

 Solving the (n2 − 1)-Puzzle with 8/3 n3 Expected Moves

Solving the (n2 − 1)-Puzzle with 8/3 n3 Expected Moves

Algorithms 2015, 8(3), 459-465; doi:10.3390/a8030459

Article

Solving the [image: there is no content]-Puzzle with [image: there is no content] Expected Moves

Ian Parberry

Department of Computer Science & Engineering, University of North Texas, Denton, TX 76203–5017, USA; Tel.: +1-940-565-2845

Academic Editor: Dimitris Fotakis

Received: 13 January 2015 / Accepted: 30 June 2015 / Published: 10 July 2015

Abstract:

 It is shown that the greedy algorithm for the [image: there is no content]-puzzle makes [image: there is no content] expected moves. This analysis is verified experimentally on 10,000 random instances each of the [image: there is no content]-puzzle for [image: there is no content].

Keywords:

15-puzzle; 8-puzzle; analysis of algorithms; average case analysis; greedy algorithm; (n2 − 1)-puzzle

1. Introduction

The [image: there is no content]-puzzle is defined as follows. Given [image: there is no content] numbered tiles arranged in row-major order in an [image: there is no content] grid leaving a blank space in the last position where one tile is missing, the aim is to scramble the puzzle and return it to the initial configuration by repeatedly sliding an adjacent tile into the blank location. When [image: there is no content] the puzzle is also called the [image: there is no content]-puzzle. For example, Figure 1 shows an example for the 15-puzzle of the solved configuration (left) and a random configuration (right).

Figure 1. The solved 15-puzzle (left), and a random configuration (right).

[image: Algorithms 08 00459 g001 1024]

The 15-puzzle has a long and interesting history (see, for example, Hordern [1]) that is said to date back to the 1870s. More recently, the 15-puzzle has appeared in the form of various apps on mobile devices and as minigames inside larger games. For example, the 15-puzzle can be found in the original Final Fantasy (Square Enix, 1987) and The Legend of Zelda: The Windwaker (Nintendo 2003), and the 8-puzzle can be found in Machinarium (Amanita Design, 2009).

Ratner and Warmuth [2] have proved that the problem of finding the minimum number of moves for the [image: there is no content]-puzzle is NP-hard, and they demonstrate that a polynomial time approximation algorithm exists. Kornhauser, Miller, and Spirakis [3] show an [image: there is no content] time algorithm for the [image: there is no content]-puzzle, which therefore uses [image: there is no content] moves in the worst case.

Parberry [4] gave worst case upper and lower bounds of [image: there is no content] and [image: there is no content], respectively, on the number of moves required to solve the [image: there is no content]-puzzle using a greedy algorithm. Whilst upper bounds are certainly interesting, a hypothetical player faced with solving a random configuration of the puzzle is likely be more concerned about the expected number of moves than the worst case. Parberry [4] also gave lower bounds of at least 2[image: there is no content]/3 for the expected number of moves, and at least 0.264[image: there is no content] moves for a random configuration with probability one.

We extend this work by showing both theoretically and experimentally that the greedy algorithm solves the [image: there is no content]-puzzle in expected number of moves 83[image: there is no content]+O([image: there is no content]). The main body of this paper is divided into three sections. Section 2 contains a brief description of the greedy algorithm. Section 3 contains the average-case analysis of the number of moves required. Section 4 contains an experimental verification of this analysis.

2. The Greedy Algorithm

The greedy algorithm for the [image: there is no content]-puzzle work as follows (for more details see, for example, Parberry [4]). There are sequences of five moves that bring a tile one place horizontally or vertically, and a sequence of six moves that brings a tile one place diagonally. Move the blank to the position immediately above the first tile, then use a sequence of these moves to bring that tile to the top left corner. Repeat this for the remaining tiles in the first row, taking care not to disturb the work that has already been done. The last two tiles in the row require a few extra moves to flip into place. Once the first row has been completed, do likewise for the first column. Once the first row and column are in place, recurse on the remaining [image: there is no content]-puzzle. The base of the recursion can be solved by brute force, for example, the 3-puzzle can be solved in six moves, the 8-puzzle can be solved in 31 moves (Reinefeld [5]) and the 15-puzzle can be solved in 80 moves (Brüngger et al. [6]).

3. Theoretical Analysis

Suppose n is even (the case where k is odd is similar). Consider the expected number of moves required to solve the first half of the first row of the puzzle. For each of those [image: there is no content] tiles [image: there is no content], the expected number of moves required to move tile [image: there is no content] to position [image: there is no content] will be equal to the sum over all positions p of the number of moves required to move t from position p to position [image: there is no content], divided by [image: there is no content]. We will do this in three parts, the number of moves required to move the blank into place above tile t (Section 3.1), and the number of moves required to move t to position [image: there is no content] once the blank is in place (Section 3.2), and the total number of moves (Section 3.3).

3.1. The Blank

The sum of the number of moves required to move the blank from position [image: there is no content] to each of the [image: there is no content] possible destinations is:

∑i=0[image: there is no content]∑j=ii+n−1j=[image: there is no content]−[image: there is no content]

(1)

For example, with [image: there is no content], looking at Figure 2 (left) and numbering the rows from 0 to [image: there is no content] top-to-bottom, row i has sum [image: there is no content]. For position [image: there is no content], [image: there is no content], the sum is:

Figure 2. Number of moves required to move the blank to each position from the first half of the first row of the 63-puzzle.

[image: Algorithms 08 00459 g002 1024]

([image: there is no content]−[image: there is no content])+nk(k−(n−1))=[image: there is no content]−[image: there is no content]−n(n−1)k+nk2

(2)

See, for example, Figure 2 with [image: there is no content] and [image: there is no content] from left to right. The difference between the leftmost table and the other tables is that k rightmost columns are replaced with k columns with lower values (which are the same as columns 1 through k in the leftmost table). However, the difference in value of each replaced cell is constant [image: there is no content]. Since there are k replaced columns with n rows, Equation (2) follows.

Therefore, summing Equation (2) for [image: there is no content] to [image: there is no content], the total number of moves for positioning the blank above tiles [image: there is no content] is:

n2[image: there is no content]−[image: there is no content]−n(n−1)∑[image: there is no content][image: there is no content]k+n∑[image: there is no content][image: there is no content]k2=512n4−14[image: there is no content]−16[image: there is no content]

(3)

Hence, the total number of moves for moving the blank into place while solving the first row and the first column is less than four times Equation (3) minus Equation (1) (the latter to avoid counting cell [image: there is no content] twice), that is,

4512n4−14[image: there is no content]−16[image: there is no content]−[image: there is no content]−[image: there is no content]=135n4−6[image: there is no content]+[image: there is no content]

(4)

3.2. The Tiles

The sum of the number of moves required to move tile [image: there is no content] to position [image: there is no content] from all of the [image: there is no content] possible sources is (see the leftmost entry of Figure 3, and Figure 4):

Figure 3. Number of moves required to move a tile from each position to the first half of the first row of the 63-puzzle.

[image: Algorithms 08 00459 g003 1024]

Figure 4. Decomposing the leftmost entry of Figure 3 to show the structure of Equation (5).

[image: Algorithms 08 00459 g004 1024]

25∑i=1[image: there is no content]i2+∑i=1n−2∑j=1ij+6∑i=1[image: there is no content]i=113[image: there is no content]−3[image: there is no content]−23n

(5)

Similarly, for position [image: there is no content], [image: there is no content], the sum is (see Figure 3):

113[image: there is no content]−3[image: there is no content]−23n−(3[image: there is no content]−4n−4)k+(6n+4)∑i=1k−1i=113[image: there is no content]−3[image: there is no content]−23n−(3[image: there is no content]−7n−6)k+(3n+2)k2

(6)

Therefore, the total number of moves for moving tiles [image: there is no content] into place in the first half of the first row is:

n2113[image: there is no content]−3[image: there is no content]−23n−(3[image: there is no content]−n−2)∑[image: there is no content][image: there is no content]k+(3n+2)∑[image: there is no content][image: there is no content]k2=1912n4−1112[image: there is no content]−13[image: there is no content]−13n

(7)

and the total number of moves for moving the first row and column tiles into place is, by Equations (5) and (7), at most:

41912n4−1112[image: there is no content]−13[image: there is no content]−13n−113[image: there is no content]−3[image: there is no content]−23n=1319n4−22[image: there is no content]+5[image: there is no content]−2n

(8)

The astute reader will have noticed that we have under-counted by [image: there is no content] to bring the blank into position at the start, and [image: there is no content] for the last tile in the row and column. This is more than compensated for by the fact that we have over-counted by [image: there is no content] when moving the blank in Section 3.1 since there is never any need to move the blank to the last row.

3.3. Tiles and Blank Together

The total number of moves used to solve the first row and column is at most the sum of the results of Equations (4) and (8). That is,

135n4−6[image: there is no content]+[image: there is no content]+1319n4−22[image: there is no content]+5[image: there is no content]−2n=8n4−283[image: there is no content]+2[image: there is no content]−23n

(9)

The expected number of moves to solve the first row and column is the total number of moves from Equation (9) divided by the number of tiles (which is [image: there is no content]), that is, 8[image: there is no content]+O(n). The argument so far has assumed that n is even. One can prove similarly the expected number of moves for odd n is also 8[image: there is no content]+O(n).

Having put the first row and column of the [image: there is no content] puzzle into place, the remaining [image: there is no content] sub-puzzle is then solved recursively, Note that if every even permutation of the [image: there is no content]−1 tiles in the [image: there is no content] puzzle is equally likely, then since the moves made to put the first row and column into place depend only on the position of those tiles in the permutation (and not, for example, on the values of any of the tiles), the resulting even permutation of the [image: there is no content] tiles in the [image: there is no content] sub-puzzle on which we recurse is equally likely to be any even permutation of the remaining [image: there is no content]−2n tiles. Therefore, the expected number of moves to solve the whole puzzle is bounded above by:

8∑i=2ni2+O([image: there is no content])=83[image: there is no content]+O([image: there is no content]).

4. Experimental Analysis

We generated 10,000 random instances of the [image: there is no content]-puzzle for all n such that [image: there is no content] using the standard algorithm for generating a random even permutation based on the Mersenne Twister (Matsumoto and Nishimura [7]). We then solved each instance using the greedy algorithm and measured the average number of moves required to solve each size, which should approximate the expected value if the sample size is large enough. We found that the average number of moves tends to 2.6666[image: there is no content]+O(n) with an [image: there is no content] value of [image: there is no content] (see Figure 5). In fact, the number of moves divided by [image: there is no content] is less than [image: there is no content] for [image: there is no content] (see Figure 6). Consider that the theoretical bound is the expected number of moves, while the experimental bound is the average number of moves over a relatively small (compared to the solution space) random sample. The fact that the theoretical and experimental results agree so closely in this case is quite remarkable.

Figure 5. The average number of moves required to solve 10,000 random instances of the [image: there is no content]-puzzle for [image: there is no content].

[image: Algorithms 08 00459 g005 1024]

Figure 6. The average number of moves required to solve 10,000 random instances of the [image: there is no content]-puzzle divided by [image: there is no content] for [image: there is no content].

[image: Algorithms 08 00459 g006 1024]

5. Conclusion and Open Problems

We have shown both theoretically and experimentally that the real-time algorithm from [4] solves the [image: there is no content]-puzzle in expected number of moves [image: there is no content]. However, the best known lower bound for the expected number of moves is 2[image: there is no content]/3 from Parberry [4]. We conjecture that there is almost certainly an algorithm with a smaller expected number of moves, and that the lower bound is also almost certainly not tight.

Supplementary Materials

Supplementary materials can be accessed at: http://www.mdpi.com/1999-4893/8/3/459/s1.

Conflicts of Interest

The author declares no conflict of interest.

References

	1.
Hordern, L.E. Sliding Piece Puzzles; Oxford University Press: Oxford, UK, 1986. [Google Scholar]

	2.
Ratner, D.; Warmuth, M. The (n2 − 1)-puzzle and Related Relocation Problems. J. Symb. Comput. 1990, 10, 111–137. [Google Scholar] [CrossRef]

	3.
Kornhauser, D.M.; Miller, G.; Spirakis, P. Coordinating Pebble Motion on Graphs, the Diameter of Permutation Groups, and Applications. In Proceedings of the 25th Annual Symposium on Foundations of Computer Science, Singer Island, FL, USA, 24–26 October 1984; pp. 241–250.

	4.
Parberry, I. A Real-Time Algorithm for the (n2 − 1)-Puzzle. Inf. Proc. Lett. 1995, 56, 23–28. [Google Scholar] [CrossRef]

	5.
Reinefeld, A. Complete Solution of the Eight-Puzzle and the Benefit of Node Ordering in IDA*. In Proceedings of the 13th International Joint Conference on Artificial Intelligence, Chambéry, France, 28 August–3 September 1993; pp. 248–253.

	6.
Brüngger, A.; Marzetta, A.; Fukuda, K.; Nievergelt, J. The parallel search bench ZRAM and its applications. Ann. Oper. Res. 1999, 90, 45–63. [Google Scholar] [CrossRef]

	7.
Matsumoto, M.; Nishimura, T. Mersenne Twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simulat. 1998, 8, 3–30. [Google Scholar] [CrossRef]

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

media/file4.png
2.6666x3 + 22.356x? + 58.126x + 40.688

y=

R?=1

S3AO|A jO J3quinN

nav.xhtml

 algorithms-08-00459

 		
 algorithms-08-00459

media/file5.png
n <) ~

~ N N o«
cU/SSNO J0 JaquinN

<

media/file3.png

media/file0.png

media/file1.png
il 1]2]s]a]s]e]| [2[s @ 1]2]3]a]s]| [s]2[s @l 1]2]3]4]

2

B <23 a]s]6[7]

2 3,45

1

3 2

2(3|4|5(/6| (4

1

2
4|3[283|4(5/6/|7

3/4|5(6|7| [3

2

1

2(3|4|5(6|7|8

1
203|4(5/6|7|8|9

5/4|3[203|4|5(|6

3[2|3(4|5|6|7|8

656 7 8 9

10 9 87 8 9 1011

8 9 10 11 12

8|7

9

8 7 89 10 11 12 13

78 9 1011 1213 14

media/file2.png
101520 25 3035

ﬁﬂl 10[15[20[25.

16| 1116 21/26

12|11/10|11/12 17 22 27
17 16|15 16 17‘18 23 28
22/21|20|21|22)23 24 29

3635 37‘38 3940 41 37 36|35 36 37|38 39 40 38/37/36(35|36 |37 38 39

