped bases from one or other fragment. However, the ends of the contig might have sequencing 

errors and there is nothing to verify that there are no such errors. The solution is to cut off the ends in 

such a way that a minimum agreement is reached, i.e., that the bases must appear in at least a given 

number of fragments. 

4. Experiments 

In order to test our algorithms, we used several benchmarks that are available for use by  

researchers [19]. We selected the benchmarks of S. aureus MW2 with short reads. The benchmarks 

that we used have the following number of fragments: 2,278,504, 730,201, 298,194, 89,718 and 

22,447. From now on, we will refer to each one of these problems by its number of fragments. In order 

to have something to compare our results to, we ran the Edena assembler using the same data, Table 4. 

This comparison has some limitations due to the fact that Edena uses a series of heuristics in order to 

refine its solution, by eliminating contigs that have no real meaning, while our results are those directly 

generated by our algorithms with no refinement. Refining the raw results from our algorithms might be 

part of our future research. 

Table 4. Edena benchmark results. 

 Problem 

Fragments 22,448 89,718 298,194 730,201 2,278,504 

Contigs Obtained 186 258 575 837 2046 

Total Number of Bases 26,284 102,684 314,120 788,198 2,526,278 

Contigs 

Found 

Contigs Found 184 256 565 823 1920 

% 98.9 99.2 98.3 98.3 93.8 

Bases Found 26,024 102,249 310,965 777,583 2,463,563 

% 99 99.6 99 98.7 97.5 

N50 188 1247 2911 4132 5250 

Average Length 141.4 399.4 550.4 944.8 1283.10 

Minimum Length 52 52 52 52 52 

Maximum Length 880 7295 10,985 20,521 20,579 

Contigs 

not Found 

Contigs not Found 2 2 10 14 126 

% 1.1 0.8 1.7 1.7 6.2 

Bases not Found 260 435 3155 10,615 62,715 

% 1 0.4 1 1.3 2.5 

N50 NA NA NA NA 5599 

Average Length 130 217.5 315.5 758.2 497.7 

Minimum Length 99 99 56 56 52 

Maximum Length 161 336 2521 5941 18,158 
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From each benchmark, we took only the fragment file in FASTA format, and from it we computed 

the overlaps among all fragments considering that reverse-complement fragments are also independent 

fragments (In the original benchmarks, there is a file of overlaps where reverse-complements are not 

considered as independent fragments). To compute overlaps, we used a trie (prefix tree). The 

computed overlaps are all larger than 20 bases. From these overlaps other sets of test data were 

obtained: one discarding redundant overlaps because of transitivity, and the other one, computing the 

MST. In all of the cases, the minimum agreement in Algorithm 5 was 4. The contigs obtained in each 

experiment were searched in the complete genome [20]. 

In Experiment 1, we used all of the overlaps larger than 20 bases and executed Algorithm 1 for the 
two objective functions. The results are presented in Tables 5–7. 

Table 5. Experiments summary. 

 Problem 

Algorithm  Fragments 22,448 89,718 298,194 730,201 2,278,504

Edena Edena 

Contigs Found 74 101 149 204 480 

% 90.2 88.6 91.4 91.1 94.1 

Bases Found 15,822 70,250 206,826 463,582 1,102,152

% 81.8 83 86.1 83.9 83.4 

Algorithm 1 
F1 Objective Function, all 

Overlaps. 

Contigs Found 74 101 149 204 480 

% 90.2 88.6 91.4 91.1 94.1 

Bases Found 15,822 70,250 206,826 463,582 1,102,152

% 81.8 83 86.1 83.9 83.4 

Algorithm 1 
F2 Objective Function, all 

Overlaps 

Contigs found 74 102 146 189 450 

% 90.2 89.5 89.6 84.4 88.2 

Bases found 15,515 70,843 189,927 369,001 931,343 

% 81.5 83.8 79 66.8 69.9 

Algorithm 1 
F1 Objective Function, no 

Transitive overlaps 

Contigs found 74 102 149 204 481 

% 90.2 89.5 91.4 91.1 93.9 

Bases found 15,806 71,652 206,826 462,774 1,103,587

% 83.7 84.6 86.1 83.9 82.7 

Algorithm 1 
F2 Objective Function, no 

Transitive Overlaps 

Contigs found 75 103 142 181 417 

% 91.5 90.4 87.1 80.8 81.4 

Bases found 15,599 72,245 174,244 320,502 791,376 

% 84 85.4 72.5 58.1 58.9 

Algorithm 1 
F1 Objective Function, 

MST 

Contigs found 304 1827 5980 15,443 46,187 

% 91 97 98.4 98.9 95.7 

Bases found 35,980 256,641 815,994 2,081,306 6,208,258

% 89.8 96.6 98.1 98.7 93.9 

Algorithm 5 
F1 Objective function, no 

Transitive Edges 

Contigs found 74 102 150 205 480 

% 90.2 88.7 91.5 91.1 94.1 

Bases found 15,822 70,318 206,927 463,684 1,102,152

% 81.8 83 86.1 83.9 83.4 
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Table 6. Algorithm 1, F1 objective function, all overlaps. 

 Problem 

Fragments 22,448 89,718 298,194 730,201 2,278,504 
Contigs Obtained 82 114 163 224 510 

Total Number of Bases 19,343 84,659 240,314 552,408 1,321,969 

Contigs 
Found 

Contigs Found 74 101 149 204 480 
% 90.2 88.6 91.4 91.1 94.1 

Bases Found 15,822 70,250 206,826 463,582 1,102,152 
% 81.8 83 86.1 83.9 83.4 

N50 360 1614 3326 4937 4499 
Average Length 213.8 695.5 1388.10 2272.50 2296.20 

Minimum Length 54 58 54 62 53 
Maximum Length 882 7261 10,943 22,745 24,396 

Contigs 
not Found 

Contigs not Found 8 13 14 20 30 
% 9.8 11.4 8.6 8.9 5.9 

Bases not Found 3521 14,409 33,488 88,826 219,817 
% 18.2 17 13.9 16.1 16.6 

N50 758 2308 3954 7258 11,798 
Average Length 440.1 1108.40 2392.00 4441.30 7327.20 

Minimum Length 95 95 95 181 255 
Maximum Length 826 3703 6809 9542 23,614 

Table 7. Algorithm 1, F2 objective function, all overlaps. 

 Problem 

Fragments 22,448 89,718 298,194 730,201 2,278,504 
Contigs Obtained 82 114 163 224 510 

Total Number of Bases 19,028 84,584 240,280 552,509 1,331,757 

Contigs 
Found 

Contigs Found 74 102 146 189 450 

% 90.2 89.5 89.6 84.4 88.2 

Bases Found 15,515 70,843 189,927 369,001 931,343 

% 81.5 83.8 79 66.8 69.9 

N50 356 1527 3184 4298 4201 

Average Length 209.7 694.5 1300.90 1952.40 2069.70 

Minimum Length 54 58 54 59 53 

Maximum Length 882 7261 10,943 21,185 16,135 

Contigs 
not Found 

Contigs not Found 8 12 17 35 60 

% 9.8 10.5 10.4 15.6 11.8 

Bases not Found 3513 13,741 50,353 183,508 400,414 

% 18.5 16.2 21 33.2 30.1 

N50 758 2308 6336 7620 9472 

Average Length 439.1 1145.10 2961.90 5243.10 6673.60 

Minimum Length 95 96 103 181 251 

Maximum Length 826 3703 7626 22,745 24,396 
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From the DNA fragment assembly point of view, we are interested in large contigs with no errors. The 

most important elements to be computed are the number of bases and the contigs that were found in 

the complete genome, as well as the mean length of each contig. When we compare the results 

obtained by Algorithm 1 for F1 and F2 using all overlaps, we find that F1 is a little bit better than F2, 

except in the number of bases found for problem 89,718. In terms of multi objective function 

optimization, the solution obtained for F1 is not enough to dominate the solution obtained by F2, but 

since it is better in most of the test, we can say that it is almost dominant. In the other experiments, we 

find a similar situation, where F1 is almost dominant with respect to F2. 

For Experiment 2, we excluded transitive overlaps and used Algorithm 1 for F1 and F2. The results 

are given in Tables 5, 8 and 9. 

Table 8. Algorithm 1, F1 objective function, no transitive overlaps. 

 Problem 

Fragments 22,448 89,718 298,194 730,201 2,278,504 
Contigs Obtained 82 114 163 224 512 

Total Number of Bases 18,879 84,646 240,314 551,600 1,333,881 

Contigs 
Found 

Contigs Found 74 102 149 204 481 

% 90.2 89.5 91.4 91.1 93.9 

Bases Found 15,806 71,652 206,826 462,774 1,103,587 

% 83.7 84.6 86.1 83.9 82.7 

N50 360 1527 3326 4937 4499 

Average Length 213.6 702.5 1388.10 2268.50 2294.40 

Minimum Length 54 58 54 62 53 

Maximum Length 882 7261 10,943 22,745 24,396 

Contigs 
not Found 

Contigs not Found 8 12 14 20 31 

% 9.8 10.5 8.6 8.9 6.1 

Bases not Found 3073 12,994 33,488 88,826 230,294 

% 16.3 15.4 13.9 16.1 17.3 

N50 539 2308 3954 7258 11,657 

Average Length 384.1 1082.80 2392.00 4441.30 7428.80 

Minimum Length 95 95 95 181 255 

Maximum Length 826 3703 6809 9542 23,614 

In general, we found that F1 is better than F2 without dominating it. Comparing the results where 

transitive overlaps are excluded (Tables 8 and 9 or Table 5) to those where they are not (Tables 6 and 7 

or Table 5), we can see that the results are similar for F1, hence it is not clear whether it is better to 

exclude or not to exclude transitive overlaps. There is, however, an obvious advantage of excluding 

transitive overlaps, which is that the problem size is reduced and requires less computational resources. 

So, our recommendation is to exclude transitive overlaps.  

Comparing our results so far to Edena, we find out that we obtained fewer correct bases and more 

contigs that are not in the genome, but the length of our contigs is better. 
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Table 9. Algorithm 1, F2 objective function, no transitive overlaps. 

 Problem 

Fragments 22,448 89,718 298,194 730,201 2,278,504 
Contigs Obtained 82 114 163 224 512 

Total Number of Bases 18,579 84,571 240,265 551,701 1,343,637 

Contigs 
Found 

Contigs Found 75 103 142 181 417 

% 91.5 90.4 87.1 80.8 81.4 

Bases Found 15,599 72,245 174,244 320,502 791,376 

% 84 85.4 72.5 58.1 58.9 

N50 356 1527 2984 3910 4135 

Average Length 208 701.4 1227.10 1770.70 1897.80 

Minimum Length 54 58 54 59 53 

Maximum Length 882 7,261 10,943 10,648 16,135 

Contigs 
not Found 

Contigs not Found 7 11 21 43 95 

% 8.5 9.6 12.9 19.2 18.6 

Bases not Found 2980 12,326 66,021 231,199 552,261 

% 16 14.6 27.5 41.9 41.1 

N50 539 2308 6336 8135 7554 

Average Length 425.7 1120.50 3143.90 5376.70 5813.30 

Minimum Length 95 96 103 181 251 

Maximum Length 826 3703 10,648 22,745 24,396 

Table 10. Algorithm 1, F1 objective function, Minimum Spanning Tree (MST). 

 Problem 

Fragments 22,448 89,718 298,194 730,201 2,278,504 
Contigs Obtained 334 1883 6080 15,618 48,263 

Total Number of Bases 40,076 265,584 831,449 2,109,070 6,613,747 

Contigs 
Found 

Contigs Found 304 1827 5980 15,443 46,187 

% 91 97 98.4 98.9 95.7 

Bases Found 35,980 256,641 815,994 2,081,306 6,208,258 

% 89.8 96.6 98.1 98.7 93.9 

N50 135 165 154 153 153 

Average Length 118.4 140.5 136.5 134.8 134.4 

Minimum Length 62 62 61 57 57 

Maximum Length 446 660 747 894 1152 

Contigs 
not Fund 

Contigs not Found 30 56 100 175 2076 

% 9 3 1.6 1.1 4.3 

Bases not Found 4096 8943 15,455 27,764 405,489 

% 10.2 3.4 1.9 1.3 6.1 

N50 154 199 198 194 245 

Average Length 136.5 159.7 154.6 158.7 195.3 

Minimum Length 64 65 65 64 63 

Maximum Length 362 481 481 493 1130 
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In Experiment 3, we obtained the Minimum Spanning Tree (MST) from all overlaps using our 

version of Kruskal’s algorithm. We only show the results for F1 (Tables 5 and 10). In this case, we 

were able to find much more bases in the genome than in previous experiments, including Edena, but 

the size of our contigs is small. There appears to be a tradeoff between the number of bases that can be 

found and contig length. 

In other experiments, we used Algorithm 4 without transitive overlaps, obtaining similar results to 

those of Algorithm 1 for F1 (F1 was again better than F2). Analyzing the contigs obtained by the 

algorithm, we found that if the contig is split at the edge that joins the cycle with the path, we have a 

better chance of finding both contigs. Therefore, we modified Algorithm 4 making d(v) = 0 in  

Step 2.2.1.1 and repeated Experiment 4 without transitive overlaps. In this case, the objective function 

F1 was better than F2 without being dominant. These results are given in Tables 5 and 11. 

Table 11. Algorithm 4 (modified), F1 objective function, no transitive edges. 

 Problem 

Fragments 22,448 89,718 298,194 730,201 2,278,504 
Contigs Obtained 82 115 164 225 510 

Total Number of Bases 19,343 84,727 240,415 552,510 1,321,969 

Contigs 
Found 

Contigs Found 74 102 150 205 480 

% 90.2 88.7 91.5 91.1 94.1 

Bases Found 15,822 70,318 206,927 463,684 1,102,152 

% 81.8 83 86.1 83.9 83.4 

N50 360 1614 3326 4937 4499 

Average Length 213.8 689.4 1379.50 2261.90 2296.20 

Minimum Length 54 58 54 62 53 

Maximum Length 882 7261 10,943 22,745 24,369 

Contigs 
not Found 

Contigs not Fund 8 13 14 20 30 

% 9.8 11.3 8.5 8.9 5.9 

Bases not Found 3521 14,409 33,488 88,826 219,817 

% 18.2 17 13.9 16.1  

N50 758 2308 3954 7258 11,798 

Average Length 440.1 1108.40 2392.00 4441.30 7327.20 

Minimum Length 95 95 95 181 255 

Maximum Length 826 3703 6809 9542 23,614 

In an analysis of those contigs that were not found in the genome, we considered the possibility of 

splitting them in two or more pieces hoping that all of them could be found. There are few cases in 

which contigs should be divided; in problem 730,201, using the modified Algorithm 4 with F1, there 

were 513 contigs from which 414 were found directly, 76 were split in two to be found, 14 in three, 10 

in four or more pieces, and two produced pieces that were too small to be considered. With appropriate 

rules, it should be possible to find the correct split points in most of the cases, as other assemblers do. 

We also analyzed residual paths, after removing paths of maximum length, from which we considered 

the possibility of recovering several long contings, which we will do in the future. 
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5. Conclusions and Future Work 

In order to assemble DNA, it is possible to use traditional graph theory concepts being careful to 

use only linear algorithms due to the large amount of data that is handled. With this idea, we developed 

a constant time heap, appropriate for this particular case (and maybe to other cases as well), which 

allowed us to reduce the time complexity of other algorithms, such as Prim’s and Kruskal’s, making 

them linear. 

If we compare the results of the objective functions F1 and F2, even though one does not dominate 

over the other, better results are obtained using F1, hence we recommend its use. We also recommend 

the removal of transitive overlaps because of resource reduction considerations, even though the 

results of the assembly are almost the same for function F1. The use of the MST considerably improves 

the number of correct bases, but the contigs obtained in this way are too small. It can be seen from the 

experiments that there is a tradeoff between contig length and the number of bases detected. 

Comparing our results to those of Edena is not completely objective since we do not apply heuristics 

after the algorithms are executed in order to refine the solutions, but Edena (as well as the Velvet 

assembler) do so intensively. In any case, compared to Edena, our method produced, in some cases, 

less bases but longer contigs, while, in other cases, we found more bases, but shorter contigs, 

especially when using MST. Therefore, the problem must be considered as a multi objective 

optimization, with an objective function that is able to maximize the number of mean contig length, 

giving the user a Pareto Front from which he can obtain the most convenient solution according to his 

particular criteria. 

Our future work includes: 

• Developing rules to split contigs in such a way that most of the pieces can be found. 

• Attempting to recover other contigs after extracting the longest ones. 

• Implementing a solution to DNA fragment assembly as a multi objective optimization problem. 
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