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Abstract: Aggregation delay is the minimum number of time slots required to aggregate 

data along the edges of a data gathering tree (DG tree) spanning all the nodes in a wireless 

sensor network (WSN). We propose a benchmarking algorithm to determine the minimum 

possible aggregation delay for DG trees in a WSN. We assume the availability of a 

sufficient number of unique CDMA (Code Division Multiple Access) codes for the 

intermediate nodes to simultaneously aggregate data from their child nodes if the latter are 

ready with the data. An intermediate node has to still schedule non-overlapping time slots 

to sequentially aggregate data from its own child nodes (one time slot per child node). We 

show that the minimum aggregation delay for a DG tree depends on the underlying design 

choices (bottleneck node-weight based or bottleneck link-weight based) behind its 

construction. We observe the bottleneck node-weight based DG trees incur a smaller 

diameter and a larger number of child nodes per intermediate node; whereas, the bottleneck 

link-weight based DG trees incur a larger diameter and a much lower number of child 

nodes per intermediate node. As a result, we observe a complex diameter-aggregation 

delay tradeoff for data gathering trees in WSNs.  

Keywords: aggregation delay; data gathering tree; diameter; wireless sensor  

networks; tradeoff 
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1. Introduction 

Wireless Sensor Networks (WSNs) are typically deployed for monitoring environmental data such 

as temperature, pressure, humidity, etc. Sensor nodes operate under limited battery charge and 

transmission range. Hence, the data sensed at one or more sensor nodes cannot be directly propagated 

to the control center (a.k.a. sink); multi-hop data propagation is the norm. Various algorithms for 

determining communication topologies (like cluster [1], grid [2], chain [3], connected dominating set [4], 

tree [5], etc.) that support the many-to-one reporting style have been proposed in the literature. Among 

these, the data gathering trees (DG trees) have been considered energy-efficient due to the use of the 

minimum number of links for data transmission and reception [5–7].  

In this research, we focus on the delay incurred for data aggregation along the edges of a DG tree. 

We define the aggregation delay as the minimum number of time slots it takes for the data to be 

aggregated in a data gathering tree (DG tree) spanning all the nodes of the network. Various 

algorithms (e.g., [8–13]) have been proposed to determine the aggregation delay for DG trees and all 

of these assume limited availability of the communication channels and focus on scheduling the 

channels for the different nodes to minimize the aggregation delay. In this paper, we consider a 

channel availability model such that the intermediate nodes at the same level or different levels could 

simultaneously aggregate data from their respective child nodes using different CDMA (Code Division 

Multiple Access) codes [14]. An intermediate node has to schedule non-overlapping time slots (one for 

each of its child nodes: Time Division Multiple Access, TDMA) to aggregate data from its child 

nodes. Given a DG tree with sufficient availability of communication channels with unique CDMA 

codes, we propose a benchmarking algorithm to determine the minimum aggregation delay at every 

intermediate node (including the root node) of the DG tree.  

We run the proposed algorithm on four broad categories of DG trees typically used for data 

aggregation in WSNs [5,15–20]: The Maximum Bottleneck Node Weight-based Data Gathering trees 

(MaxBNW-DG trees) are the ones for which the bottleneck node weight (minimum node weight) of 

the path from any node to the root node is the maximum; the Minimum Bottleneck Node Weight-based 

Data Gathering trees (MinBNW-DG trees) are the ones for which the bottleneck node weight 

(maximum node weight) of the path from any node to the root node is the minimum. The Maximum 

Bottleneck Link Weight-based Data Gathering trees (MaxBLW-DG trees) are the ones for which the 

bottleneck link weight (minimum link weight) of the constituent links of a path from any node to the 

root node is the maximum; the Minimum Bottleneck Link Weight-based Data Gathering trees 

(MinBLW-DG trees) are the ones for which the bottleneck link weight (maximum link weight) of the 

constituent links of a path from any node to the root node is the minimum. MaxBNW-DG trees could 

be used to determine DG trees with a larger residual energy per intermediate node such that the 

minimum node energy of the path from any node to the root node is the maximum (e.g., [15,16]). The 

MinBNW-DG trees could be used to determine DG trees in mobile sensor networks with lower 

velocity for the intermediate nodes such that the maximum node velocity of the path from any node to 

the root node is the minimum (e.g., [17]). MaxBLW-DG trees could be used to determine DG trees 

with a larger trust score for each link on the tree such that the minimum trust score for any of the 

constituent links of a path from any node to the root node is the maximum (e.g., [18]); the MinBLW-DG 

trees could be used to determine DG trees with maximum of the square of the link distance (measure 
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of the transmission energy loss) for any of the constituent links for a path from any node to the root 

node is the minimum (e.g., [19]). 

Most of the work conducted in the literature focus on deriving bounds for the aggregation delay for 

the data gathering trees as a function of various networking parameters (like density, diameter, node 

degree, etc.). To the best of our knowledge, we have not come across any work that has analyzed the 

aggregation delay for data gathering trees as a function of the structure of the data gathering tree itself. 

We hypothesize that there could be two distinct types of data gathering trees depending on the way 

they are constructed (bottleneck node-weight based and bottleneck link-weight based). Our hypothesis 

is confirmed through the simulations. We observe the bottleneck node-weight based data gathering 

trees to incur a smaller diameter and a larger number of child nodes per intermediate node, thereby 

incurring a larger aggregation delay compared to that of the bottleneck link-weight based data 

gathering trees that incur a relatively larger diameter and a fewer number of child nodes per 

intermediate node. We thus see a diameter-aggregation delay tradeoff for data gathering trees in sensor 

networks and this has been hitherto not reported in the literature.  

The rest of the paper is organized as follows: Section 2 discusses related work on the lower and 

upper bounds for aggregation delay in sensor networks and highlights our contributions. Section 3 

presents the system model and presents in detail the Maximum Bottleneck Node Weight-based data 

gathering (MaxBNW-DG) algorithm. The section also presents the modifications to the MaxBNW-DG 

algorithm to determine the MinBNW-DG, MaxBLW-DG and MinBLW-DG trees, as defined above. 

Section 4 presents in detail the algorithms to determine the diameter of the DG tree and the minimum 

aggregation delay for a DG tree. Section 5 presents results of simulation studies conducted on the four 

categories of DG trees and discusses the results obtained for the diameter, aggregation delay, hop 

count per path and the distribution of the child nodes per intermediate node and the leaf nodes as well 

analyzes the tradeoffs. Section 6 concludes the paper and discusses plans for future work. 

2. Related Work and Our Contributions 

In this section, we first present the existing work in the literature on algorithms related to 

aggregation delay for data gathering trees in sensor networks. We then motivate the need for analyzing 

the aggregation delay as a function of the type of the data gathering trees and thereby also exploring 

the diameter-aggregation delay tradeoff. Most of the work conducted in the literature focus on deriving 

theoretical bounds for the minimum and maximum aggregation delay as a function of the network 

parameters such as the number of nodes, maximum node degree, diameter of the network, transmission 

range of the nodes, etc., without considering the type of data gathering trees that are determined. For 

example, the paper [8] proposes O(∆ + D/2) as the upper bound for aggregation delay where ∆ is the 

maximum node degree and D is the diameter of the network (in terms of the number of hops), and in [10], 

the authors showed that the upper bound for aggregation latency in a multi-sink scenario is  

O(∆ + k*D/2), where k is the number of sinks. In [21], the authors show that the lower bound for the 
aggregation delay is max{D/2, n

2log }, where n is the number of nodes in the network. However,  

the aforementioned works do not analyze the possible differences in the minimum or maximum 

aggregation delays due to the type of the underlying data gathering trees involved.  
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To the best of our knowledge, ours is the first such work to show that for a given network, the 

minimum aggregation delay principally depends on the type of the data gathering tree (bottleneck node 

weight-based or bottleneck link weight-based) and could be significantly different for the two 

categories of data gathering trees. Likewise, the focus of tradeoff analysis has been on the aggregation 

delay—energy consumption tradeoff (e.g., [22–24]) as a function of the underlying interference 

models, availability of the channels and the channel scheduling schemes used. To the best of our 

knowledge, ours is the first such work to analyze the diameter-aggregation delay tradeoff as a function 

of the type of the underlying data gathering tree (bottleneck node weight-based or bottleneck link 

weight-based) involved. 

Some of the works in the literature (e.g., [25]) focus on developing distributed algorithms to 

minimize the aggregation delay as much as possible (given a set of available channels). A common 

trend among these distributed algorithms is to first construct a spanning tree of the network based on a 

link or node criterion, determine a connected dominating set (CDS) [26] of the nodes (a CDS is a set of 

nodes such that every node in the network is either in this set or is a neighbor of the nodes in this set) 

in the spanning tree, form a data gathering tree of the nodes that are part of the CDS and construct a 

TDMA-schedule of the nodes that are part of the CDS to aggregate data according to the availability of 

the channels. Our approach in the paper is different. Given a graph with node weights or link weights, 

we directly construct a bottleneck node weight or bottleneck link weight-based data gathering tree of 

the network. We make use of the observation made in [27] that the intermediate nodes of a bottleneck 

node weight or bottleneck link weight based DG tree are also the nodes constituting a CDS constructed 

with the objective of optimizing the bottleneck node weight or bottleneck link weight.  

Our contributions in this paper are twofold: First, we propose a benchmarking algorithm that, given 

a DG tree, (with sufficient number of communication channels with unique CDMA codes) determines 

the minimum aggregation delay at every intermediate node (including that of the root node) of the DG 

tree. To the best of our knowledge, we have not come across a benchmarking algorithm that gives the 

minimum aggregation delay for any intermediate node vis-à-vis its position in the DG tree. The 

aggregation delays obtained with our centralized benchmarking algorithm will serve as a lower bound 

for the aggregation delays determined with the distributed algorithms proposed in the literature. 

Second, for a given WSN graph, we observe the bottleneck link-weight based data gathering trees to 

incur a lower aggregation delay, but a larger diameter; on the other hand, the bottleneck node-weight 

based data gathering trees incur a larger aggregation delay but a smaller diameter. Ours is the first 

work to comprehensively analyze the diameter-aggregation delay tradeoff for sensor networks and 

show that the tradeoff depends on the type of the underlying data gathering trees used (bottleneck 

node-weight based or bottleneck link-weight based). 

3. Generic Algorithm to Determine Maximum Bottleneck Node Weight-Based Data  

Gathering Trees 

In this section, we present an algorithm to determine maximum bottleneck node weight-based data 

gathering trees (MaxBNW-DG trees) that could work with any notion of node weights. We then 

illustrate the generic nature of the algorithm by explaining how it could be easily adapted and be used 
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for determining minimum bottleneck node weight-based data gathering trees as well as the maximum 

and minimum bottleneck link-weight based data gathering trees.  

3.1. System Model 

In this subsection, we present the graph model considered for the sensor networks, the channel 

availability model for the nodes and an overview of the data aggregation process. We assume a 

wireless sensor network (WSN) to be modeled as a weighted undirected graph G = (V, E, WV, WE) of a 

set of vertices (V) and edges (E); the link weights (WE) may or may not be related to node weights 

(WV). The link weights and node weights are positive real numbers. We assume each node in the graph 

has a weight; if two or more nodes have the same weight during the execution of the algorithms 

(described in Sections 3.2–3.5), ties are broken arbitrarily. We do not anticipate frequently 

encountering ties, as the node weights (as well as link weights) are real numbers (and not integers). We 

use higher precisions for the real numbers (of length allowed by the programming environment) in the 

simulations. In addition, in the simulations, since we run multiple iterations of the algorithms for the 

same operating condition and average the results, our conjecture is that the arbitrary breaking of the 

ties is the best way to avoid any bias towards excessive usage of any particular node. For example, if 

the ties are broken in favor of the node with a smaller ID or larger ID, then such nodes get overused all 

the time in situations of a tie and the results could be biased.  

Each vertex in the graph corresponds to a node in the WSN. There exists an undirected edge 

between two vertices if the Euclidean distance between the corresponding nodes in the network is 

within the transmission range of the nodes. We assume the transmission range of the nodes to be 

identical. A data-gathering tree (DG tree) of a WSN graph is rooted at a particular node (referred to as 

the leader node) and spans all the vertices of the graph and aggregation of data proceeds from the leaf 

nodes towards the leader node. An intermediate node waits for aggregated data or individual data 

(depending on the case) coming from its immediate child nodes, aggregates its own data with it and 

forwards the aggregated data to its own upstream node in the tree. We assume the energy level at the 

sensor nodes to be sufficient enough throughout the network session and that there would be no failure 

of nodes due to energy exhaustion (this way, we could extract the best possible and/or expected 

performance from the benchmarking algorithms with respect to the metrics that they are designed to 

optimize). We assume the sensor nodes to be both TDMA (Time Division Multiple Access) and 

CDMA (Code Division Multiple Access) enabled [14]. An intermediate node assigns TDMA time 

slots to its immediate child nodes so that they can send the aggregated data to their parent node, one at 

a time, without any collision. However, two intermediate nodes at the same level or different levels of 

the DG tree could simultaneously gather data from their respective child nodes by using different 

CDMA codes. 

3.2. Description of the MaxBNW-DG Algorithm 

The underlying theme behind the MaxBNW-DG algorithm is to give preference for nodes with 

larger weights to serve as intermediate nodes. The bottleneck weight of a path between two nodes is 

the minimum of the weights of the nodes on the path (including those of the end nodes). Each node 

prefers to join the DG tree through a neighbor that has the largest bottleneck weight path to the  
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root node. The bottleneck weight of the path that connects a node to the root node of the DG tree is 

referred to as the Tree-join-weight. We maintain three lists during the execution of the algorithm: 

Candidate-Nodes-List, Optimized-Nodes-List and Parent-Node-List. The bottleneck path weights of the 

vertices in the Candidate-Nodes-List are referred to as the Estimated-join-weights (an estimate of the 

optimal bottleneck weight of the path to the root node) and when a vertex is removed from the 

Candidate-Nodes-List and included in the Optimized-Nodes-List, we set its Tree-join-weight to the 

value of the Estimated-join-weight of the vertex at the time of its removal from the Candidate-Nodes-List. 

The Candidate-Nodes-List is implemented as a priority queue (maximum heap) [26]. The  

Parent-Node-List keeps track of the predecessor node for every node in the DG tree. Algorithm 1 

presents the pseudo code for the MaxBNW-DG algorithm. 

Algorithm 1. Pseudo Code for the Algorithm to Determine Maximum Bottleneck Node Weight-DG Trees. 

Input: Graph G = (V, E, WV, WE) 

Output: ),( T
BNW

Max EVT  where ET is the set of edges in the MaxBNW-DG tree 

Auxiliary Variables: Optimized-Nodes-List, Candidate-Nodes-List, Parent-Node-List 

           Estimated-join-weight, Tree-join-weight, Leader Node 

Initialization: Optimized-Nodes-List = ϕ; Candidate-Nodes-List = ϕ, Parent-Node-List = ϕ, ET = ϕ 

        Vu ∈∀ : Estimated-join-weight(u) = -1, Tree-join-weight(u) = -1 

 

Begin MaxBNW-DG Algorithm 
1 Leader Node s = {u | ))(( uWMaximum V

Vu∈
} 

2 Parent-Node-List(s) = NULL 

3 Candidate-Nodes-List = Candidate-Nodes-List ∪ {s} 

4 Estimated-join-weight(s) = WV(s) 

5 while (Candidate-Nodes-List ≠ ϕ) do 
6  Node u = {i | 

ListNodesCandidatei
Maximum

−−∈
(Estimated-join-weights(i)} 

7  Candidate-Nodes-List = Candidate-Nodes-List - {u} 

8  Optimized-Nodes-List = Optimized-Nodes-List ∪ {u} 

9  Tree-join-weight(u) = Estimated-join-weight(u) 

10  for ( Node v ∈Neighbors(u) AND v ∉Optimized-Nodes-List) do 

11   if (Estimated-join-weight(v) < Minimum(WV(v), Tree-join-weight(u) ) ) then 

12    Estimated-join-weight(v) = Minimum(WV(v), Tree-join-weight(u) ) 

13    Parent-Node-List(v) = u 

14   end if 

15  end for 

16 end while 

17 if (Candidate-Nodes-List = ϕ  AND  | Optimized-Nodes-List | < | V | ) then 

18  return NULL; // the graph is not connected 

19 end if 

20 if (Candidate-Nodes-List = ϕ  AND  | Optimized-Nodes-List | = | V | ) then 

21  for (Node u ∈V  AND u ≠ Leader Node ) do 
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22        ET = ET ∪  {(u, Parent-Node-List(u))} 

23  end for 

24 end if 

25 return ),( T
BNW

Max EVT  

End MaxBNW-DG Algorithm 

The algorithm proceeds in iterations; in each iteration, we explore the neighborhood (i.e., visit  

the neighbor nodes) of a vertex that currently has the largest Estimated-join-weight among the  

vertices in the Candidate-Nodes-List. As part of this procedure, the vertex is also removed from the  

Candidate-Nodes-List and added to the Optimized-Nodes-List; we say the vertex has been optimized 

(i.e., its Estimated-join-weight cannot be further increased) and set its Tree-join-weight to  

be its Estimated-join-weight value at the time of exploring its neighbors and removal from the 

Candidate-Nodes-List. Thus, the Optimized-Nodes-List includes vertices whose neighborhood has 

been already explored and the Tree-join-weight of a vertex at the time of its inclusion in the 

Optimized-Nodes-List is the best possible bottleneck path weight with which the node can be part of 

the DG tree.  

The root node of the DG tree (also called the leader node) is the vertex with the largest weight 

among the vertices in the graph. The leader node is on the largest bottleneck weight path to itself. 

Initially, the leader node has an Estimated-join-weight corresponding to its individual weight and the 

Estimated-join-weight of the other vertices in the graph is set to −1. We start the algorithm by 

including the leader node as the only vertex in the Candidate-Nodes-List and explore its neighbors. In 

each iteration, as we explore the neighborhood of a vertex u with the largest Estimated-join-weight 

(that is also the Tree-join-weight for node u, pending u's removal from the Candidate-Nodes-List) 

among the vertices in the Candidate-Nodes-List, we examine whether the Estimated-join-weight values 

for each of the neighbors (say, v) of u could be improved further by making u as the parent node of v. 

We do this by first checking whether the currently Estimated-join-weight of node v is still less  

than both the individual weight of node v and the Tree-join-weight of node u, and if found so, we set 

the Estimated-join-weight of node v to the minimum of the individual weight of node v and the  

Tree-join-weight of node u as well as set node u to be the parent (predecessor) for node v in the DG 

tree. We continue the iterations until the Candidate-Nodes-List gets empty (by this time, all the 

vertices in the graph are in the Optimized-Nodes-List if the graph is connected) and every node other 

than the leader node would have a parent node in the tree. If the graph is not connected, the  

Candidate-Nodes-List gets empty when there is still at least one vertex that is not yet in the  

Optimized-Nodes-List; the vertices not included in the Optimized-Nodes-List are not in the same 

connected component of the leader node. 

3.3. Modifications to the MaxBNW-DG Algorithm to Determine MinBNW-DG Tree 

A MinBNW-DG tree is the one for which the bottleneck node weight on a path is defined as the 

maximum of the node weights (instead of the minimum of the node weights as in a MaxBNW-DG 

tree) and the objective would be to determine a DG tree for which the bottleneck node weight for a 

path from any node to the root node is the minimum. Accordingly, we start with the node having the 
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minimum node weight and accommodate nodes in the increasing order of the Tree-join-weight; we 

modify the pseudo code of the MaxBNW-DG algorithm as shown in Algorithm 2: the lines that are not 

explicitly shown are the same as in the MaxBNW-DG algorithm.  

Algorithm 2. Pseudo Code for the Algorithm to Determine Minimum Bottleneck Node Weight-DG Trees. 

Input: Graph G = (V, E, WV, WE) 

Output: ),( T
BNW

Min EVT  where ET is the set of edges in the MinBNW-DG tree 

Auxiliary Variables: Optimized-Nodes-List, Candidate-Nodes-List, Parent-Node-List 

          Estimated-join-weight, Tree-join-weight, Leader Node 

Initialization: Optimized-Nodes-List = ϕ; Candidate-Nodes-List = ϕ, Parent-Node-List = ϕ, ET = ϕ 

        Vu ∈∀ : Estimated-join-weight(u) = ∞, Tree-join-weight(u) = ∞ 

 

Begin MinBNW-DG Algorithm  
1 Leader Node s = {u | ))(( uWMinimum V } 

2...4 (as in the pseudo code for the MaxBNW-DG algorithm, refer Algorithm 1) 

5 while (Candidate-Nodes-List ≠ ϕ) do 
6  Node u = {i | 

ListNodesCandidatei
Minimum

−−∈
(Estimated-join-weights(i)} 

7...8 (as in the pseudo code for the MaxBNW-DG algorithm, refer Algorithm 1) 

10  for ( Node v ∈Neighbors(u) AND v ∉Optimized-Nodes-List) do 

11   if (Estimated-join-weight(v) > Maximum(WV(v), Tree-join-weight(u) ) ) then 

12    Estimated-join-weight(v) = Maximum(WV(v), Tree-join-weight(u) ) 

13    Parent-Node-List(v) = u 

14   end if 

15  end for 

16...24  (as in the pseudo code for the MaxBNW-DG algorithm, refer Algorithm 1) 

25 return ),( T
BNW

Min EVT  

End MinBNW-DG Algorithm 

3.4. Modifications to the MaxBNW-DG Algorithm to Determine the MaxBLW-DG Tree 

A MaxBLW-DG tree is the one for which the bottleneck link weight (minimum of the weights of 

the constituent links) for a path from any node to the root node is the maximum. In this section, we 

illustrate the modification of the MaxBNW-DG algorithm to determine a MaxBLW-DG tree. Instead 

of starting with a node having the largest or smallest weight, we could start with an arbitrarily chosen 

node and set its Tree-join-weight to ∞ and initialize the Estimated-join-weights of the other vertices  

to −1. Assuming the graph has positive edge weights, the objective would be then to increase the 

Estimated-join-weights of the other vertices as much as possible and eventually join a vertex to  

the DG tree through an incident edge that has the largest weight (that is also the Tree-join-weight of 

the vertex). We modify the pseudo code of the MaxBNW-DG algorithm as in Algorithm 3 to obtain 

the MaxBLW-DG tree. 
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Algorithm 3. Pseudo Code for the Algorithm to Determine Maximum Bottleneck Link Weight-DG Trees. 

Input: Graph G = (V, E, WV, WE) 

Output: ),( T
BLW

Max EVT  where ET is the set of edges in the MaxBLW-DG tree 

Auxiliary Variables: Optimized-Nodes-List, Candidate-Nodes-List, Parent-Node-List 

          Estimated-join-weight, Tree-join-weight, Leader Node 

Initialization: Optimized-Nodes-List = ϕ; Candidate-Nodes-List = ϕ, Parent-Node-List = ϕ, ET = ϕ 

        Vu ∈∀ : Estimated-join-weight(u) = -1, Tree-join-weight(u) = -1 

 

Begin MaxBLW-DG Algorithm 

1 Leader Node s is arbitrarily chosen among the vertices in V 

2...3 (as in the pseudo code for the MaxBNW-DG algorithm, refer Algorithm 1) 

4 Estimated-join-weight(s) = ∞ 

5 while (Candidate-Nodes-List ≠ ϕ) do 
6  Node u = {i | 

ListNodesCandidatei
Maximum

−−∈
(Estimated-join-weights(i)} 

7...9 (as in the pseudo code for the MaxBNW-DG algorithm, refer Algorithm 1) 

10  for ( Node v ∈Neighbors(u) AND v ∉Optimized-Nodes-List) do 

11   if (Estimated-join-weight(v) < WE(u-v)) then 

12    Estimated-join-weight(v) = WE(u-v) 

13    Parent-Node-List(v) = u 

14   end if 

15  end for 

16...24 (as in the pseudo code for the MaxBNW-DG algorithm, refer Algorithm 1) 

25 return ),( T
BLW

Max EVT  

End MaxBLW-DG Algorithm 

3.5. Modifications to the MaxBNW-DG Algorithm to Determine the MinBLW-DG Tree 

For a MinBLW-DG tree, we define the bottleneck link weight for a path as the maximum of the 

weights of the constituent links of the path. The objective would be then to determine a DG tree for 

which the bottleneck link weight for a path from any node to the root node of the MinBLW-DG tree is 

the minimum. Accordingly, we start with an arbitrarily chosen node as the root node of the MinBLW-DG 

tree and set its Tree-join-weight to −∞ and initialize the Estimated-join-weight for every other vertex to 

∞. In each iteration of the algorithm, we attempt to decrease the Estimated-join-weight of the vertices 

as much as possible and eventually join a vertex to the MinBLW-DG tree through an incident edge that 

has the smallest weight (that also becomes the Tree-join-weight of the vertex). Algorithm 4 illustrates 

modifications to the pseudo code of the MaxBNW-DG algorithm to determine the MinBLW-DG trees. 

Algorithm 4. Pseudo Code for the Algorithm to Determine Minimum Bottleneck Link Weight-DG Trees. 

Input: Graph G = (V, E, WV, WE) 

Output: ),( T
BLW

Min EVT  where ET is the set of edges in the MinBLW-DG tree 

Auxiliary Variables: Optimized-Nodes-List, Candidate-Nodes-List, Parent-Node-List 

          Estimated-join-weight, Tree-join-weight, Leader Node 
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Initialization: Optimized-Nodes-List = ϕ; Candidate-Nodes-List = ϕ, Parent-Node-List = ϕ, ET = ϕ 

        Vu ∈∀ : Estimated-join-weight(u) = ∞, Tree-join-weight(u) = ∞ 

 

Begin MinBLW-DG Algorithm 

1 Leader Node s is arbitrarily chosen among the vertices in V 

2...3 (as in the pseudo code for the MaxBNW-DG algorithm, refer Algorithm 1) 

4 Estimated-join-weight(s) = -∞ 

5 while (Candidate-Nodes-List ≠ ϕ) do 
6  Node u = {i | 

ListNodesCandidatei
Minimum

−−∈
(Estimated-join-weights(i)} 

7...9 (as in the pseudo code for the MaxBNW-DG algorithm, refer Algorithm 1) 

10  for ( Node v ∈Neighbors(u) AND v ∉Optimized-Nodes-List) do 

11   if (Estimated-join-weight(v) > WE(u-v)) then 

12    Estimated-join-weight(v) = WE(u-v) 

13    Parent-Node-List(v) = u 

14   end if 

15  end for 

16...24 (as in the pseudo code for the MaxBNW-DG algorithm, refer Algorithm 1) 

25 return ),( T
BLW

Min EVT  

End MinBLW-DG Algorithm 

4. Algorithms to Determine the Diameter of the DG Tree and Minimum Delay for Data Aggregation 

In this section, we describe algorithms to determine the diameter of a data gathering (DG) tree and 

the minimum delay for data aggregation spanning across all the nodes of the DG tree. We also discuss 

the time complexity of the benchmarking algorithm to determine minimum aggregation delay as  

well as present its proof of correctness. Finally, we illustrate examples to compute the minimum 

aggregation delay and illustrate the relationship between aggregation delay and metrics such as the tree 

diameter and the number of child nodes per intermediate node (further analyzed through simulations, 

Section 5).  

The diameter of a DG tree (also referred to as the height of the tree) is the maximum distance from 

any leaf node to the root of the tree [26]. We first identify the level of each node in the DG tree, with 

the root node (leader node) set to be at level 0, its immediate child nodes at level 1 and so on. Two 

intermediate nodes at a particular level or different levels can simultaneously communicate with their 

respective child nodes at the same time using different CDMA (Code Division Multiple Access)  

codes [14] to avoid any interference. An intermediate node could only communicate sequentially with 

its immediate downstream nodes using TDMA (Time Division Multiple Access) time slots (one data 

aggregation per time unit).  

4.1. Algorithm to Determine Diameter of a Data Gathering Tree 

In this subsection; we present an algorithm (see Algorithm 5 for the pseudo code) to compute the 

diameter of a data gathering tree; using the MaxBNW-DG tree as reference. The algorithm can be used 
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to determine the diameter of any DG tree rooted at a particular node. We perform Breadth First Search 

(BFS) [26] on the edges of the DG tree to determine the diameter of the tree as well as the level 

(distance) of the vertices from the root node of the tree. As part of this procedure; we use the auxiliary 

variables; Neighbor-List storing the neighbors of each of the vertices in the DG tree; Nodes-Explored 

storing the list of nodes whose neighborhood is already explored as part of BFS; Candidate-Nodes-List 

containing the list of nodes (maintained in a First-in First-out basis; the front vertex in the list is 

extracted using a dequeue operation) that are visited while exploring the neighborhood of some other 

vertices; but their own neighborhood is not yet explored; and Node-Level that stores the level 

(distance) of a node from the root node of the DG tree. In addition to the Diameter of the DG tree; the 

algorithm outputs the Child-Nodes-List that contains the list of child nodes (if any) for each node in the 

DG tree and a two-dimensional data structure referred to as Nodes-At-Levels that stores a list of nodes 

at each level of the DG tree. The Node-Level for the root node/leader node is 0. In each iteration of the 

BFS algorithm, we remove (dequeue) the vertex in the front of the Candidate-Nodes-List and  

add it to the Nodes-Explored list as well as explore its neighbors. If a neighbor node v that has not been 

visited (explored) so far is visited for the first time as part of the exploration of the neighborhood of a 

node u; we add node v to the Candidate-Nodes-List and Nodes-Explored list as well as set  

Node-Level[v] = Node-Level[u] + 1 and set node u to be the parent node for node v in the DG tree. We 

also add node v to the list of nodes at level Node-Level[v]. If the value for Node-Level[v] is greater than 

the currently known diameter of the DG tree; we set the diameter of the tree to Node-Level[v]; 

implying we have found a node that is farther away from the leader node of the DG tree. The 

complexity of the algorithm to determine the diameter of a DG tree is the complexity incurred with 

running the BFS algorithm on the |V| − 1 edges of the DG tree spanning over all the |V| vertices of the 

graph. Hence; the time complexity of the algorithm to determine the diameter of a DG tree is Θ (|V|). 

4.2. Algorithm to Determine the Minimum Aggregation Delay of a Data Gathering Tree 

In this subsection, we present the benchmarking algorithm to determine the minimum aggregation 

delay for a data gathering tree. Algorithm 6 presents the pseudo code that makes use of the diameter of 

the DG tree and the list of nodes at various levels of the tree to determine the delay for data 

aggregation. An intermediate node cannot forward an aggregated data to its upstream node unless it 

gets the aggregated data from all its immediate downstream child nodes. We assume it takes one time 

unit for a child node to send aggregated data to its parent node. We assume the leaf nodes of the DG 

tree (at all the levels) to have data readily available at time unit 0 (hence, the delay at any leaf node is 0). 

The delay at an intermediate node u, Delay[u], is iteratively computed over all its child nodes as shown 

in lines 6–8 of Algorithm 6 and explained here: We first sort the delays of the child nodes of u and 

maintain Sorted-Delay-Child-Nodes[u]. We maintain a temporary estimate of the delay (initialized to 

zero) at the intermediate node u using a running variable Temp-Delay[u] that is incremented as follows 

for each child node of u considered in the increasing order of their delays: For a child node  

v ∈Child-Nodes-List[u], Temp-Delay[u] = Maximum(Temp-Delay[u] + 1, Delay[v] + 1), as we assume 

it takes one time unit for data to reach from a child node to the immediate parent node. The increment 

of the Temp-Delay[u] by 1 within the Maximum function takes into consideration scenarios when the 

delay at the child node v would be smaller than the Temp-Delay already computed at the parent node u 
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due to data aggregation delays involving the siblings of node v (i.e., the other child nodes of node u). 

The delay associated with an intermediate node u, Delay[u], is the final value of Temp-Delay[u] after 

going through the delay-based sorted list of the child nodes of u. The above procedure is repeated at all 

the intermediate nodes, including the leader node. The aggregation delay at the leader node is 

considered to be the aggregation delay of the entire DG tree. The overall time complexity of the 

algorithm to compute the aggregation delay of a DG tree is dominated by the time incurred to sort the 

delays of the child nodes of the intermediate nodes at the different levels.  

Algorithm 5. Pseudo Code for an Algorithm to Determine the Diameter of a Data Gathering Tree. 

Input: DG Tree ),( T
BNW

Max EVT , Leader Node s 

Output: Diameter, Nodes-At-Levels, Child-Nodes-List 

Auxiliary Variables: Nodes-Explored; Candidate-Nodes-List, Child-Nodes-List;    

   Neighbor-List; Node-Level 

Initialization: Vi ∈∀ : Neighbor-List[i] = ϕ, Node-Level[i] = 0; Child-Nodes-List[i] =  ϕ   

            Nodes-At-Levels = ϕ; Diameter = 0; Nodes-Explored = ϕ; Candidate-Nodes-List = ϕ 

 

Begin Algorithm Diameter-DG Tree 

1 for (edge (u, v) ∈ET) do 

2  Neighbor-List[u] = Neighbor-List[u] ∪ {v} 

3  Neighbor-List[v] = Neighbor-List[v] ∪ {u} 

4 end for 

5 Candidate-Nodes-List = {s}  

6 Node-Level[s] = 0 

7 Nodes-At-Levels[0].add({s}) // adds the leader node s to the list of nodes at level 0 

8 Nodes-Explored = Nodes-Explored ∪ {s} 

9 while (Candidate-Nodes-List ≠ ϕ) do 

10  Node u = Dequeue(Candidate-Nodes-List) // removes u from Candidate-Nodes-List 

11  for ( Node v ∈Neighbor-List(u) AND v ∉Nodes-Explored) do 

12    Node-Level[v] = Node-Level[u] + 1 

13    Nodes-At-Levels[Node-Level[v]].add({v}) 

14    Child-Nodes-List(u) = Child-Nodes-List(u) ∪ {v}  

15    Nodes-Explored = Nodes-Explored ∪ {v} 

16    Candidate-Nodes-List = Candidate-Nodes-List ∪ {v} 

17    if (Diameter < Node-Level[v]) then 

18     Diameter = Node-Level[v] 

19    end if 

20  end for 

21 end while 

22 return Diameter, Nodes-At-Levels, Child-Nodes-List 

End Algorithm Diameter-DG Tree 
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4.3. Time Complexity and Proof of Correctness 

In this subsection, we discuss the time complexity and proof of correctness for the benchmarking 

algorithm to determine minimum aggregation delay of a data gathering tree. In the worst case, an 

intermediate node could have the rest of the nodes as its child nodes and it would take Θ(|V|*log|V|) 

time to sort the delays of the |V|−1 child nodes. To calculate the Temp-Delay values and the delay at 

each of the nodes, we spend one time unit for each edge at its upstream node. Hence, the overall time 

complexity of the algorithm to compute the aggregation delay of the DG tree is Θ(|V|*log|V|). 

The proof of correctness of the algorithm to determine the minimum aggregation delay for a DG 

tree simply follows from line 7 of the pseudo code (see Algorithm 6): For every intermediate node u, 

the estimate of the delay in each iteration of the loop (lines 6–8) while aggregating data received from 

a child node v is the maximum of the two values: one more than the current estimate of the delay at 

node u and one more than the aggregation delay at node v. The increment by one for both the 

parameters of the maximum function is the minimum possible increment that can be assigned to 

transmit data on a link. An intermediate node has to merely wait for data if none of its child nodes are 

ready with the data. However, if all the child nodes are ready with the data, the intermediate node 

aggregates data at a rate of just spending one additional time unit per child node. 

Algorithm 6. Pseudo Code for an Algorithm to Determine the Minimum Aggregation Delay of a Data 

Gathering Tree. 

Input: Diameter, Nodes-At-Levels, Child-Nodes-List, Leader Node s 

Output: Delay[s] 

Auxiliary Variables: Temp-Delay; Sorted-Delay-Child-Nodes 

Initialization: Vi ∈∀ : Delay[i] = 0, Temp-Delay[i] = 0, Sorted-Delay-Child-Nodes[i] = ϕ 

               

Begin Algorithm Aggregation-Delay-DG Tree 

1 for (Node-level = Diameter to 0) do   

2  for (Node u ∈Nodes-At-Levels.get(Node-level) ) do 

3   for (Node v ∈Child-Nodes-List[u]) do 

4    Insert (v, Delay[v]) at appropriate entry in Sorted-Delay-Child-Nodes[u] 

5   end for 

6   for (tuple (v, Delay[v]) in Sorted-Delay-Child-Nodes[u]) do 

7    Temp-Delay[u] = Maximum(Temp-Delay[u] + 1, Delay[v] + 1) 

8   end for 

9   Delay[u] = Temp-Delay[u] 

10  end for 

11 end for 

12 return Delay[s] 

End Algorithm Aggregation-Delay-DG Tree 
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4.4. Examples to Compute the Minimum Aggregation Delay of Data Gathering Trees 

Figure 1 illustrates examples to compute the minimum aggregation delay of two different data 

gathering trees that have the same diameter. In both the examples, the number inside the circle 

indicates the node ID and the number outside the circle indicates the minimum aggregation delay for 

the node. DG trees that have a larger fraction of leaf nodes (and hence fewer intermediate nodes) are 

more likely to have a larger number of child nodes per intermediate node. For such DG trees, it would 

take relatively more time slots for an intermediate node to sequentially aggregate data from its child 

nodes (especially for intermediate nodes at higher levels), resulting in a larger aggregation delay at the 

leader node. Hence, even if two DG trees have the same diameter (as shown in Figure 1), it could take 

a relatively longer time to aggregate data from the DG tree that has a larger number of child nodes per 

intermediate node. This is the trend of performance that is also observed with the DG trees in the 

simulations, especially for networks of high–very high node density. 

 

Figure 1. Examples to Determine the Minimum Aggregation Delay for a Data Gathering Tree. 

5. Simulations 

In this section, we present the simulation environment and examine the results of the simulation 

study conducted on the four categories of data gathering trees with respect to five performance metrics 

(see Section 5.1 for the list of metrics), including the aggregation delay-the primary metric of interest 

in this paper. We evaluate results of statistical tests conducted on the values obtained for the 

performance metrics and arrive at significant conclusions. We explore the contributions of the other 

four performance metrics for minimizing the aggregation delay as well as analyze the performance 

tradeoffs. We also calculate the margin of error values for the minimum aggregation delay (confidence 

interval: 95%). Finally, we discuss the impact of the algorithm design choices on the structure of the 

two categories of data gathering trees (bottleneck node-weight based and bottleneck link-weight based 

trees) and their performance. 

We conduct simulations in a discrete-event simulator implemented in Java. We implemented the 

algorithms to determine the four types of data gathering trees (MaxBNW-DG, MinBNW-DG, 

MaxBLW-DG and MinBLW-DG trees) described in Section 3 and the algorithms to determine the 

diameter and minimum aggregation delay for data gathering trees described in Section 4. We 

conducted the simulations with networks of 50 nodes and 100 nodes, with the transmission ranges of 

the nodes varied from 25 m to 50 m, in increments of 5 m. The network dimensions are  
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100 m × 100 m. These are the usual parameters considered for simulation in sensor networks (e.g., 

refer [1,3,5,6,8]). The average number of neighbors per node is given by πR2/A, where R is the 

transmission range and A is the network area. We consider the 50-node network to be of moderate to 

high node density (20 to 40 neighbors per node on average) and the 100-node network to be of high to 

very high node density (40 to 80 neighbors per node on average).  

We assume an ideal medium access control (MAC) channel protocol [28] for the underlying 

wireless channel (i.e., there are no collisions during channel access). We also assume the number of 

unique CDMA codes to be sufficient enough for the intermediate nodes at the same level or different 

levels to simultaneously aggregate data from their respective child nodes, if the latter are ready with 

the data. Such idealistic assumptions have been successfully applied in the literature for wireless ad 

hoc networks and sensor networks (e.g., [29–33]) to extract optimal performance from the 

benchmarking algorithms run in the higher layers and to delineate the effects of the design choices. 

Networks of High–Very High Node Density Networks of Moderate–High Node Density 

Figure 2. Performance of the Max/Min Bottleneck Node Weight and Link Weight-based DG Trees. 
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The weights for the edges are uniform-randomly assigned in the range [0...1] and the weights for 

the nodes are also uniform-randomly assigned in the range [0...1]; the node weights are independent of 

the link weights. We generate 200 snapshots of the network graphs for each combination of the 

number of nodes and the transmission range per node and run the algorithms to determine the four DG 

trees on each of these graph snapshots and average the results (shown in Figure 2). Section 5.4 

discusses about the margin of error values for the minimum aggregation delay (confidence interval is 95%).  

5.1. Performance Metrics 

In this subsection, we introduce the performance metrics that are measured in the simulations. The 

performance metrics measured are as follows: 

(i) Diameter of the DG Tree—The maximum distance (number of hops) from any leaf node to the 

root node of the DG tree. 

(ii) Minimum Aggregation Delay—The minimum number of time slots it takes for the data to get 

aggregated, starting from the leaf nodes and propagating to the root node of the DG tree 

(iii) Hop Count per Path—The average of the number of hops per path from every node (other than 

the root node) to the root node of the DG tree.  

(iv) Number of Child Nodes per Intermediate Node—The average of the number of immediate child 

nodes per intermediate node, considered across all the intermediate nodes (including the root node) 

of the DG tree. 

(v) Fraction of Nodes as Leaf Nodes—The ratio of the total number of leaf nodes (nodes without 

any child nodes) at all levels divided by the total number of nodes in the network. 

5.2. MaxBNW-DG Trees vs. MinBNW-DG Trees and MaxBLW-DG Trees vs. MinBLW-DG Trees 

A significant result from the simulations is that the performance of the MaxBNW-DG trees is 

almost the same as that of the MinBNW-DG trees with respect to all the metrics; and likewise, the 

performance of the MaxBLW-DG trees is the same as that of the MinBLW-DG trees with respect to 

all the metrics. This could be observed from the results displayed in Figure 2 for all the metrics. The 

vertical bars for the MaxBNW-DG trees ( ) and MinBNW-DG trees ( ) are almost the same height 

for each of the performance metrics with respect to any operating condition, and this could be also 

confirmed on the basis of the magnitude of the average values for the performance metrics listed on 

the top of the bars. Likewise, the vertical bars for the MaxBLW-DG trees ( ) and MinBLW-DG trees 

( ) are almost the same height for each performance metric with respect to any operating condition, 

and this is further confirmed on the basis of the magnitude of the average values for the performance 

metrics listed on the top of the bars. We also further confirm our assertion through statistical tests. For 

any performance metric under a particular operating condition, the ratios for the median and maximum 

absolute difference in the average values incurred for the MaxBNW-DG trees and MinBNW-DG trees 

(as well as for the MaxBLW-DG trees and MinBLW-DG trees) to that of the average values incurred 

for each of these trees is not more than 0.008 and 0.06 respectively. Hence, we hereafter discuss 

simply on the basis of bottleneck node-weight based DG trees vs. bottleneck link-weight based DG trees.  
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5.3. Discussion of the Results 

In this subsection, we discuss the results for the two categories of data gathering trees with respect 

to each of the performance metrics and explore the dependence of the aggregation delay on metrics 

such as the diameter, number of child nodes per intermediate node and the fraction of nodes as leaf 

nodes. We also discuss the impact of node density on the performance of the two data gathering trees. 

To begin with, we observe the diameter of the bottleneck node-weight based DG trees to be 

significantly smaller than the diameter of the bottleneck link-weight based DG trees. The diameter of 

the bottleneck link-weight based DG trees is about 100–270% larger (for networks of moderate-high 

node density) and 120%–370% larger (for networks of high–very high node density) compared to that 

of the bottleneck node-weight based DG trees. With increase in node density, the diameter of the 

bottleneck link-weight based DG trees increases by about 30–50%, whereas the diameter of the 

bottleneck node-weight based DG trees increases only by at most 20% with increase in node density. 

To vindicate the diameters observed for the bottleneck node vs. bottleneck link-weight based DG trees, 

the average hop count per path for both the categories of DG trees is about half the diameter values 

observed for the DG trees (for a given node density and transmission range). The smaller diameter and 

the correspondingly smaller average hop count per path incurred with the bottleneck node  

weight-based DG trees augurs well for real-time reporting of data by any sensor node to the root node 

of the DG tree (i.e., one-to-one communication between a sensor node and the root node). 

As a consequence of incurring a smaller diameter, the average number of child nodes per 

intermediate node for the bottleneck node-weight based DG trees is significantly larger (by factors  

of two to five in networks of moderate-high node density and by factors of 3 to 10 in networks of 

high–very high node density) than the average number of child nodes per intermediate node incurred 

with the bottleneck link-weight based DG trees. On the other hand, the fraction of nodes as leaf nodes 

is more than 0.7 (and could be as large as 0.94 in networks of very high node density) for the 

bottleneck node-weight based DG trees, whereas the fraction of nodes as leaf nodes is at most 0.42 for 

the bottleneck link-weight based DG trees.  

We observe the minimum aggregation delay for the bottleneck node weight-based DG trees to be 

lower than that of the bottleneck link weight-based DG trees when the network is operated under 

moderate transmission range values (of 25 m and 30 m) in networks of moderate-high node density 

and at 25m transmission range in networks of high–very high node density. As the diameter values are 

moderate (and not too low) and the average number of child nodes per intermediate node is not too 

high for the above said conditions, we observe the minimum aggregation delay to be relatively lower 

for the bottleneck node weight-based DG trees compared to that incurred with the bottleneck link 

weight-based DG trees (for which the impact of a larger diameter could be felt at these operating 

conditions). However, as the node density increases with increase in the transmission range and the 

number of nodes in the network, the minimum aggregation delay for the bottleneck node weight-based DG 

trees starts increasing significantly and becomes much larger than the minimum aggregation delay 

incurred with the bottleneck link weight-based DG trees.  

With increase in node density, the reduction in the tree diameter and a concave-up pattern of 

increase (i.e., the rate of increase increases with increase in node density) in the number of child nodes 

per intermediate node significantly impact the aggregation delay of the bottleneck node weight-based 
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DG trees. The number of time slots required at an intermediate node to sequentially aggregate data 

from each of its child nodes would get high, especially at intermediate nodes that are closer to the 

leader node, thereby increasing the aggregation delay at the leader node. On the other hand, the 

average number of child nodes per intermediate node for the bottleneck link weight-based DG trees 

remains the same with increase in node density and the tree diameter only marginally reduces; as a 

result, the aggregation delay for the bottleneck link weight-based DG trees remains about the same 

with increase in node density (and even marginally reduces with increase in node density). The 

minimum aggregation delay incurred with the bottleneck node weight-based DG trees could be at most 

85% and 160% larger than the aggregation delay incurred with the bottleneck link weight-based DG 

trees in networks of moderate–high and high–very high node density respectively.  

5.4. Margin of Error for Minimum Aggregation Delay 

We calculate and display (see Figure 3) the margin of error values (confidence interval: 95%) for 

the minimum aggregation delay, the primary performance metric of interest in this paper. Since the 

aggregation delay is directly dependent on the other three key performance metrics (diameter, fraction 

of leaf nodes and the number of child nodes per intermediate node), the margin of error values for the 

minimum aggregation delay could be considered as a measure of the statistical accuracy of the 

simulations. The procedure followed to calculate the margin of error values (using a z-score of 1.96 for 

a 95% confidence interval) for the minimum aggregation delay is briefly explained below. 

Networks of High–Very High Node Density Networks of Moderate–High Node Density 

Figure 3. Margin of Error Values for Minimum Aggregation Delay. 

The margin of error for the minimum aggregation delay under a particular operating condition 
(number of nodes and transmission range per node) is calculated as snz /*σ , where z is the z-score 

1.96, σ is the standard deviation of the samples collected for the minimum aggregation delay under the 

particular operating condition and ns is the number of samples collected (200 graph snapshots). If x  is 

the average value of the ns samples collected for the minimum aggregation delay under a particular 

operating condition, then one could say that the range of values for the minimum aggregation delay is 
( )ss nzxnzx /*,...,/* σσ +−  with a probability of 0.95 (95% confidence interval; z-score is 1.96). 

As the magnitude of the average value for the minimum aggregation delay increases, we observe 

the margin of error to also increase, especially in the case of the bottleneck node-weight based DG 

trees. For networks of high to very high density, we observe the margin of error values for the 

minimum aggregation delay to be relatively low for the bottleneck link weight-based DG trees, partly 

attributed to the lower values for the average minimum aggregation delay. Only for networks of 
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moderate density, the margin of error values for the bottleneck node-weight base DG trees are slightly 

lower than that of the bottleneck link-weight based DG trees. We also observe negligible difference in 

the margin of error values incurred for the MaxBNW-DG trees and MinBNW-DG trees; likewise, 

there is negligible difference in the margin of error values incurred for the MaxBLW-DG and 

MinBLW-DG trees. This further vindicates our reason to just base our discussion of the results as 

bottleneck node-weight based DG trees vs. bottleneck link-weight based DG trees.  

5.5. Performance Tradeoffs 

In this subsection, we look at each of the performance metrics (listed in Section 5.1) in isolation, 

independent of the trend of values expected of them to minimize the aggregation delay. This way, we 

are able to identify the desirable trend of values (low, moderate or high) that would be typically 

expected of these metrics to optimize network measures other than aggregation delay (such as node 

lifetime and network lifetime) and thereby also identify any tradeoffs. We define node lifetime [34] as 

the time of first node failure due to energy exhaustion; whereas, network lifetime [34] is the time the 

network gets disconnected due to the failure of one or more nodes due to energy exhaustion.  

As noticed in Section 5.3 and Figure 2, to obtain a lower aggregation delay (especially with increase 

in node density), it would be preferable for the data gathering trees to have a moderate-larger diameter, 

a smaller fraction of nodes as leaf nodes and a low-moderate number of child nodes per intermediate 

node. However, one or more of these trend in the values for the above metrics may not be desirable for 

real-time reporting of events from any node to the leader node and/or for optimizing energy 

consumption-related performance measures such as the node lifetime and network lifetime. To begin 

with, we typically desire to have lower values for the tree diameter and hop count per path to facilitate 

faster real-time reporting of events from an individual node to the leader node of the data gathering 

tree [12]. However, if we were to incur a smaller hop count per path, then the diameter of the data 

gathering tree would have to be also smaller [23], thereby increasing the aggregation delay  

(diameter-aggregation delay tradeoff). 

With respect to the fraction of nodes as leaf nodes, from a network lifetime standpoint, we would 

typically desire to have a larger number of leaf nodes. This is because the leaf nodes tend to lose 

relatively less energy compared to the intermediate nodes [16]. For every data aggregation cycle, the 

leaf nodes lose energy for transmitting the data only once to their upstream intermediate node and 

there is no energy lost due to reception. On the other hand, the intermediate nodes lose energy for both 

transmitting (to an upstream node) as well as for receiving and aggregating data (from the downstream 

child nodes) [22]. Thus, a larger number of leaf nodes in a data gathering tree is desirable to prolong 

the lifetime of a majority of the nodes in the network so that the time of network disconnection due to 

node failures (typically referred to as the network lifetime) could be prolonged as much as possible [16,34]. 

However, a larger fraction of nodes as leaf nodes would more likely increase the number of child 

nodes per intermediate node (also confirmed through the simulation results in Figure 2) and thereby 

increase the aggregation delay (network lifetime-aggregation delay tradeoff). 

With respect to the number of child nodes per intermediate node, we notice that a larger value for 

this metric could increase the aggregation delay as well as trigger premature node failures. As 

intermediate nodes have to spend energy to aggregate data from their child nodes, a larger number of 
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child nodes per intermediate node could overuse certain nodes (the intermediate nodes) at the cost of 

the other nodes (the leaf nodes) [24]. A very low value for the number of child nodes per intermediate 

node would not be desirable either as it would lead to a significantly larger number of nodes 

functioning as intermediate nodes and aggregating the data (such a scenario could only lower the node 

lifetime) [6]. Hence, if we are interested in prolonging the lifetime of every node in the network  

(i.e., maximizing the time of first node failure, typically referred to as the node lifetime [34]), it would 

be desirable to have a moderate number of child nodes per intermediate node. An open question is how 

to define the range of moderate values for the number of child nodes per intermediate node. From 

Figure 2, we also see that a moderate number of child nodes per intermediate node could also lower 

the aggregation delay, especially if the diameter of the tree is not very high (as observed in the case of 

bottleneck node-weight based data gathering trees in networks of moderate node density). However, 

we notice that if each intermediate node can accommodate only moderate number of child nodes, we 

would need more nodes to serve as intermediate nodes and the fraction of nodes as leaf nodes would 

only decrease, thereby increasing the energy consumption at several nodes (node lifetime-network 

lifetime tradeoff). 

5.6. Impact of the Algorithm Design Choices on the Structure of the DG Trees and their Performance  

The simulation results vindicate the impact of the design choices behind the algorithms for  

the construction of the two categories of data gathering trees (bottleneck node-weight vs. bottleneck 

link-weight based trees) on their structure as well as the performance. The smaller diameter of the 

bottleneck node-weight based data gathering trees is primarily attributed to limiting the Tree-join-weight 

of a downstream node from not becoming more than the Tree-join-weight of an upstream node (in the 

case of MaxBNW-DG trees) or from not becoming less than the Tree-join-weight of an upstream  

node (in the case of MinBNW-DG trees). As a result, a node that is not yet included in a bottleneck 

node-weight based DG tree simply prefers to join the tree through an upstream node that has the 

largest Tree-join-weight (for MaxBNW-DG trees) or the smallest Tree-join-weight (for MinBNW-DG 

trees). Such upstream nodes are more likely to be closer to the root/leader node of the data gathering 

tree, as the Tree-join-weight for any node cannot be larger than that of the leader node (for MaxBNW-DG 

trees) or smaller than that of the leader node (for MinBNW-DG trees). In the case of bottleneck  

link-weight based DG trees, there is no such restriction as seen in the case of bottleneck node-weight 

based DG trees. A node that is not yet included in a bottleneck link-weight based DG tree could simply 

join the tree via any upstream node through a link of the largest weight (in case of MaxBLW-DG trees) 

or the smallest weight (in case of MinBLW-DG trees). Such upstream nodes need not be always closer 

to the leader node, and this contributes to a relatively larger diameter (and a lower number of child 

nodes per intermediate node) for the bottleneck link-weight based DG trees vis-a-vis the bottleneck 

node-weight based DG trees. Thus, the simulation results observed here are only influenced by the 

structure of the data gathering trees and their construction procedure, and are not influenced by the 

configuration of the simulation. In other words, the simulation results merely confirm the performance 

expected of the two categories of DG trees owing to their design choices. 
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6. Conclusions and Future Work 

The high-level contributions of our paper are as follows: We have proposed a benchmarking 

algorithm to determine the minimum aggregation delay for data gathering trees in wireless sensor 

networks. We have shown that the performance of the maximum and minimum bottleneck node 

weight-based DG trees (and likewise for the maximum and minimum bottleneck link weight-based DG 

trees) to be almost the same with respect to the performance metrics (aggregation delay, diameter/hop 

count and distribution of child nodes/leaf nodes in the DG tree) evaluated in this paper, indicating that 

it would be sufficient to compare the performance with respect to just two categories of DG trees 

(bottleneck node weight vs. bottleneck link weight based; using either the maximum or minimum 

bottleneck weight-based DG tree from each category would just be sufficient).  

The simulation results confirm the diameter-aggregation delay tradeoff that was expected between 

the bottleneck node and bottleneck link weight-based data gathering trees owing to their design. The 

bottleneck node weight-based DG trees incur a smaller diameter and a larger number of child nodes 

per intermediate node (both contributing to the larger aggregation delay, especially in networks of 

high–very high node density), whereas the bottleneck link weight-based DG trees incur a larger 

diameter and a much smaller number of child nodes per intermediate node. The larger diameter makes 

the bottleneck link weight-based DG trees incur a data aggregation delay that is at most 40% larger 

than that incurred with the bottleneck node weight-based DG trees in networks of moderate node 

density operated under moderate transmission range values (25m). However, with increase in the node 

density, the aggregation delay incurred with the bottleneck node weight-based DG trees starts 

becoming significantly larger than the aggregation delay incurred with the bottleneck link weight-based 

DG trees (that do not show any significant impact of the increase in node density). We also anticipate 

observing a similar diameter-aggregation delay tradeoff even for any other complex network of high 

node density.  

The contributions and observations made throughout this paper could be used to focus future 

research on exploring strategies for maintaining the diameter of the bottleneck node weight-based DG 

trees at moderate values (and not allowing the number of child nodes per intermediate node to become 

significantly high) with increase in node density and thereby reducing the network-wide aggregation 

delay for data gathering. Note that the simulations assume the availability of a sufficient number of 

unique CDMA codes for the intermediate nodes at the same level or different levels to simultaneously 

aggregate data from their respective child nodes, if the latter are ready with the data. We will extend 

our simulation study by running the benchmarking algorithm on a wireless medium with a limited 

number of CDMA codes and evaluate the impact on the diameter-aggregation delay tradeoff. 

Likewise, we will also run the benchmarking algorithm under various medium access control protocols 

for wireless sensor networks [28] and evaluate the impact of collisions (expected to be significant in 

networks of high–very high node density) on the diameter-aggregation delay tradeoff. 
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