

Algorithms 2015, 8, 336-365; doi:10.3390/a8020336

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

MAKHA—A New Hybrid Swarm Intelligence Global
Optimization Algorithm

Ahmed M.E. Khalil 1,†, Seif-Eddeen K. Fateen 1,2,† and Adrián Bonilla-Petriciolet 3,*

1 Department of Chemical Engineering, Faculty of Engineering, Cairo University, Giza 12613,

Egypt; E-Mails: ahmad.alsayed@eng1.cu.edu.eg (A.M.E.K.); sfateen@alum.mit.edu (S.-E.K.F.)
2 Department of Petroleum and Energy Engineering, American University in Cairo,

New Cairo 11835, Egypt
3 Department of Chemical Engineering, Aguascalientes Institute of Technology,

Aguascalientes 20256, Mexico

† These authors contributed equally to this work.

* Author to whom correspondence should be addressed; E-Mail: petriciolet@hotmail.com;

Tel.: +52-449-910-5002 (ext. 127); Fax: +52-449-910-5002.

Academic Editor: George Karakostas

Received: 2 April 2015 / Accepted: 3 June 2015 / Published: 19 June 2015

Abstract: The search for efficient and reliable bio-inspired optimization methods

continues to be an active topic of research due to the wide application of the developed

methods. In this study, we developed a reliable and efficient optimization method via the

hybridization of two bio-inspired swarm intelligence optimization algorithms, namely, the

Monkey Algorithm (MA) and the Krill Herd Algorithm (KHA). The hybridization made

use of the efficient steps in each of the two original algorithms and provided a better

balance between the exploration/diversification steps and the exploitation/intensification

steps. The new hybrid algorithm, MAKHA, was rigorously tested with 27 benchmark

problems and its results were compared with the results of the two original algorithms.

MAKHA proved to be considerably more reliable and more efficient in tested problems.

Keywords: global optimization; nature-inspired methods; monkey algorithm; krill herd

algorithm; hybridization

OPEN ACCESS

Algorithms 2015, 8 337

1. Introduction

The use of stochastic global optimization methods has gained popularity in a wide variety of

scientific and engineering applications as those methods have some advantages over deterministic

optimization methods [1]. Those advantages include the lack of the need for a good initial guess and the

ability to handle multi-modal and non-convex objective functions without the assumptions of continuity

and differentiability.

Several stochastic methods have been proposed and investigated in challenging optimization

problems using continuous variables. Such methods include simulated annealing, genetic algorithms,

differential evolution, particle swarm optimization, harmony search, and ant colony optimization.

In general, these methods may show different numerical performances and, consequently, the search

for more effective and reliable stochastic global optimization methods is currently an active area of

research. In particular, the Monkey Algorithm (MA) [2] and the Krill-Herd Algorithm (KHA) [3] are

two new, nature-inspired stochastic optimization method that are gaining popularity in finding the

global minimum of diverse science and engineering application problems. For example, MA and its

variants were recently used for the power system optimization [4], the coordinated control of low

frequency oscillation [5], and for finding optimal sensor placement in structural health monitoring [6–8].

KHA is a new method and has been used in network route optimization [9] and economic load

dispatch [10].

Since the development of those two algorithms, some modifications have been proposed to improve

their performance. The modifications often involved variations of the search rules or hybridization

with other algorithms. For example, chaotic search methods were added to MA [11] and KHA [12–14]

to improve their performance. MA modifications also included the use of new parameters that change

their value during the optimization [11], changing the watch-jump process of MA to make use of

information obtained by other monkeys [5], redesigning the MA steps to facilitate discrete optimization

problems [15], and incorporating an asynchronous climb process [7]. Other KHA modifications

included the addition of local Lévy-flight move [16], adapting KHA to discrete optimization [9], better

exchange of information between top krill during motion calculation [17], and hybridization of KHA

with Harmony Search [18] and Simulated Annealing [19].

Hybridization is an enhancement in optimization algorithms in which operators from a certain

algorithm are combined with other operators from another algorithm to produce more reliable and

effective synergistic entity and get better results than that of the main parent algorithms. For example,

SA (simulated annealing) is trajectory-based technique that is better at intensification or exploitation; it

can detect the best solution with high probability in a confined search space. On the other hand, GA

(Genetic algorithm) is regarded as population-based algorithm, which carrys out a diversification

process and identifies promising regions of the search space [20,21]. An integration of both algorithms

generated the SA-GA hybrid, which outperformed simple GA and a Monte Carlo search in terms of

reliability and efficiency of the results. The improved genetic algorithm was implemented to optimize

the weight of a pressure vessel under the burst pressure constraint [22]. It was contrived to cope with

the phenomena of stagnation in earlier and later stages so that the ability of GA to escape entrapment

in local minimum was used and wisely associated with SA’s intensification behavior.

Algorithms 2015, 8 338

Other examples of hybrids display the enhancement in results better than their parent algorithms.

Hybrid Evolutionary Firefly Algorithm (HEFA) is a combination of FA and DE (Differential

evolution) in which population was initiated, fitness values were evaluated, population was sorted and

then split to two halves, the fitter half follows the FA, while the worse half evolves with the DE.

HEFA was able to outperform the parent algorithms and GA, but with a longer computation time than

GA [23]. BF-PSO hybrid is composed of BFO (Bacterial Forage Optimization) and PSO (Particle

Swarm optimization), which was formed to improve the BFO’s ability to tackle multi-modal

functions [24]. ACO has been hybridized with a Pseudo-Parallel GA (PPGA) for solving set of

optimization problems, and PPGA-ACO obtained successfully the best minimum with minimal

computational effort as compared to PPGA, GA, and neural networks [25]. The HS-BA (Harmony

Search and Bees Algorithm hybrid) made the best results on eight out of 14 data instances of the

University Course Timetabling Problem (UCTP), as compared to VNS (Variable Neighborhood

Search), BA (Bees Algorithm), and TS (Tabu Search) [26]. The explorative ability of FA was

enhanced by adding GA, and the hybrid was tested on a number of benchmarks and gained better

results than standard FA and a number of PSO variants. However, it was often either outperformed by,

or at best comparable to, FAs that use Gaussian distribution (Brownian motion) instead of Lévy flights,

or use learning automata for parameter adaptation [27]. For further reading about hybrid algorithms,

their methods, and strategies, please refer to the following: GA and BFO [28,29], PSO and SA [30],

GA and SA [31], ACO and TS [32], and GA and PSO [33].

In this study, a new hybrid stochastic optimization method was developed, which uses features from

the two algorithms, MA and KHA. The aim of this paper is to present the new algorithm and to

evaluate its performance in comparison with the original algorithms. The remainder of this paper is divided

as follows: Sections 2 and 3 introduce the Monkey Algorithm and the Krill Herd Algorithm, respectively.

Section 4 introduces the proposed hybrid algorithm. The numerical experiments performed to evaluate

the modification are presented in Section 5. The results of the numerical experiments are presented and

discussed in Section 6. Finally, Section 7 summarizes the conclusions of this study.

2. The Monkey Algorithm (MA)

This algorithm [2] mimics the process in which monkeys climb mountains to reach the highest

point. The climbing method consists of three main processes:

1) The climb process: In this exploitation process, monkeys search the local optimum solution

extensively in a close range.

2) The watch-jump process: In this process, monkeys look for new solutions with objective value

higher than the current ones. It is considered an exploitation and intensification method.

3) The somersault process: This process is for exploration and it prevents getting trapped in a local

optimum. Monkeys search for new points in other search domains. In nature, each monkey

attempts to reach the highest mountaintop, which corresponds to the maximum value of the

objective function. The fitness of the objective function simulates the height of the mountaintop,

while the decision variable vector is considered to contain the positions of the monkeys.

Changing the sign of the objective function allows the algorithm to find the global minimum

instead of the global maximum. The pseudo-code for this algorithm is shown in Figure 1.

Algorithms 2015, 8 339

Figure 1. The pseudo-code of the Monkey Algorithm (MA).

There are different equations for the somersault process. In this study, the somersault jump steps

were as follows:

Algorithms 2015, 8 340

a) Random generation of α from the somersault interval [c, d] where c and d governs the maximum

distance that the monkey can somersault.

b) Create a pivot P by the following equation:

= =

 −
−

=
NP

l

NP

i
ijlji XX

NP
P

1 11

1
 (1)

where),...,,(21 NVi PPPP = , NP is the population number and X is the monkey position.

c) Get y (Monkey new position) from

ijiii XPXY −+= α (2)

d) Update Xi with Yi if feasible (within boundary limits) or repeat until feasible.

3. The Krill Herd Algorithm (KHA)

This bio-inspired algorithm [3] simulates the herding behavior of krill individuals. The values of the

objective function correspond to the krill movements, which represent the minimum distances of each

individual krill from food and from the highest density of the herd. The krill motion involves three

main mechanisms,

a) The movement induced by the presence of other individuals.

b) The foraging activity.

c) Random diffusion.

In addition, two adaptive genetic operators are used: Mutation and Crossover algorithms. In nature,

when the predation action is made by predators, such as seals, penguins or sea birds, they remove krill

individuals resulting in decreasing the krill density. Afterwards, the krill individuals increase their

density and find food. So, the individual krill moves towards the best optimum solution as it searches

for the highest density and food. The closer the distance to the highest density and food, the less value

of the objective function is obtained. The objective function value of each individual krill is supposed

to be an imaginary distance and contains a combination of the distance from food and from the highest

density of the krill swarm. The individuals’ variables of the function are considered to be

time-dependent positions of an individual krill, which are governed by the three mentioned features

along with the genetic operator. The pseudo-code for this algorithm is shown in Figure 2.

It is important to note that there are four types of KHA: (1) KHA without any genetic operators

(KHA I); (2) KH with crossover operator (KHA II); (3) KHA with mutation operator (KHA III);

and (4) KH with crossover and mutation operators (KHA IV). In this study, KHA IV was used in

solving the benchmark problems.

Algorithms 2015, 8 341

Figure 2. The pseudo-code of the Krill Herd Algorithm (KHA).

Algorithms 2015, 8 342

4. MAKHA Hybrid Algorithm

MAKHA is a new hybrid algorithm, which combines some of the mechanisms and processes of MA

and KHA to get a reliable algorithm with appreciated performance. The steps of both algorithms

include exploration/diversification and exploitation/intensification features as follows. The

exploration/diversification features of MA are the somersault process and the watch-jump process,

while for KHA, they are the physical random diffusion and the genetic operators. On the other hand,

the exploitation/intensification features of MA are the climb and the watch-jump process, while for

KHA, they are the induced motion and the foraging activity.

Both algorithms attempt to balance between exploration/diversification and exploitation/

intensification features. MA has two exploration operators and two exploitation operators. The

watch-jump process acts as both an exploration and an exploitation operator. The somersault operator

is a high-performing diversification operator that makes a good use of the pivot function. Since MA is an

exploration-dominant algorithm, the exploitation balance is brought to the algorithm by running the

climb process twice per iteration. In each process, the MA algorithm uses a large number of cycles that

reaches up to 2000 cycles in some problems. Increasing the number of cycles reduces the

computational efficiency because it increases the number of function evaluations (NFE).

Even though KHA also has two exploration operators and two exploitation operators, its exploration

component is not dominating because the physical random diffusion is a less efficient exploration

operator than the somersault operator. Thus, the entrapment in local minima is more probable in KHA

than in MA. The trapping problem can be addressed in the KHA by the use of two genetic operators

(crossover and mutation), which appear in KHA IV algorithm. Since the foraging movement is a

high-performing exploitation operator, KHA could be considered an exploitation-dominant algorithm.

An equal number of exploration and exploitation operators does not necessitate a balance between

exploration and exploitation. The performance of operator is a critical factor. Assessing the

performance of an operator can be done by replacing the exploration or exploitation operator in one

algorithm with the same type of operator in the other algorithm. Testing the modified algorithms with

benchmark problems can reveal whether or not the replaced operator was performing its function

efficiently relative to the other operator.

To improve the performance of the algorithm such that the modified algorithm outperforms the two

original algorithms, we aimed at using the best performing exploration and exploitation operators from

the two algorithms. The hybrid algorithm, MAKHA, was constructed from the following processes:

1. The watch-jump process.

2. The foraging activity process.

3. The physical random diffusion process.

4. The genetic mutation and crossover process.

5. The somersault process.

The climb process, which consumes a high NFE, was not included in the hybrid algorithm.

The random diffusion step was included in only one of MAKHA’s variant as explained below.

MAKHA was implemented in two different ways: MAKHA I, which does not use random

diffusion; and MAKHA II, which uses the random diffusion step. It was found, as shown in the Results

Algorithms 2015, 8 343

Section, that MAKHA I was more suitable for low-dimensional problems, while MAKHA II was

better for the high-dimensional problems (NV = 50).

Figure 3. The pseudo-code of hybrid MAKHA.

Algorithms 2015, 8 344

The general pseudo-code for this algorithm is shown in Figure 3, while the equations used are

as follows:

• Initialization procedure:

- Random generation of population in which the positions of the hybrid agent (monkey/krill) are

created randomly, Xi = (Xi1, Xi2, …, Xi(NV)) where i = 1 to NP, which represents the number of

hybrids, while NV represents the dimension of the decision variable vector.

• The fitness evaluation and sorting:

- Hi=f(Xi) where H stands for hybrid fitness and f is the objective function used.

• The watch-jump process:

- Random generation of Xi from (Xij − b, Xij + b) where b is the eyesight of the hybrid (monkey

in MA) which indicates the maximal distance the hybrid can watch and Yi = (Yi1, Yi2, …, Yi(NV)),

which are the new hybrid positions.

- If −f (Yi) ≥ −f (Xi) then update Xi with Yi if feasible (i.e., within limits).

• Foraging motion:

- Depends on food location and the previous experience about the location.
- Calculate the food attractive food

iβ and the effect of best fitness so far Best
iβ

, ,
ˆ ˆfood food

i i food i foodC H Xβ = (3)

, ,
ˆ ˆBest

i i ibest i ibestH Xβ = (4)

where Cfood is the food coefficient, which decreases with time and is calculated from:

C 2(1 I / I)= −food
max (5)

where I is the iteration number and Imax is the maximum number of iterations.

- The center of food density is estimated from the following equation:

=

== NP

i i

NP

i
i

ifood

H

X
H

X

1

1

1

1

 (6)

and Hibest is the best previously visited position.

- Ĥ and X̂ are unit normalized values obtained from this general form:

ε+−
−

=
ij

ij
ji XX

XX
X ,
ˆ (7)

bestworst

ij
ji HH

HH
H

−
−

=,
ˆ (8)

Algorithms 2015, 8 345

where ε is a small positive number that is added to avoid singularities. Hbest and Hworst are the best

and the worst fitness values, respectively, of the hybrid agents so far. H stands for the hybrid fitness

and was used as K symbol in krill herd method.

- The foraging motion is defined as
old

ififi FwVF += β (9)

where Vf is the foraging speed, wf is the inertia weight of the foraging motion in the
range [0, 1], and old

iF is the last foraging motion.

• Physical diffusion:

This is an exploration step that is used at high dimensional problem, then

iD D (1 I / I)δ= −max max (10)

where Dmax is the maximum diffusion speed and δ is the random direction vector.

• Calculate the time interval Δt

()
=

−=Δ
NV

L
LLt LBUBCt

1

 (11)

where Ct is constant.

• The step for position is calculated through:

ii
i DF

dt

dX += (12)

dt

dX
ttXttX i

ii Δ+=Δ+)()((13)

where
dt

dXi represents the velocity of the hybrid agent (Krill/Monkey).

• Implementation of genetic operator:

- Crossover

 <

=
otherwiseX

CrrandomX
X

mi

mr

mi
,,

,

,

,
 (14)

where { }NPiir ,...,1,1,...,2,1 +−∈ and Cr is the crossover probability

bestir KC ,
ˆ2.08.0 += (15)

- Mutation

 <−+

=
otherwiseX

MurandomXXX
X

mi

mqmpmgbest

mi ,

),(

,

,,,

,

μ
 (16)

where µ is a random number, { }NPiiqp ,...,1,1,...,2,1, +−∈ and Mu is the mutation probability:

bestiHMu ,
ˆ05.08.0 += (17)

Algorithms 2015, 8 346

)/()(ˆ
, gbworstgbibesti HHHHH −−= (18)

where Hgb is the best global fitness of the hybrid so far and Xgbest is its position.

• The somersault process:

- α is generated randomly from [c, d] where c and d are somersault interval. Two different

implementations of the somersault process can be used:

Somersault I

- Create the pivot P [2]:

=

=
NP

i
iji X

NP
P

1

1
 where),...,,(21 NVi PPPP = (19)

)(ijiii XPXY −+= α (20)

- Update Xi with Y if feasible or repeat until feasible.

Somersault II

- Create a pivot P by this equation used in MA:

 −
−

=
=

NP

l

NP

i
ijlji XX

NP
P

11

1
 (21)

- Get Y (i.e., the hybrid new position)

ijiii XPXY −+= α (22)

- Update Xi with Y if feasible and repeat until feasible.

In summary, MAKHA offers more exploration than KHA and more exploitation than MA.

5. Numerical Experiments

Twenty-seven classical benchmark functions were used to evaluate the performance of MAKHA as

compared to the original MA and KHA. Tables 1 and 2 show the benchmark functions used along with

their names, number of variables, variable limits and the value of the global minimum. Table 3 lists the

parameters used in the three algorithms in which their values were set to give the best attainable results

for each algorithm. A new parameter for MAKHA was defined as the midpoint between the lower

boundary and the upper boundary of the decision variables X. It is calculated from this formula:

()
=

−=
NV

L
LL LBUBR

1

5.0 (23)

in which, according to the value R, certain values were assigned to MAKHA’s parameters, as seen in

Table 3.

Algorithms 2015, 8 347

Table 1. Benchmark functions used for testing the performance of MA, KHA and

MAKHA.

Name Objective Function

Ackley [34]
() ()2 2

1 2 1 2
0.2 0.5 0.5 cos2 cos2 1

1 20 1
x x x xf e e eπ π− + + = − − +

Beale [35] () () ()2 22 2 3
2 1 1 2 1 1 2 1 1 21.5 2.25 2.625f x x x x x x x x x= − + + − + + − +

Bird [36]
2

21
)sin1(

2
)cos1(

13)()cos()sin(
2

1
2

2 xxexexf xx −++= −−

Booth [35] () ()2 2

4 1 2 1 22 7 2 5f x x x x= + − + + −

Bukin 6 [35] 1001.001.0100 1
2
125 ++−= xxxf

Carrom table [37]
2 2
1 2

2
1 /

1 26 cos cos / 30
x x

f x x e
π− +

= −

Cross-leg table [37] () ()
2 2
1 2

0.1
100 /

17 2sin sin 1
x x

f x x e
π

−
− +

= − +

Generalized egg holder [35]

() ()
() ()

1

8

1 1

1
1

47 sin / 2 47

sin 47

m i i i

i
i i i

x x x
f

x x x

− + +

=
+

 − + + + +
 =

 − + −

Goldstein–Price [38]
))273648123218()32(30(

))361431419()1(1(
2
2212

2
11

2
21

2
2212

2
11

2
219

xxxxxxxx

xxxxxxxxf

+−++−−+

++−+−+++=

Himmelblau [39] () ()2 22 2
11 10 2 211 7f x x x x= + − + + −

Levy 13 [40]
() () () () ()2 22 2 2

1 1 2 211 2sin 3 1 1 sin 3 1 1 sin 2f x x x x xπ π π = + − + + − +

Schaffer [37]

()

2 2 2
1 2

2
2 2

12

1 2

0.5
0.5

0.001 1

sin x x
f

x x

 + −
 = +

 + +

Zettl [41] 4
)2)(12

1
2
2

2
113

x
xxxf +−+

Helical valley [42] () ()2
2 2 2 2

3 1 214 3100 10 1f x x x xθ = − + + − +
,

1 1

2

2 θ tan
x

x
−

=

π

Powell [43] () () () ()2 2 4 4

15 1 2 3 4 2 3 1 410 5 2 10f x x x x x x x x= + + − + − + −

Wood [44]

() () () ()
() () ()()

2 22 22 2
16 1 2 1 3 3 4

2 2

2 4 2 4

100 1 1 90

10.1 1 1 19.8 1 1

f x x x x x x

x x x x

= − + − + − + − +

 − + − + − −

Extended Cube [45] () ()
1 2 23

17 1
1

100 1
m

i i i
i

f x x x
−

+
=

= − + −

Shekel 5* [46]
= =

−+−−=
M

i j
ijij Cxf

1

4

1

12
18))((β

Algorithms 2015, 8 348

Table 1. Cont.

Sphere [47]
2

19
1

m

i
i

f x
=

=

Hartman 6 * [48]
= =

−−−=
4

1

6

1

2
20))(exp(

i j
ijjiji OxAf α

Griewank [49] ()2

21
1 1

1001
100 cos 1

4000

m m
i

i
i i

x
f x

i= =

 − = − − +

 ∏

Rastrigin [50] ()()2
22

1

10 cos 2π 10
m

i i
i

f x x
=

= − +

Rosenbrock [51] () ()
1 2 22

23 1
1

100 1
m

i i i
i

f x x x
−

+
=

= − + −

Sine envelope sine wave [37] ()

2 2 2
1 1

24 2
2 21

1

0.5
0.5

0.001 1

m i i

i
i i

sin x x
f

x x

− +

=
+

 + − = +
 + +

Styblinski–Tang [52]
=

+−=
m

i
iii xxxf

1

24
25)516(5.0

Trigonometric [53] ()
2

26
1 1

1 cos sin cos
m m

i i j
i j

f m i x x x
= =

= + − − −

Zacharov [54]

2 4

2
27

1 1 1

0.5 0.5
m m m

i i i
i i i

f x i x i x
= = =

 = + +

* Shekel and Hartman parameters were obtained from [36].

Table 2. Decision variables, global optimum of benchmark functions and number of

iterations used for testing the performance of MA, KHA, and MAKHA.

Objective Function NV
Search
Domain

Global
Minimum

Iterations
MA KHA MAKHA

Ackley 2 [−35, 35] 0 25 3000 1000
Beale 2 [−4.5, 4.5] 0 25 3000 1000
Bird 2 [−2π, 2π] −106.765 25 3000 1000

Booth 2 [−10, 10] 0 25 3000 1000
Bukin 6 2 [−15, 3] 0 25 3000 1000

Carrom table 2 [−10, 10] −24.15681 25 3000 1000
Cross-leg table 2 [−10, 10] −1 25 3000 1000

Generalized egg holder 2 [−512, 512] −959.64 124 15,000 5000
Goldstein-Price 2 [−2, 2] 3 25 3000 1000

Himmelblau 2 [−5, 5] 0 25 3000 1000
Levy 13 2 [−10, 10] 0 25 3000 1000
Schaffer 2 [−100, 100] 0 199 15,000 8000

Zettl 2 [−5, 5] −0.003791 25 3000 1000
Helical valley 3 [−1000, 1000] 0 25 3000 1000

Algorithms 2015, 8 349

Table 2. Cont.

Powell 4 [−1000, 1000] 0 50 6000 2000
Wood 4 [−1000, 1000] 0 25 3000 1000

Extended Cube 5 [−100, 100] 0 25 3000 1000
Shekel 5 4 [0, 10] −10.1532 25 3000 1000
Sphere 5 [−100, 100] 0 75 9000 1000

Hartman 6 6 [0,1] −3.32237 25 3000 1000
Griewank 50 [−600, 600] 0 124 15000 5000
Rastrigin 50 [−5.12, 5.12] 0 124 15000 5000

Rosenbrock 50 [−50, 50] 0 124 15000 5000
Sine envelope sine wave 50 [−100, 100] 0 124 15000 5000

Styblinski-Tang 50 [−5,5] −1958.2995 124 15000 5000
Trigonometric 50 [−1000, 1000] 0 124 15000 5000

Zacharov 50 [−5,10] 0 25 3000 1000

Table 3. Selected values of the parameters used in the implementation of MA, KHA

and MAKHA.

Method Condition Parameter Selected value

MA

 b 1
R ≥ 100 b 10

 c −1
 d 1

R ≥ 500 c −10
R ≥ 500 d 30

 NC 30

KHA

 Dmax [0.002, 0.01]
 Ct 0.5
 Vf 0.02
 Nmax 0.01
 wf and wN [0.1, 0.8]

MAKHA I

 b 1
R < 2 b 0.5*R

R ≥ 100 b 10
 c −0.1
 d 0.1
 Dmax 0
 Ct 0.5
 Vf 0.2
 wf 0.1

Somersault I is used

MAKHA II
(NV = 50)

 b 0.3*R
 c −R
 d R
 Dmax [0.002, 0.01]
 Ct 0.5
 Vf 0.02
 wf [0.1, 0.8]

Somersault II is used

Algorithms 2015, 8 350

The twenty-seven problems constitute a comprehensive testing of the reliability and effectiveness of

the hybrid algorithm. Thirteen functions have two variables only, yet some of them are very difficult to

optimize. Surface plots of eight of the two-variable functions are shown in Figure 4. Each problem was

solved 30 times by each of the three algorithms. The best value at each iteration was recorded and the

means of the best values were calculated amongst the 30 run as a function of the iteration number.

The plots of the mean best values versus the number of function for the three algorithms provide a

clear comparison of both the reliability and the efficiency of the algorithms. Reliability is represented

by how far the algorithm predictions of the minimum are from the known global minimum, while

efficiency is represented by the number of function evaluations needed for the calculation of this

best value.

(a) (b)

(c) (d)

Figure 4. Cont.

Algorithms 2015, 8 351

(e) (f)

(g) (h)

Figure 4. Surface plots of the two-variable benchmark functions used in this study:

(a) Ackley, (b) Beale, (c) Booth, (d) Carrom table, (e) Cross-leg table, (f) Himmelblau,

(g) Levy 13, and (h) Schaffer.

To complete the evaluation of the MAKHA in comparison with the original MA and KHA

algorithms, we have employed the performance profile (PP) reported by Dolan et al. [55], who

introduced PP as a tool for evaluating and comparing the performance of optimization software. In

particular, PP has been proposed to represent compactly and comprehensively the data collected from a

set of solvers for a specified performance metric. For instance, the number of function evaluations or

computing time can be considered performance metrics for solver comparison. The PP plot allows

visualization of the expected performance differences among several solvers and to compare the

quality of their solutions by eliminating the bias of failures obtained in a small number of problems.

To introduce PP, consider ns solvers (i.e., optimization methods) to be tested over a set of np

problems. For each problem p and solver s, the performance metric tps must be defined. In our study,

reliability of the stochastic method in accurately finding the global minimum of the objective function

is considered as the principal goal, and hence the performance metric is defined as

*fft calcps −= (24)

Algorithms 2015, 8 352

where f* is the known global optimum of the objective function and fcalc is the mean value of that

objective function calculated by the stochastic method over several runs. In our study, fcalc is calculated

from 30 runs to solve each test problem by each solver; note that each run is different because of the

random number seed used and the stochastic nature of the method. So, the focus is on the average

performance of stochastic methods, which is desirable for comparison purposes.

For the performance metric of interest, the performance ratio, rps, is used to compare the

performance on problem, p, by solver, s, with the best performance by any solver on this problem. This

performance ratio is given by

{ }min :1
ps

ps

ps s

t
r

t s n
=

≤ ≤
 (25)

The value of rps is 1 for the solver that performs the best on a specific problem p. To obtain an

overall assessment of the performance of solvers on np problems, the following cumulative function for

rps is used:

() { }1
:s ps

p

size p r
n

ρ ς = ≤ ζ (26)

where ρ(ς) is the fraction of the total number of problems, for which solver s has a performance ratio

rps within a factor of ς of the best possible ratio. The PP of a solver is a plot of ρs(ς) versus ς; it is a

non-decreasing, piece-wise constant function, continuous from the right at each of the breakpoints.

To identify the best solver, it is only necessary to compare the values of ρs(ς) for all solvers and to

select the highest one, which is the probability that a specific solver will “win” over the rest of solvers

used. In our case, the PP plot compares how accurately the stochastic methods can find the global

optimum value relative to one another, and so the term “win” refers to the stochastic method that

provides the most accurate value of the global minimum in the benchmark problems used.

6. Results and Discussion

As stated, each of the numerical experiments was repeated 30 times with different random seeds for

MAKHA and the original MA and KHA algorithms. Parameters used for stochastic algorithms are

reported in Table 3. The objective function value at each iteration for each trial was recorded. The

mean and the standard deviation of the function values were calculated at each iteration. The global

optimum was considered to be obtained by the method if it finds a solution within a tolerance value of

10−10. The progress of the mean values is presented in Figures 5–8 for each benchmark function and a

brief discussion of those results follows.

The Ackley function has one minimum only. The global optimum was obtained using MAKHA and

in relatively small number of function evaluations as shown in Figure 5a. MA and KHA were not able

to obtain satisfactorily the global minimum. The best value obtained by MA was still improving by the

end of the run, whereas KHA results were not.

This significant improvement in performance was also clear with the Beale function (Figure 5b).

The Beale function has one minimum only, which was only obtained satisfactory by MAKHA.

The performance pattern for the three methods was different for the Bird function, as depicted in Figure 5c.

MAKHA arrived at the global minimum almost instantaneously. KHA was trapped in a local

Algorithms 2015, 8 353

minimum, while MA was approaching the global minimum, but did not reach it after 300,000 function

evaluations. For the Booth function, both MAKHA and KHA arrived at the global minimum but with

an improvement in orders of magnitude for the efficiency of MAKHA. On the other hand, MA failed

to arrive at the global minimum, as shown in Figure 5d. For Bukin 6 function, none of the three

methods obtained the global minimum within the used tolerance. However, MAKHA performed better

than KHA, which performed better than MA, as shown in Figure 5e.

MAKHA and KHA performed similarly for the Carrom table function, as they obtained the global

minimum almost instantaneously, as shown in Figure 5f. MA could not achieve the global minimum

even after 300,000 function evaluations. For the Cross-leg table function, MAKHA was the only

method to obtain the global minimum, as shown in Figure 5g. Note that MA performed better than

KHA after many NFE. MAKHA obtained the global minimum for the Generalized Eggholder function

almost instantaneously, as depicted in Figure 5h. The other two methods were not able to obtain the

global minimum but MA’s performance was significantly better than KHA’s.

(a) (b)

(c) (d)

Figure 5. Cont.

Algorithms 2015, 8 354

(e) (f)

(g) (h)

Figure 5. Evolution of mean best values for MA, KHA and MAKHA for: (a) Ackley,

(b) Beale, (c) Bird (d) Booth, (e) Bukin6 (f) Carrom table, (g) Cross-leg table, and

(h) Generalized Eggholder functions.

For the Goldstein-Price function, all three algorithms obtained the global minimum, as depicted in

Figure 6a. However, MAKHA and KHA were orders-of-magnitude more efficient than MA. For the

Himmelblau function, MAKHA obtained the global minimum at low NFE, KHA obtained it at high

NFE, and MA was not able to obtain it after 300,000 NFE, as shown in Figure 6b. This performance

was almost exactly repeated with the Levy 13 function, as shown in Figure 6c. As for the Schaffer

function, both MAKHA and MA converged to the global minimum within the used tolerance.

MAKHA was more efficient than MA in terms of the NFE required to obtain the global minimum, as

shown in Figure 6d. KHA failed to converge to the global minimum for this particular function.

Figure 6e shows the evolution pattern for the Zettl function. MAKHA and KHA obtained the global

minimum within a small NFE, while MA obtained it after considerably more NFE. The Helical Valley

function has three variables. The evolution of the mean best values of the three algorithms is reported

in Figure 6f and results showed that the performance of MAKHA was better than the other two

algorithms. MAKHA efficiently obtained the global minimum, while the other two could not, with

Algorithms 2015, 8 355

KHA performing better than MA. This convergence performance is almost exactly repeated with the

two four-variable functions, the Powell function (Figure 6g) and with the Wood function (Figure 6h).

(a) (b)

(c) (d)

(e) (f)

Figure 6. Cont.

Algorithms 2015, 8 356

(g) (h)

Figure 6. Evolution of mean best values for MA, KHA and MAKHA for:

(a) Goldstein–Price (b) Himmelblau, (c) Levy 13, (d) Schaffer functions, (e) Zettl,

(f) Helical Valley, (g) Powell and (h) Wood.

The evolution of the mean best values of the three algorithms for the five-variable functions, which

are the Extended Cube, Shekel and Sphere functions, are reported in Figure 7a–c, respectively. For the

Extended Cube function, MAKHA was able to obtain the global minimum, while the other two

methods failed to converge to the global minimum. For the Shekel function, MAKHA obtained the

global minimum very efficiently, as compared to MA, which obtained it at a higher NFE. KHA failed

to converge to the global minimum for this function. A relative close pattern is repeated with the

five-variable sphere function. Hartman function is a fifty-variable function and its results are depicted

in Figure 7d. MAKHA and KHA converged to the global minimum efficiently, while MA failed to

achieve it after 300,000 function evaluations. For the Griewank function, shown in Figure 7e, the three

algorithms failed to converge to the global minimum. However, MAKHA performance was

considerable better than the performance of the other two algorithms, which performed similarly. The

Rastrigin function is one of the three functions in which MAKHA was not the top performer. The

results for the Rastrigin function are reported in Figure 7f. The three methods did not obtain the global

minimum. However, MA performed better than MAKHA, which in turn performed better than KHA.

For the Rosenbrock function, whose results are shown in Figure 7g, the three algorithms did not obtain

the global minimum, within the acceptable tolerance, with 1,500,000 function evaluations. However,

the best value obtained by MAKHA is seven orders-of-magnitude better than that obtained by the other

two algorithms. Sine Envelope Sine function is the second function in which MAKHA did not

outperform MA, see Figure 7h. MA was the only method to achieve the global minimum. MAKHA’s

performance was significantly better than KHA’s performance.

Algorithms 2015, 8 357

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. Evolution of mean best values for MA, KHA and MAKHA for: (a) Extended

cube, (b) Shekel, (c) Sphere, (d) Hartman, (e) Griewank (f) Rastrigin, (g) Rosenbrock, and

(h) Sine Envelope Sine functions.

Algorithms 2015, 8 358

Figure 8a–c shows the results of the mean best value obtained by the three algorithms for

Styblinski–Tang, Trigonometric, and Zacharov functions, respectively. MAKHA was the only method

to obtain the global minimum for Styblinski-Tang function and it did efficiently as measured by NFE.

MA outperformed KHA for this particular function. The same pattern was obtained with the

Trigonometric function as depicted in Figure 8b. The Zacharov function is the third function, which

MAKHA did not outperform MA, as shown in Figure 8c.

(a) (b)

(c)

Figure 8. Evolution of mean best values for MA, KHA and MAKHA for:

(a) Styblinski-Tang, (b) Trigonometric and (c) Zacharov functions.

Table 4 shows a summary of the performance results for the twenty-seven benchmark problems.

MAKHA has outperformed its parent algorithms in the majority of the benchmark problems studied.

Best global values are shown in bold. The performance profiles reported in Figure 9 summarize the

results of the MAKHA evaluation in comparison with the two original algorithms. MAKHA was the

best algorithm in 24 out of the 27 cases considered. In several cases, the hybrid algorithm was the only

Algorithms 2015, 8 359

algorithm that obtained the global minimum. Also, due to its efficient exploration and exploitation

components, it converges to the global minimum with less NFE than the original two algorithms.

Table 4. Values of the mean minima (fcalc) and standard deviations (σ) obtained by the

MAKHA, MA and KHA algorithms for the benchmark problems used in this study.*

 Numerical Performance of

 MA KHA MAKHA

Objective function fcalc σ fcalc σ fcalc σ

Ackley 4.8E−8 0 0.00129 0 0 0
Beale 0.084 0.125 0.0508 0.193 0 0
Bird −105.326 1.45 −103.52 7.4 −106.7645 0

Booth 0.179 0.172 1.28E−12 0 0 0
Bukin 6 3.487 1.77 0.074 0.029 0.0267 0.0157

Carrom table −23.9138 0.436 −24.1568 0 −24.1568 0
Cross-leg table −0.002 4E−3 −0.00035 0 −0.9985 0

Generalized egg holder −949.58 0 −862.1 0 −959.641 0
Goldstein-Price 3.051 0.055 3 0 3 0

Himmelblau 0.179 0.187 7.4E−13 0 3.7E−31 0
Levy 13 0.0616 0.08 2.1E−7 0 1.35E−31 0
Schaffer 0 0 1.7E−6 0 0 0

Zettl −0.0037 1E−3 −0.00379 0 −0.00379 0
Helical valley 136 250 9.8E−5 3E−3 0 0

Powell 18.46 49 1.9E−5 0 0 0
Wood 113.6 256 0.698 1.6 0 0

Extended Cube 3.568 0.8 1.658 5.28 0 0
Shekel 5 −10.139 0.06 −5.384 3.1 −10.1532 0
Sphere 1.4E−14 0 1E−10 0 0 0

Hartman 6 −2.7499 0.2 −3.2587 0.06 −3.2627 0.06
Griewank 0.0165 0.032 0.0769 0.095 8.4E−8 0
Rastrigin 1.3E-9 0 89.38 48.38 6.47E−6 0

Rosenbrock 47.45 7.5 52.593 18.97 1E−5 0
Sine envelope sine wave 3.3E−11 0 16.107 5.94 3.46E−6 0

Styblinski-Tang −1916.84 28.1 −1645.42 36.9 −1958.31 0
Trigonometric 1.35E−5 0 285.43 545.5 0 0

Zacharov 1.46E−10 0 1E−3 5.5E−3 8.4E−6 0

* Bold numbers represent the best global minimum value obtained for each function.

Algorithms 2015, 8 360

Figure 9. Performance profiles of the MAKHA, MA, and KHA methods for the global

optimization of the twenty-seven benchmark problems used in this study.

The results of new proposed hybrid were promising that could be attributed to the combination of

some of the mechanisms and processes of MA and KHA together to produce a reliable algorithm with

appreciated performance. The procedures of both algorithms include exploration/diversification and

exploitation/intensification features as follows:

(a) Exploration or diversification feature: The watch-jump process (MA), physical random diffusion

(KHA), the somersault process (MA), and genetic operators (KHA).

(b) Exploitation or intensification feature: The climb process (MA), the watch-jump process (MA),

the induced motion (KHA), and the foraging activity (KHA).

Both algorithms (MA and KHA) make a good compromise and balance between

exploration/diversification and exploitation/intensification features. However, MAKHA uses the best

setup of efficient operators, which are capable of producing the previous promising results.

7. Conclusions

In this paper, we propose a new hybrid algorithm, which is based on two bio-inspired swarm

intelligence global stochastic optimization methods, the Monkey Algorithm and the Krill Herd

Algorithm. The hybridization made use of the efficient components in each of the two original

algorithms. It aimed to provide a better balance between exploration/diversification steps and

exploitation/intensification steps to more efficiently and more reliably solve a wide range of problems

in comparison with the its parent algorithms. This hybrid method was evaluated by attempting to find

the global optimum of twenty-seven benchmark functions. The newly developed MAKHA algorithm

led to improved reliability and effectiveness of the algorithm in the vast majority of the benchmark

problems. In many cases, the global minimum could not be obtained via the original algorithms, but

was easily obtained by the new method.

The authors are currently working on the improvement of MAKHA by decreasing the number of its

parameters, and increasing its reliability and efficiency in solving difficult thermodynamic problems.

The performance of MAKHA is compared to the performance of other algorithms thath have high

reliability in solving these kinds of problems.

Algorithms 2015, 8 361

Supplementary Materials

Supplementary materials can be accessed at: http://www.mdpi.com/1999-4893/8/2/336/s1.

Acknowledgments

Authors acknowledge the support provided by the Cairo University (Egypt) and Instituto

Tecnologico de Aguascalientes (Mexico).

Author Contributions

This research study was performed as a part of the Masters thesis of Ahmed M. E. Khalil at Cairo

University. He suggested the hybrid algorithm to his supervisor, Seif-Eddeen K. Fateen, who

contributed with ideas on implementation and evaluation of the algorithm. Adrian Bonilla-Petriciolet,

a collaborator with Fateen on the use of stochastic global optimization, analyzed the data. Khalil and

Fateen wrote the paper, while Bonilla-Petriciolet reviewed the manuscript and provided valuable

comments to improve the paper.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

A Hartman’s recommended constants

a Pseudo-gradient monkey step

b
Eyesight of the monkey (hybrid), which indicates the maximum distance the monkey

(hybrid) can watch.

C Shekel’s recommended constants

Cfood Food coefficient

Cr Crossover probability

Ct Empirical and experimental Constants (Time constant)

c Somersault interval

Di Physical diffusion of krill (hybrid) number i

Dmax Maximum diffusion speed

d Somersault interval

dsi Sensing distance of the krill

dsij Distance between each 2 krill positions

f Objective function

Fi Foraging motion

G Global minimum

H Fitness value of the hybrid in MAKHA

I, i, j and l Counters for any value

K Fitness value of the krill in KHA

Algorithms 2015, 8 362

M Number of local minima in Shekel function

LB Lower boundaries and low limit of decision variable

Mu Mutation probability

m Dimension of the problem, i.e., number of variables.

N Induced speed for KHA

Nc Number of climb cycles

Nmax Maximum induced speed

NP Population size (number of points)

NV Dimension of the problem, i.e., number of variables.

n A counter

np Number of problems

ns Number of solvers

O Hartman’s recommended constants

P Pivot value

R
The half range of boundaries between the lower boundary and the upper boundary of

the decision variables (X)

rps The performance ratio

T Time taken by krill or hybrid

tps Performance metric

UB Upper boundaries and high limit of decision variable

Vf Foraging speed

wf or wN Inertia weight

X Decision variable matrix

Xfood Centre of food density

x Decision variable

Y Decision variable matrix

Greek Letters

 Somersault interval random output.

β Shekel’s recommended constant

βfood Food attractive factor

 Random direction vector

∆t Incremental period of time

ε Small positive number to avoid singularity
ζ The simulating value of rps

 The maximum assumed value of rps

ρ
The cumulative probabilistic function of rps and the fraction of the total number of

problems

σ Standard deviation

ς The counter of ρ points

Algorithms 2015, 8 363

References

1. Floudas, C.A.; Gounaris, C.E. A review of recent advances in global optimization. J. Glob. Optim.

2009, 45, 3–38.

2. Zhao, R.; Tang, W. Monkey algorithm for global numerical optimization. J. Uncertain Syst. 2008,

2, 165–176.

3. Gandomi, A.H.; Alavi, A.H. Krill herd: A new bio-inspired optimization algorithm. Commun.

Nonlinear Sci. Numer. Simul. 2012, 17, 4831–4845.

4. Ituarte-Villarreal, C.M.; Lopez, N.; Espiritu, J.F. Using the Monkey Algorithm for Hybrid Power

Systems Optimization. Procedia Comput. Sci. 2012, 12, 344–349.

5. Aghababaei, M.; Farsangi, M.M. Coordinated Control of Low Frequency Oscillations Using

Improved Monkey Algorithm. Int. J. Tech. Phys. Probl. Eng. 2012, 4, 13–17.

6. Yi, T.-H.; Li, H.-N.; Zhang, X.-D. A modified monkey algorithm for optimal sensor placement in

structural health monitoring. Smart Mater. Struct. 2012, 21, doi:10.1088/0964-1726/21/10/105033.

7. Yi, T.-H.; Li, H.-N.; Zhang, X.-D. Sensor placement on Canton Tower for health monitoring

using asynchronous-climb monkey algorithm. Smart Mater. Struct. 2012, 21, doi:10.1088/

0964-1726/21/12/125023.

8. Yi, T.H.; Zhang, X.D.; Li, H.N. Modified monkey algorithm and its application to the optimal

sensor placement. Appl. Mech. Mater. 2012, 178, 2699–2702.

9. Sur, C.; Shukla, A. Discrete Krill Herd Algorithm—A Bio-Inspired Meta-Heuristics for Graph

Based Network Route Optimization. In Distributed Computing and Internet Technology;

Springer: New York, NY, USA, 2014; pp. 152–163.

10. Mandal, B.; Roy, P.K.; Mandal, S. Economic load dispatch using krill herd algorithm. Int. J.

Electr. Power Energy Syst. 2014, 57, 1–10.

11. Zheng, L. An improved monkey algorithm with dynamic adaptation. Appl. Math. Comput. 2013,

222, 645–657.

12. Saremi, S.; Mirjalili, S.M.; Mirjalili, S. Chaotic krill herd optimization algorithm. Procedia

Technol. 2014, 12, 180–185.

13. Wang, G.-G.; Gandomi, A.H.; Alavi, A.H. A chaotic particle-swarm krill herd algorithm for

global numerical optimization. Kybernetes 2013, 42, 962–978.

14. Gharavian, L.; Yaghoobi, M.; Keshavarzian, P. Combination of krill herd algorithm with chaos

theory in global optimization problems. In Proceedings of the 2013 3rd Joint Conference of

AI & Robotics and 5th RoboCup Iran Open International Symposium (RIOS), Tehran, Iran, 8 April

2013; IEEE: Piscataway, NJ, USA, 2013.

15. Wang, J.; Yu, Y.; Zeng, Y.; Luan, W. Discrete monkey algorithm and its application in

transmission network expansion planning. In Proceedings of the Power and Energy Society

General Meeting, Minneapolis, MN, USA, 25–29 July 2010; IEEE: Piscataway, NJ, USA, 2010.

16. Wang, G.; Guo, L.; Gandomi, A.H.; Cao, L. Lévy-flight krill herd algorithm. Math. Probl. Eng.

2013, doi:10.1155/2013/682073.

17. Guo, L.; Wang, G.-G.; Gandomi, A.H.; Alavi, A.H.; Duan, H. A new improved krill herd

algorithm for global numerical optimization. Neurocomputing 2014, 138, 392–402.

Algorithms 2015, 8 364

18. Wang, G.; Guo, L.; Wang, H.; Duan, H.; Liu, L.; Li, J. Incorporating mutation scheme into krill

herd algorithm for global numerical optimization. Neural Comput. Appl. 2014, 24, 853–871.

19. Wang, G.-G.; Guo, L.H.; Gandomi, A.H.; Alavi, A.H.; Duan, H. Simulated annealing-based krill

herd algorithm for global optimization. In Abstract and Applied Analysis; Hindawi Publishing

Corporation: Cairo, Egypt, 2013.

20. Blum, C.; Roli, A. Metaheuristics in combinatorial optimization: Overview and conceptual

comparison. ACM Comput. Surv. 2003, 35, 268–308.

21. Lozano, M.; García-Martínez, C. Hybrid metaheuristics with evolutionary algorithms specializing in

intensification and diversification: Overview and progress report. Comput. Op. Res. 2010, 37, 481–497.

22. Liu, P.-F.; Xu, P.; Han, S.-X.; Zheng, J.-Y. Optimal design of pressure vessel using an improved

genetic algorithm. J. Zhejiang Univ. Sci. A 2008, 9, 1264–1269.

23. Abdullah, A.; Deris, S.; Mohamad, M.S.; Hashim, S.Z.M. A New Hybrid Firefly Algorithm for

Complex and Nonlinear Problem. In Distributed Computing and Artificial Intelligence; Omatu,

S.; Bersini, H., Corchado, J.M., Rodríguez, S., Pawlewski, P., Bucciarelli, E., Eds.; Springer:

Berlin, Germany; Heidelberg, Germany, 2012; pp. 673–680.

24. Biswas, A.; Dasgupta, S.; Das, S.; Abraham, A. Synergy of PSO and Bacterial Foraging

Optimization—A Comparative Study on Numerical Benchmarks Innovations in Hybrid Intelligent

Systems; Corchado, E., Corchado, J., Abraham, A., Eds.; Springer: Berlin, Germany; Heidelberg,

Germany, 2007; pp. 255–263.

25. Li, S.; Chen, H.; Tang, Z. Study of Pseudo-Parallel Genetic Algorithm with Ant Colony

Optimization to Solve the TSP. Int. J. Comput. Sci. Netw. Secur. 2011, 11, 73–79.

26. Nguyen, K.; Nguyen, P.; Tran, N. A hybrid algorithm of Harmony Search and Bees Algorithm for

a University Course Timetabling Problem. Int. J. Comput. Sci. Issues 2012, 9, 12–17.

27. Farahani, Sh.M.; Abshouri, A.A.; Nasiri, B.; Meybodi, M.R. Some hybrid models to improve

Firefly algorithm performance. Int. J. Artif. Intell. 2012, 8, 97–117.

28. Kim, D.H.; Abraham, A.; Cho, J.H. A hybrid genetic algorithm and bacterial foraging approach

for global optimization. Inf. Sci. 2007, 177, 3918–3937.

29. Kim, D.H.; Cho, J.H. A Biologically Inspired Intelligent PID Controller Tuning for AVR

Systems. Int. J. Control Autom. Syst. 2006, 4, 624–636.

30. Dehbari, S.; Rosta, A.P.; Nezhad, S.E.; Tavakkoli-Moghaddam, R. A new supply chain

management method with one-way time window: A hybrid PSO-SA approach. Int. J. Ind. Eng.

Comput. 2012, 3, 241–252.

31. Zahrani, M.S.; Loomes, M.J.; Malcolm, J.A.; Dayem Ullah, A.Z.M.; Steinhöfel, K.; Albrecht,

A.A. Genetic local search for multicast routing with pre-processing by logarithmic simulated

annealing. Comput. Op. Res. 2008, 35, 2049–2070.

32. Huang, K.-L.; Liao, C.-J. Ant colony optimization combined with taboo search for the job shop

scheduling problem. Comput. Oper. Res. 2008, 35, 1030–1046.

33. Shahrouzi, M. A new hybrid genetic and swarm optimization for earthquake accelerogram

scaling. Int. J. Optim. Civ. Eng. 2011, 1, 127–140.

34. Bäck, T.; Schwefel, H.-P. An overview of evolutionary algorithms for parameter optimization.

Evolut. Comput. 1993, 1, 1–23.

Algorithms 2015, 8 365

35. Jamil, M.; Yang, X.-S. A literature survey of benchmark functions for global optimization

problems. Int. J. Math. Model. Numer. Optim. 2013, 4, 150–194.

36. Mishra, S.K. Global optimization by differential evolution and particle swarm methods:

Evaluation on some benchmark functions, Social Science Research Network, Rochester, NY,

USA. Available online: http://ssrn.com/abstract=933827 (accessed on 3 April 2015).

37. Mishra, S.K. Some new test functions for global optimization and performance of repulsive

particle swarm method, Social Science Research Network, Rochester, NY, USA. Available

online: http://ssrn.com/abstract=926132 (accessed on 3 April 2015).

38. Goldstein, A.; Price, J. On descent from local minima. Math. Comput. 1971, 25, 569–574.

39. Himmelblau, D.M. Applied Nonlinear Programming; McGraw-Hill Companies: New York, NY, USA, 1972.

40. Ortiz, G.A. Evolution Strategies (ES); Mathworks: Natick, MA, USA, 2012.

41. Schwefel, H.-P.P. Evolution and Optimum Seeking: The Sixth Generation; John Wiley & Sons:

Hoboken, NJ, USA, 1993.

42. Fletcher, R.; Powell, M.J. A rapidly convergent descent method for minimization. Comput. J.

1963, 6, 163–168.

43. Fu, M.C.; Hu, J.; Marcus, S.I. Model-based randomized methods for global optimization.

In Proceedings of the 17th International Symposium on Mathematical Theory of Networks and

Systems, Kyoto, Japan, 24–28 July 2006.

44. Grippo, L.; Lampariello, F.; Lucidi, S. A truncated Newton method with nonmonotone line search

for unconstrained optimization. J. Optim. Theory Appl. 1989, 60, 401–419.

45. Oldenhuis, R.P.S. Extended Cube Function; Mathworks: Natick, MA, USA, 2009.

46. Pintér, J. Global Optimization in Action: Continuous and Lipschitz optimization: Algorithms,

Implementations and Applications; Springer Science & Business Media: Berlin, Germany;

Heidelberg, Germany, 1995; Volume 6.

47. Schumer, M.; Steiglitz, K. Adaptive step size random search. Autom. Control IEEE Trans. 1968, 13,

270–276.

48. Hartman, J.K. Some experiments in global optimization. Nav. Res. Logist. Q. 1973, 20, 569–576.

49. Griewank, A.O. Generalized descent for global optimization. J. Optim. Theory Appl. 1981, 34, 11–39.

50. Rastrigin, L. Systems of Extremal Control; Nauka: Moscow, Russia, 1974.

51. Rosenbrock, H.H. An automatic method for finding the greatest or least value of a function. Comput.

J. 1960, 3, 175–184.

52. Silagadze, Z. Finding two-dimensional peaks. Phys. Part. Nucl. Lett. 2007, 4, 73–80.

53. Dixon, L.C.W.; Szegö, G.P. (Eds.) Towards Global Optimisation 2; North-Holland Publishing:

Amsterdam, The Netherlands, 1978.

54. Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M. A novel population initialization method for

accelerating evolutionary algorithms. Comput. Math. Appl. 2007, 53, 1605–1614.

55. Dolan, E.D.; Moré, J.J. Benchmarking optimization software with performance profiles. Math.

Program. 2002, 91, 201–213.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

