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Abstract: The search for efficient and reliable bio-inspired optimization methods 

continues to be an active topic of research due to the wide application of the developed 

methods. In this study, we developed a reliable and efficient optimization method via the 

hybridization of two bio-inspired swarm intelligence optimization algorithms, namely, the 

Monkey Algorithm (MA) and the Krill Herd Algorithm (KHA). The hybridization made 

use of the efficient steps in each of the two original algorithms and provided a better 

balance between the exploration/diversification steps and the exploitation/intensification 

steps. The new hybrid algorithm, MAKHA, was rigorously tested with 27 benchmark 

problems and its results were compared with the results of the two original algorithms. 

MAKHA proved to be considerably more reliable and more efficient in tested problems. 

Keywords: global optimization; nature-inspired methods; monkey algorithm; krill herd 

algorithm; hybridization 

 
  

OPEN ACCESS



Algorithms 2015, 8 337 

 

 

1. Introduction 

The use of stochastic global optimization methods has gained popularity in a wide variety of 

scientific and engineering applications as those methods have some advantages over deterministic 

optimization methods [1]. Those advantages include the lack of the need for a good initial guess and the 

ability to handle multi-modal and non-convex objective functions without the assumptions of continuity 

and differentiability. 

Several stochastic methods have been proposed and investigated in challenging optimization 

problems using continuous variables. Such methods include simulated annealing, genetic algorithms, 

differential evolution, particle swarm optimization, harmony search, and ant colony optimization.  

In general, these methods may show different numerical performances and, consequently, the search 

for more effective and reliable stochastic global optimization methods is currently an active area of 

research. In particular, the Monkey Algorithm (MA) [2] and the Krill-Herd Algorithm (KHA) [3] are 

two new, nature-inspired stochastic optimization method that are gaining popularity in finding the 

global minimum of diverse science and engineering application problems. For example, MA and its 

variants were recently used for the power system optimization [4], the coordinated control of low 

frequency oscillation [5], and for finding optimal sensor placement in structural health monitoring [6–8]. 

KHA is a new method and has been used in network route optimization [9] and economic load 

dispatch [10]. 

Since the development of those two algorithms, some modifications have been proposed to improve 

their performance. The modifications often involved variations of the search rules or hybridization 

with other algorithms. For example, chaotic search methods were added to MA [11] and KHA [12–14] 

to improve their performance. MA modifications also included the use of new parameters that change 

their value during the optimization [11], changing the watch-jump process of MA to make use of 

information obtained by other monkeys [5], redesigning the MA steps to facilitate discrete optimization 

problems [15], and incorporating an asynchronous climb process [7]. Other KHA modifications 

included the addition of local Lévy-flight move [16], adapting KHA to discrete optimization [9], better 

exchange of information between top krill during motion calculation [17], and hybridization of KHA 

with Harmony Search [18] and Simulated Annealing [19]. 

Hybridization is an enhancement in optimization algorithms in which operators from a certain 

algorithm are combined with other operators from another algorithm to produce more reliable and 

effective synergistic entity and get better results than that of the main parent algorithms. For example, 

SA (simulated annealing) is trajectory-based technique that is better at intensification or exploitation; it 

can detect the best solution with high probability in a confined search space. On the other hand, GA 

(Genetic algorithm) is regarded as population-based algorithm, which carrys out a diversification 

process and identifies promising regions of the search space [20,21]. An integration of both algorithms 

generated the SA-GA hybrid, which outperformed simple GA and a Monte Carlo search in terms of 

reliability and efficiency of the results. The improved genetic algorithm was implemented to optimize 

the weight of a pressure vessel under the burst pressure constraint [22]. It was contrived to cope with 

the phenomena of stagnation in earlier and later stages so that the ability of GA to escape entrapment 

in local minimum was used and wisely associated with SA’s intensification behavior. 
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Other examples of hybrids display the enhancement in results better than their parent algorithms. 

Hybrid Evolutionary Firefly Algorithm (HEFA) is a combination of FA and DE (Differential 

evolution) in which population was initiated, fitness values were evaluated, population was sorted and 

then split to two halves, the fitter half follows the FA, while the worse half evolves with the DE. 

HEFA was able to outperform the parent algorithms and GA, but with a longer computation time than 

GA [23]. BF-PSO hybrid is composed of BFO (Bacterial Forage Optimization) and PSO (Particle 

Swarm optimization), which was formed to improve the BFO’s ability to tackle multi-modal  

functions [24]. ACO has been hybridized with a Pseudo-Parallel GA (PPGA) for solving set of 

optimization problems, and PPGA-ACO obtained successfully the best minimum with minimal 

computational effort as compared to PPGA, GA, and neural networks [25]. The HS-BA (Harmony 

Search and Bees Algorithm hybrid) made the best results on eight out of 14 data instances of the 

University Course Timetabling Problem (UCTP), as compared to VNS (Variable Neighborhood 

Search), BA (Bees Algorithm), and TS (Tabu Search) [26]. The explorative ability of FA was 

enhanced by adding GA, and the hybrid was tested on a number of benchmarks and gained better 

results than standard FA and a number of PSO variants. However, it was often either outperformed by, 

or at best comparable to, FAs that use Gaussian distribution (Brownian motion) instead of Lévy flights, 

or use learning automata for parameter adaptation [27]. For further reading about hybrid algorithms, 

their methods, and strategies, please refer to the following: GA and BFO [28,29], PSO and SA [30], 

GA and SA [31], ACO and TS [32], and GA and PSO [33]. 

In this study, a new hybrid stochastic optimization method was developed, which uses features from 

the two algorithms, MA and KHA. The aim of this paper is to present the new algorithm and to 

evaluate its performance in comparison with the original algorithms. The remainder of this paper is divided 

as follows: Sections 2 and 3 introduce the Monkey Algorithm and the Krill Herd Algorithm, respectively. 

Section 4 introduces the proposed hybrid algorithm. The numerical experiments performed to evaluate 

the modification are presented in Section 5. The results of the numerical experiments are presented and 

discussed in Section 6. Finally, Section 7 summarizes the conclusions of this study. 

2. The Monkey Algorithm (MA) 

This algorithm [2] mimics the process in which monkeys climb mountains to reach the highest 

point. The climbing method consists of three main processes: 

1) The climb process: In this exploitation process, monkeys search the local optimum solution 

extensively in a close range. 

2) The watch-jump process: In this process, monkeys look for new solutions with objective value 

higher than the current ones. It is considered an exploitation and intensification method. 

3) The somersault process: This process is for exploration and it prevents getting trapped in a local 

optimum. Monkeys search for new points in other search domains. In nature, each monkey 

attempts to reach the highest mountaintop, which corresponds to the maximum value of the 

objective function. The fitness of the objective function simulates the height of the mountaintop, 

while the decision variable vector is considered to contain the positions of the monkeys. 

Changing the sign of the objective function allows the algorithm to find the global minimum 

instead of the global maximum. The pseudo-code for this algorithm is shown in Figure 1. 
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Figure 1. The pseudo-code of the Monkey Algorithm (MA). 

There are different equations for the somersault process. In this study, the somersault jump steps 

were as follows: 
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a) Random generation of α from the somersault interval [c, d] where c and d governs the maximum 

distance that the monkey can somersault. 

b) Create a pivot P by the following equation: 
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where ),...,,( 21 NVi PPPP = , NP is the population number and X is the monkey position. 

c) Get y (Monkey new position) from 

ijiii XPXY −+= α  (2)

d) Update Xi with Yi if feasible (within boundary limits) or repeat until feasible. 

3. The Krill Herd Algorithm (KHA) 

This bio-inspired algorithm [3] simulates the herding behavior of krill individuals. The values of the 

objective function correspond to the krill movements, which represent the minimum distances of each 

individual krill from food and from the highest density of the herd. The krill motion involves three  

main mechanisms, 

a) The movement induced by the presence of other individuals. 

b) The foraging activity. 

c) Random diffusion. 

In addition, two adaptive genetic operators are used: Mutation and Crossover algorithms. In nature, 

when the predation action is made by predators, such as seals, penguins or sea birds, they remove krill 

individuals resulting in decreasing the krill density. Afterwards, the krill individuals increase their 

density and find food. So, the individual krill moves towards the best optimum solution as it searches 

for the highest density and food. The closer the distance to the highest density and food, the less value 

of the objective function is obtained. The objective function value of each individual krill is supposed 

to be an imaginary distance and contains a combination of the distance from food and from the highest 

density of the krill swarm. The individuals’ variables of the function are considered to be  

time-dependent positions of an individual krill, which are governed by the three mentioned features 

along with the genetic operator. The pseudo-code for this algorithm is shown in Figure 2. 

It is important to note that there are four types of KHA: (1) KHA without any genetic operators 

(KHA I); (2) KH with crossover operator (KHA II); (3) KHA with mutation operator (KHA III);  

and (4) KH with crossover and mutation operators (KHA IV). In this study, KHA IV was used in 

solving the benchmark problems. 



Algorithms 2015, 8 341 

 

 

 

Figure 2. The pseudo-code of the Krill Herd Algorithm (KHA). 
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4. MAKHA Hybrid Algorithm 

MAKHA is a new hybrid algorithm, which combines some of the mechanisms and processes of MA 

and KHA to get a reliable algorithm with appreciated performance. The steps of both algorithms 

include exploration/diversification and exploitation/intensification features as follows. The 

exploration/diversification features of MA are the somersault process and the watch-jump process, 

while for KHA, they are the physical random diffusion and the genetic operators. On the other hand, 

the exploitation/intensification features of MA are the climb and the watch-jump process, while for 

KHA, they are the induced motion and the foraging activity. 

Both algorithms attempt to balance between exploration/diversification and exploitation/ 

intensification features. MA has two exploration operators and two exploitation operators. The  

watch-jump process acts as both an exploration and an exploitation operator. The somersault operator 

is a high-performing diversification operator that makes a good use of the pivot function. Since MA is an 

exploration-dominant algorithm, the exploitation balance is brought to the algorithm by running the 

climb process twice per iteration. In each process, the MA algorithm uses a large number of cycles that 

reaches up to 2000 cycles in some problems. Increasing the number of cycles reduces the 

computational efficiency because it increases the number of function evaluations (NFE). 

Even though KHA also has two exploration operators and two exploitation operators, its exploration 

component is not dominating because the physical random diffusion is a less efficient exploration 

operator than the somersault operator. Thus, the entrapment in local minima is more probable in KHA 

than in MA. The trapping problem can be addressed in the KHA by the use of two genetic operators 

(crossover and mutation), which appear in KHA IV algorithm. Since the foraging movement is a  

high-performing exploitation operator, KHA could be considered an exploitation-dominant algorithm. 

An equal number of exploration and exploitation operators does not necessitate a balance between 

exploration and exploitation. The performance of operator is a critical factor. Assessing the 

performance of an operator can be done by replacing the exploration or exploitation operator in one 

algorithm with the same type of operator in the other algorithm. Testing the modified algorithms with 

benchmark problems can reveal whether or not the replaced operator was performing its function 

efficiently relative to the other operator. 

To improve the performance of the algorithm such that the modified algorithm outperforms the two 

original algorithms, we aimed at using the best performing exploration and exploitation operators from 

the two algorithms. The hybrid algorithm, MAKHA, was constructed from the following processes: 

1. The watch-jump process. 

2. The foraging activity process. 

3. The physical random diffusion process. 

4. The genetic mutation and crossover process. 

5. The somersault process. 

The climb process, which consumes a high NFE, was not included in the hybrid algorithm.  

The random diffusion step was included in only one of MAKHA’s variant as explained below. 

MAKHA was implemented in two different ways: MAKHA I, which does not use random 

diffusion; and MAKHA II, which uses the random diffusion step. It was found, as shown in the Results 
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Section, that MAKHA I was more suitable for low-dimensional problems, while MAKHA II was 

better for the high-dimensional problems (NV = 50). 

 

Figure 3. The pseudo-code of hybrid MAKHA. 
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The general pseudo-code for this algorithm is shown in Figure 3, while the equations used are  

as follows:  

• Initialization procedure: 

- Random generation of population in which the positions of the hybrid agent (monkey/krill) are 

created randomly, Xi = (Xi1, Xi2, …, Xi(NV)) where i = 1 to NP, which represents the number of 

hybrids, while NV represents the dimension of the decision variable vector. 

• The fitness evaluation and sorting: 

- Hi=f(Xi) where H stands for hybrid fitness and f is the objective function used. 

• The watch-jump process: 

- Random generation of Xi from (Xij − b, Xij + b) where b is the eyesight of the hybrid (monkey 

in MA) which indicates the maximal distance the hybrid can watch and Yi = (Yi1, Yi2, …, Yi(NV)), 

which are the new hybrid positions. 

- If −f (Yi) ≥ −f (Xi) then update Xi with Yi if feasible (i.e., within limits). 

• Foraging motion: 

- Depends on food location and the previous experience about the location. 
- Calculate the food attractive food

iβ  and the effect of best fitness so far Best
iβ  

, ,
ˆ ˆfood food

i i food i foodC H Xβ =  (3)

, ,
ˆ ˆBest

i i ibest i ibestH Xβ =  (4)

where Cfood is the food coefficient, which decreases with time and is calculated from: 

C 2(1 I / I )= −food
max  (5)

where I is the iteration number and Imax is the maximum number of iterations. 

- The center of food density is estimated from the following equation:  





=

== NP

i i

NP

i
i

ifood

H

X
H

X

1

1

1

1

 (6)

and Hibest is the best previously visited position. 

- Ĥ  and X̂ are unit normalized values obtained from this general form: 

ε+−
−

=
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where ε is a small positive number that is added to avoid singularities. Hbest and Hworst are the best 

and the worst fitness values, respectively, of the hybrid agents so far. H stands for the hybrid fitness 

and was used as K symbol in krill herd method. 

- The foraging motion is defined as 
old

ififi FwVF += β  (9)

where Vf is the foraging speed, wf is the inertia weight of the foraging motion in the  
range [0, 1], and old

iF is the last foraging motion. 

• Physical diffusion: 

This is an exploration step that is used at high dimensional problem, then 

iD D (1 I / I )δ= −max max  (10)

where Dmax is the maximum diffusion speed and δ is the random direction vector. 

• Calculate the time interval Δt 

( )
=

−=Δ
NV

L
LLt LBUBCt

1

 (11)

where Ct is constant. 

• The step for position is calculated through: 

ii
i DF

dt

dX +=  (12)

dt

dX
ttXttX i

ii Δ+=Δ+ )()(  (13)

where 
dt

dXi represents the velocity of the hybrid agent (Krill/Monkey). 

• Implementation of genetic operator: 

- Crossover 
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where { }NPiir ,...,1,1,...,2,1 +−∈  and Cr is the crossover probability 

bestir KC ,
ˆ2.08.0 +=  (15)

- Mutation 
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where µ is a random number, { }NPiiqp ,...,1,1,...,2,1, +−∈  and Mu is the mutation probability: 

bestiHMu ,
ˆ05.08.0 +=  (17)
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)/()(ˆ
, gbworstgbibesti HHHHH −−=  (18)

where Hgb is the best global fitness of the hybrid so far and Xgbest is its position. 

• The somersault process: 

- α is generated randomly from [c, d] where c and d are somersault interval. Two different 

implementations of the somersault process can be used: 

Somersault I 

- Create the pivot P [2]: 


=

=
NP

i
iji X

NP
P

1

1
 where ),...,,( 21 NVi PPPP =  (19)

)( ijiii XPXY −+= α  (20)

- Update Xi with Y if feasible or repeat until feasible. 

Somersault II 

- Create a pivot P by this equation used in MA: 
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ijlji XX

NP
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1
 (21)

- Get Y (i.e., the hybrid new position) 

ijiii XPXY −+= α  (22)

- Update Xi with Y if feasible and repeat until feasible. 

In summary, MAKHA offers more exploration than KHA and more exploitation than MA. 

5. Numerical Experiments 

Twenty-seven classical benchmark functions were used to evaluate the performance of MAKHA as 

compared to the original MA and KHA. Tables 1 and 2 show the benchmark functions used along with 

their names, number of variables, variable limits and the value of the global minimum. Table 3 lists the 

parameters used in the three algorithms in which their values were set to give the best attainable results 

for each algorithm. A new parameter for MAKHA was defined as the midpoint between the lower 

boundary and the upper boundary of the decision variables X. It is calculated from this formula: 

( )
=

−=
NV

L
LL LBUBR

1

5.0  (23)

in which, according to the value R, certain values were assigned to MAKHA’s parameters, as seen in 

Table 3. 
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Table 1. Benchmark functions used for testing the performance of MA, KHA and 

MAKHA. 

Name Objective Function 

Ackley [34] 
( ) ( )2 2

1 2 1 2
0.2 0.5 0.5 cos2 cos2 1

1 20 1
x x x xf e e eπ π− + + = − − + 

   

Beale [35] ( ) ( ) ( )2 22 2 3
2 1 1 2 1 1 2 1 1 21.5 2.25 2.625f x x x x x x x x x= − + + − + + − +

 

Bird [36] 
2

21
)sin1(

2
)cos1(

13 )()cos()sin(
2

1
2

2 xxexexf xx −++= −−  

Booth [35]  ( ) ( )2 2

4 1 2 1 22 7 2 5f x x x x= + − + + −  

Bukin 6 [35] 1001.001.0100 1
2
125 ++−= xxxf  

Carrom table [37]  
2 2
1 2

2
1 /

1 26 cos cos / 30
x x

f x x e
π− + 

= −  
 

 

Cross-leg table [37]  ( ) ( )
2 2
1 2

0.1
100 /

17 2sin sin 1
x x

f x x e
π

−
− + 

= − + 
 

 

Generalized egg holder [35] 

( ) ( )
( ) ( )

1

8

1 1

1
1

47 sin / 2 47

sin 47

m i i i

i
i i i

x x x
f

x x x
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=
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 − + + + +
 =  
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Goldstein–Price [38] 
))273648123218()32(30(
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2
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Himmelblau [39]  ( ) ( )2 22 2
11 10 2 211 7f x x x x= + − + + −  

Levy 13 [40] 
( ) ( ) ( ) ( ) ( )2 22 2 2

1 1 2 211 2sin 3 1 1 sin 3 1 1 sin 2f x x x x xπ π π   = + − + + − +   
 

Schaffer [37]  

( )

2 2 2
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2 2

12

1 2

0.5
0.5

0.001 1
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Zettl [41] 4
)2)( 12

1
2
2

2
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x
xxxf +−+  

Helical valley [42] ( ) ( )2
2 2 2 2

3 1 214 3100 10 1f x x x xθ = − + + − +  
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2

2 θ tan
x

x
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π  

Powell [43] ( ) ( ) ( ) ( )2 2 4 4

15 1 2 3 4 2 3 1 410 5 2 10f x x x x x x x x= + + − + − + −  

Wood [44] 

( ) ( ) ( ) ( )
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2 22 22 2
16 1 2 1 3 3 4

2 2

2 4 2 4

100 1 1 90
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Table 1. Cont. 

Sphere [47] 
2

19
1

m

i
i

f x
=

=  

Hartman 6 * [48]  
= =

−−−=
4

1
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1
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i j
ijjiji OxAf α  

Griewank [49] ( )2

21
1 1

1001
100 cos 1

4000
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i
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Rastrigin [50] ( )( )2
22

1

10 cos 2π 10
m

i i
i

f x x
=

= − +  

Rosenbrock [51] ( ) ( )
1 2 22

23 1
1

100 1
m

i i i
i

f x x x
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+
=
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Sine envelope sine wave [37] ( )

2 2 2
1 1
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0.5
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Styblinski–Tang [52] 
=
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m
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1

24
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Trigonometric [53] ( )
2

26
1 1

1 cos sin cos
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Zacharov [54] 

2 4

2
27

1 1 1

0.5  0.5  
m m m

i i i
i i i

f x i x i x
= = =

   = + +   
   

    

* Shekel and Hartman parameters were obtained from [36]. 

Table 2. Decision variables, global optimum of benchmark functions and number of 

iterations used for testing the performance of MA, KHA, and MAKHA. 

Objective Function NV 
Search 
Domain 

Global 
Minimum 

Iterations 
MA KHA MAKHA 

Ackley 2 [−35, 35] 0 25 3000 1000 
Beale 2 [−4.5, 4.5] 0 25 3000 1000 
Bird 2 [−2π, 2π] −106.765 25 3000 1000 

Booth 2 [−10, 10] 0 25 3000 1000 
Bukin 6 2 [−15, 3] 0 25 3000 1000 

Carrom table 2 [−10, 10] −24.15681 25 3000 1000 
Cross-leg table 2 [−10, 10] −1 25 3000 1000 

Generalized egg holder 2 [−512, 512] −959.64 124 15,000 5000 
Goldstein-Price 2 [−2, 2] 3 25 3000 1000 

Himmelblau 2 [−5, 5] 0 25 3000 1000 
Levy 13 2 [−10, 10] 0 25 3000 1000 
Schaffer 2 [−100, 100] 0 199 15,000 8000 

Zettl 2 [−5, 5] −0.003791 25 3000 1000 
Helical valley 3 [−1000, 1000] 0 25 3000 1000 
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Table 2. Cont. 

Powell 4 [−1000, 1000] 0 50 6000 2000 
Wood 4 [−1000, 1000] 0 25 3000 1000 

Extended Cube 5 [−100, 100] 0 25 3000 1000 
Shekel 5 4 [0, 10] −10.1532 25 3000 1000 
Sphere 5 [−100, 100] 0 75 9000 1000 

Hartman 6 6 [0,1] −3.32237 25 3000 1000 
Griewank 50 [−600, 600] 0 124 15000 5000 
Rastrigin 50 [−5.12, 5.12] 0 124 15000 5000 

Rosenbrock 50 [−50, 50] 0 124 15000 5000 
Sine envelope sine wave 50 [−100, 100] 0 124 15000 5000 

Styblinski-Tang 50 [−5,5] −1958.2995 124 15000 5000 
Trigonometric 50 [−1000, 1000] 0 124 15000 5000 

Zacharov 50 [−5,10] 0 25 3000 1000 

Table 3. Selected values of the parameters used in the implementation of MA, KHA  

and MAKHA. 

Method Condition Parameter Selected value 

MA 

 b 1 
R ≥ 100 b 10 

 c −1 
 d 1 

R ≥ 500 c −10 
R ≥ 500 d 30 

 NC 30 

KHA 

 Dmax [0.002, 0.01] 
 Ct 0.5 
 Vf 0.02 
 Nmax 0.01 
 wf and wN [0.1, 0.8] 

MAKHA I 

 b 1 
R < 2 b 0.5*R 

R ≥ 100 b 10 
 c −0.1 
 d 0.1 
 Dmax 0 
 Ct 0.5 
 Vf 0.2 
 wf 0.1 

Somersault I is used 

MAKHA II  
(NV = 50) 

 b 0.3*R 
 c −R 
 d R 
 Dmax [0.002, 0.01] 
 Ct 0.5 
 Vf 0.02 
 wf [0.1, 0.8] 

Somersault II is used 
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The twenty-seven problems constitute a comprehensive testing of the reliability and effectiveness of 

the hybrid algorithm. Thirteen functions have two variables only, yet some of them are very difficult to 

optimize. Surface plots of eight of the two-variable functions are shown in Figure 4. Each problem was 

solved 30 times by each of the three algorithms. The best value at each iteration was recorded and the 

means of the best values were calculated amongst the 30 run as a function of the iteration number.  

The plots of the mean best values versus the number of function for the three algorithms provide a 

clear comparison of both the reliability and the efficiency of the algorithms. Reliability is represented 

by how far the algorithm predictions of the minimum are from the known global minimum, while 

efficiency is represented by the number of function evaluations needed for the calculation of this  

best value. 

(a) (b) 

(c) (d) 

Figure 4. Cont. 
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(e) (f) 

(g) (h) 

Figure 4. Surface plots of the two-variable benchmark functions used in this study:  

(a) Ackley, (b) Beale, (c) Booth, (d) Carrom table, (e) Cross-leg table, (f) Himmelblau,  

(g) Levy 13, and (h) Schaffer. 

To complete the evaluation of the MAKHA in comparison with the original MA and KHA 

algorithms, we have employed the performance profile (PP) reported by Dolan et al. [55], who 

introduced PP as a tool for evaluating and comparing the performance of optimization software. In 

particular, PP has been proposed to represent compactly and comprehensively the data collected from a 

set of solvers for a specified performance metric. For instance, the number of function evaluations or 

computing time can be considered performance metrics for solver comparison. The PP plot allows 

visualization of the expected performance differences among several solvers and to compare the 

quality of their solutions by eliminating the bias of failures obtained in a small number of problems. 

To introduce PP, consider ns solvers (i.e., optimization methods) to be tested over a set of np 

problems. For each problem p and solver s, the performance metric tps must be defined. In our study, 

reliability of the stochastic method in accurately finding the global minimum of the objective function 

is considered as the principal goal, and hence the performance metric is defined as 

*fft calcps −=  (24)
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where f* is the known global optimum of the objective function and fcalc is the mean value of that 

objective function calculated by the stochastic method over several runs. In our study, fcalc is calculated 

from 30 runs to solve each test problem by each solver; note that each run is different because of the 

random number seed used and the stochastic nature of the method. So, the focus is on the average 

performance of stochastic methods, which is desirable for comparison purposes. 

For the performance metric of interest, the performance ratio, rps, is used to compare the 

performance on problem, p, by solver, s, with the best performance by any solver on this problem. This 

performance ratio is given by 

{ }min :1
ps

ps

ps s

t
r

t s n
=

≤ ≤
 (25)

The value of rps is 1 for the solver that performs the best on a specific problem p. To obtain an 

overall assessment of the performance of solvers on np problems, the following cumulative function for 

rps is used: 

( ) { }1
:s ps

p

size p r
n

ρ ς = ≤ ζ  (26)

where ρ(ς) is the fraction of the total number of problems, for which solver s has a performance ratio 

rps within a factor of ς of the best possible ratio. The PP of a solver is a plot of ρs(ς) versus ς; it is a  

non-decreasing, piece-wise constant function, continuous from the right at each of the breakpoints. 

To identify the best solver, it is only necessary to compare the values of ρs(ς) for all solvers and to 

select the highest one, which is the probability that a specific solver will “win” over the rest of solvers 

used. In our case, the PP plot compares how accurately the stochastic methods can find the global 

optimum value relative to one another, and so the term “win” refers to the stochastic method that 

provides the most accurate value of the global minimum in the benchmark problems used. 

6. Results and Discussion 

As stated, each of the numerical experiments was repeated 30 times with different random seeds for 

MAKHA and the original MA and KHA algorithms. Parameters used for stochastic algorithms are 

reported in Table 3. The objective function value at each iteration for each trial was recorded. The 

mean and the standard deviation of the function values were calculated at each iteration. The global 

optimum was considered to be obtained by the method if it finds a solution within a tolerance value of 

10−10. The progress of the mean values is presented in Figures 5–8 for each benchmark function and a 

brief discussion of those results follows. 

The Ackley function has one minimum only. The global optimum was obtained using MAKHA and 

in relatively small number of function evaluations as shown in Figure 5a. MA and KHA were not able 

to obtain satisfactorily the global minimum. The best value obtained by MA was still improving by the 

end of the run, whereas KHA results were not. 

This significant improvement in performance was also clear with the Beale function (Figure 5b). 

The Beale function has one minimum only, which was only obtained satisfactory by MAKHA.  

The performance pattern for the three methods was different for the Bird function, as depicted in Figure 5c. 

MAKHA arrived at the global minimum almost instantaneously. KHA was trapped in a local 
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minimum, while MA was approaching the global minimum, but did not reach it after 300,000 function 

evaluations. For the Booth function, both MAKHA and KHA arrived at the global minimum but with 

an improvement in orders of magnitude for the efficiency of MAKHA. On the other hand, MA failed 

to arrive at the global minimum, as shown in Figure 5d. For Bukin 6 function, none of the three 

methods obtained the global minimum within the used tolerance. However, MAKHA performed better 

than KHA, which performed better than MA, as shown in Figure 5e. 

MAKHA and KHA performed similarly for the Carrom table function, as they obtained the global 

minimum almost instantaneously, as shown in Figure 5f. MA could not achieve the global minimum 

even after 300,000 function evaluations. For the Cross-leg table function, MAKHA was the only 

method to obtain the global minimum, as shown in Figure 5g. Note that MA performed better than 

KHA after many NFE. MAKHA obtained the global minimum for the Generalized Eggholder function 

almost instantaneously, as depicted in Figure 5h. The other two methods were not able to obtain the 

global minimum but MA’s performance was significantly better than KHA’s. 

(a) (b) 

(c) (d) 

Figure 5. Cont. 
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(e) (f) 

(g) (h) 

Figure 5. Evolution of mean best values for MA, KHA and MAKHA for: (a) Ackley,  

(b) Beale, (c) Bird (d) Booth, (e) Bukin6 (f) Carrom table, (g) Cross-leg table, and  

(h) Generalized Eggholder functions. 

For the Goldstein-Price function, all three algorithms obtained the global minimum, as depicted in 

Figure 6a. However, MAKHA and KHA were orders-of-magnitude more efficient than MA. For the 

Himmelblau function, MAKHA obtained the global minimum at low NFE, KHA obtained it at high 

NFE, and MA was not able to obtain it after 300,000 NFE, as shown in Figure 6b. This performance 

was almost exactly repeated with the Levy 13 function, as shown in Figure 6c. As for the Schaffer 

function, both MAKHA and MA converged to the global minimum within the used tolerance. 

MAKHA was more efficient than MA in terms of the NFE required to obtain the global minimum, as 

shown in Figure 6d. KHA failed to converge to the global minimum for this particular function.  

Figure 6e shows the evolution pattern for the Zettl function. MAKHA and KHA obtained the global 

minimum within a small NFE, while MA obtained it after considerably more NFE. The Helical Valley 

function has three variables. The evolution of the mean best values of the three algorithms is reported 

in Figure 6f and results showed that the performance of MAKHA was better than the other two 

algorithms. MAKHA efficiently obtained the global minimum, while the other two could not, with 
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KHA performing better than MA. This convergence performance is almost exactly repeated with the 

two four-variable functions, the Powell function (Figure 6g) and with the Wood function (Figure 6h). 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 6. Cont. 
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(g) (h) 

Figure 6. Evolution of mean best values for MA, KHA and MAKHA for:  

(a) Goldstein–Price (b) Himmelblau, (c) Levy 13, (d) Schaffer functions, (e) Zettl,  

(f) Helical Valley, (g) Powell and (h) Wood. 

The evolution of the mean best values of the three algorithms for the five-variable functions, which 

are the Extended Cube, Shekel and Sphere functions, are reported in Figure 7a–c, respectively. For the 

Extended Cube function, MAKHA was able to obtain the global minimum, while the other two 

methods failed to converge to the global minimum. For the Shekel function, MAKHA obtained the 

global minimum very efficiently, as compared to MA, which obtained it at a higher NFE. KHA failed 

to converge to the global minimum for this function. A relative close pattern is repeated with the  

five-variable sphere function. Hartman function is a fifty-variable function and its results are depicted 

in Figure 7d. MAKHA and KHA converged to the global minimum efficiently, while MA failed to 

achieve it after 300,000 function evaluations. For the Griewank function, shown in Figure 7e, the three 

algorithms failed to converge to the global minimum. However, MAKHA performance was 

considerable better than the performance of the other two algorithms, which performed similarly. The 

Rastrigin function is one of the three functions in which MAKHA was not the top performer. The 

results for the Rastrigin function are reported in Figure 7f. The three methods did not obtain the global 

minimum. However, MA performed better than MAKHA, which in turn performed better than KHA. 

For the Rosenbrock function, whose results are shown in Figure 7g, the three algorithms did not obtain 

the global minimum, within the acceptable tolerance, with 1,500,000 function evaluations. However, 

the best value obtained by MAKHA is seven orders-of-magnitude better than that obtained by the other 

two algorithms. Sine Envelope Sine function is the second function in which MAKHA did not 

outperform MA, see Figure 7h. MA was the only method to achieve the global minimum. MAKHA’s 

performance was significantly better than KHA’s performance. 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 7. Evolution of mean best values for MA, KHA and MAKHA for: (a) Extended 

cube, (b) Shekel, (c) Sphere, (d) Hartman, (e) Griewank (f) Rastrigin, (g) Rosenbrock, and  

(h) Sine Envelope Sine functions.  
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Figure 8a–c shows the results of the mean best value obtained by the three algorithms for 

Styblinski–Tang, Trigonometric, and Zacharov functions, respectively. MAKHA was the only method 

to obtain the global minimum for Styblinski-Tang function and it did efficiently as measured by NFE.  

MA outperformed KHA for this particular function. The same pattern was obtained with the 

Trigonometric function as depicted in Figure 8b. The Zacharov function is the third function, which 

MAKHA did not outperform MA, as shown in Figure 8c. 

(a) (b) 

(c) 

Figure 8. Evolution of mean best values for MA, KHA and MAKHA for:  

(a) Styblinski-Tang, (b) Trigonometric and (c) Zacharov functions. 

Table 4 shows a summary of the performance results for the twenty-seven benchmark problems. 

MAKHA has outperformed its parent algorithms in the majority of the benchmark problems studied. 

Best global values are shown in bold. The performance profiles reported in Figure 9 summarize the 

results of the MAKHA evaluation in comparison with the two original algorithms. MAKHA was the 

best algorithm in 24 out of the 27 cases considered. In several cases, the hybrid algorithm was the only 
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algorithm that obtained the global minimum. Also, due to its efficient exploration and exploitation 

components, it converges to the global minimum with less NFE than the original two algorithms. 

Table 4. Values of the mean minima (fcalc) and standard deviations (σ) obtained by the 

MAKHA, MA and KHA algorithms for the benchmark problems used in this study.* 

 Numerical Performance of 

 MA KHA MAKHA 

Objective function fcalc σ fcalc σ fcalc σ 

Ackley 4.8E−8 0 0.00129 0 0 0 
Beale 0.084 0.125 0.0508 0.193 0 0 
Bird −105.326 1.45 −103.52 7.4 −106.7645 0 

Booth 0.179 0.172 1.28E−12 0 0 0 
Bukin 6 3.487 1.77 0.074 0.029 0.0267 0.0157 

Carrom table −23.9138 0.436 −24.1568 0 −24.1568 0 
Cross-leg table −0.002 4E−3 −0.00035 0 −0.9985 0 

Generalized egg holder −949.58 0 −862.1 0 −959.641 0 
Goldstein-Price 3.051 0.055 3 0 3 0 

Himmelblau 0.179 0.187 7.4E−13 0 3.7E−31 0 
Levy 13 0.0616 0.08 2.1E−7 0 1.35E−31 0 
Schaffer 0 0 1.7E−6 0 0 0 

Zettl −0.0037 1E−3 −0.00379 0 −0.00379 0 
Helical valley 136 250 9.8E−5 3E−3 0 0 

Powell 18.46 49 1.9E−5 0 0 0 
Wood 113.6 256 0.698 1.6 0 0 

Extended Cube 3.568 0.8 1.658 5.28 0 0 
Shekel 5 −10.139 0.06 −5.384 3.1 −10.1532 0 
Sphere 1.4E−14 0 1E−10 0 0 0 

Hartman 6 −2.7499 0.2 −3.2587 0.06 −3.2627 0.06 
Griewank 0.0165 0.032 0.0769 0.095 8.4E−8 0 
Rastrigin 1.3E-9 0 89.38 48.38 6.47E−6 0 

Rosenbrock 47.45 7.5 52.593 18.97 1E−5 0 
Sine envelope sine wave 3.3E−11 0 16.107 5.94 3.46E−6 0 

Styblinski-Tang −1916.84 28.1 −1645.42 36.9 −1958.31 0 
Trigonometric 1.35E−5 0 285.43 545.5 0 0 

Zacharov 1.46E−10 0 1E−3 5.5E−3 8.4E−6 0 

* Bold numbers represent the best global minimum value obtained for each function. 
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Figure 9. Performance profiles of the MAKHA, MA, and KHA methods for the global 

optimization of the twenty-seven benchmark problems used in this study. 

The results of new proposed hybrid were promising that could be attributed to the combination of 

some of the mechanisms and processes of MA and KHA together to produce a reliable algorithm with 

appreciated performance. The procedures of both algorithms include exploration/diversification and 

exploitation/intensification features as follows: 

(a) Exploration or diversification feature: The watch-jump process (MA), physical random diffusion 

(KHA), the somersault process (MA), and genetic operators (KHA). 

(b) Exploitation or intensification feature: The climb process (MA), the watch-jump process (MA), 

the induced motion (KHA), and the foraging activity (KHA). 

Both algorithms (MA and KHA) make a good compromise and balance between 

exploration/diversification and exploitation/intensification features. However, MAKHA uses the best 

setup of efficient operators, which are capable of producing the previous promising results. 

7. Conclusions 

In this paper, we propose a new hybrid algorithm, which is based on two bio-inspired swarm 

intelligence global stochastic optimization methods, the Monkey Algorithm and the Krill Herd 

Algorithm. The hybridization made use of the efficient components in each of the two original 

algorithms. It aimed to provide a better balance between exploration/diversification steps and 

exploitation/intensification steps to more efficiently and more reliably solve a wide range of problems 

in comparison with the its parent algorithms. This hybrid method was evaluated by attempting to find 

the global optimum of twenty-seven benchmark functions. The newly developed MAKHA algorithm 

led to improved reliability and effectiveness of the algorithm in the vast majority of the benchmark 

problems. In many cases, the global minimum could not be obtained via the original algorithms, but 

was easily obtained by the new method. 

The authors are currently working on the improvement of MAKHA by decreasing the number of its 

parameters, and increasing its reliability and efficiency in solving difficult thermodynamic problems. 

The performance of MAKHA is compared to the performance of other algorithms thath have high 

reliability in solving these kinds of problems. 
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Abbreviations 

A Hartman’s recommended constants 

a Pseudo-gradient monkey step 

b 
Eyesight of the monkey (hybrid), which indicates the maximum distance the monkey 

(hybrid) can watch. 

C Shekel’s recommended constants 

Cfood Food coefficient 

Cr Crossover probability 

Ct Empirical and experimental Constants (Time constant) 

c Somersault interval 

Di Physical diffusion of krill (hybrid) number i 

Dmax Maximum diffusion speed 

d Somersault interval 

dsi Sensing distance of the krill 

dsij Distance between each 2 krill positions 

f Objective function 

Fi Foraging motion 

G Global minimum 

H Fitness value of the hybrid in MAKHA 

I, i, j and l Counters for any value 

K Fitness value of the krill in KHA 
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M Number of local minima in Shekel function 

LB Lower boundaries and low limit of decision variable 

Mu Mutation probability 

m Dimension of the problem, i.e., number of variables. 

N Induced speed for KHA 

Nc Number of climb cycles 

Nmax Maximum induced speed 

NP Population size (number of points) 

NV Dimension of the problem, i.e., number of variables. 

n A counter 

np Number of problems 

ns Number of solvers 

O Hartman’s recommended constants 

P Pivot value 

R 
The half range of boundaries between the lower boundary and the upper boundary of 

the decision variables (X) 

rps The performance ratio 

T Time taken by krill or hybrid 

tps Performance metric 

UB Upper boundaries and high limit of decision variable 

Vf Foraging speed 

wf or wN Inertia weight 

X Decision variable matrix 

Xfood Centre of food density 

x Decision variable 

Y Decision variable matrix 

Greek Letters 

 Somersault interval random output. 

β Shekel’s recommended constant 

βfood Food attractive factor 

 Random direction vector 

∆t Incremental period of time 

ε Small positive number to avoid singularity 
ζ  The simulating value of rps 

 The maximum assumed value of rps 

ρ 
The cumulative probabilistic function of rps and the fraction of the total number of 

problems 

σ Standard deviation 

ς  The counter of ρ points 
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