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Abstract: In this paper, we present a new three-step derivative-free family based on
Potra-Pták’s method for solving nonlinear equations numerically. In terms of computational
cost, each member of the proposed family requires only four functional evaluations
per full iteration to achieve optimal eighth-order convergence. Further, computational
results demonstrate that the proposed methods are highly efficient as compared with many
well-known methods.
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1. Introduction

One of the most basic and earliest problem of numerical analysis concerns with finding efficiently
and accurately the simple roots of a nonlinear equation of the form

f(x) = 0, (1)

where f : D⊆ R→R is a nonlinear continuous function. Analytical methods for solving such equations
are almost non-existent and therefore, it is only possible to obtain approximate solutions by relying on
numerical methods based on iterative procedure (see e.g., [1–7]). Newton’s method [5] is one of the
most famous and basic method for solving such equations, which is given by

xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, 2, . . . . (2)
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It converges quadratically for simple roots and linearly for multiple roots.
Multipoint iterative methods for solving nonlinear equation are of great practical importance since

they overcome the limitations of one-point methods regarding the convergence order and computational
efficiency. According to the Kung-Traub conjecture [2], the order of convergence of any multipoint
method without memory requiring n function evaluations per iteration, cannot exceed the bound 2n−1,
called the optimal order. Thus, the optimal order for a method with three functional evaluations per step
would be four.

As the order of an iterative method increases, so does the number of functional evaluations per
step. Commonly, the efficiency of an iterative method is measured by the efficiency index defined
by Ostrowski in [3] as p1/d, where p is the order of convergence and d is the number of functional
evaluations per step. To improve the order and efficiency of Newton’s method Equation (2), Potra and
Pták [4] proposed the following third-order method:

yn = xn −
f(xn)

f ′(xn)
,

xn+1 = xn −
f(xn) + f(yn)

f ′(xn)
, n = 0, 1, 2, . . . .

(3)

It satisfies the following error equation

en+1 = 2c22e
3
n + (−9c32 + 7c2c3)e

4
n +O(e5n).

However, there are many practical situations in which the calculations of derivatives are expensive
or it requires a great deal of time for them to be given or calculated. Therefore, the idea of removing
derivatives from the iteration process is very significant.

In particular, when the first-order derivative f ′(xn) in Newton’s method is replaced by
forward-difference approximation f(xn+f(xn))−f(xn)

f(xn)
, we get the well-known Steffensen method [6]

as follows:
xn+1 = xn −

f(xn)

f [xn, wn]
,

where wn = xn + f(xn) and f [·, ·] denotes the first order divided difference. As a matter of fact,
both methods maintain quadratic convergence using only two functional evaluations per full step, but
Steffensen method is derivative free, which is very useful in optimization problems. Recently, many
higher-order derivative-free methods are built according to the Steffensen’s method, (cf. [7,8] and the
references cited therein). Soleymani et al. in [9] presented the following fourth-order optimal Steffensen
type methods given by

yn = xn −
f(xn)

f [xn, wn]
, wn = xn + βf(xn),

xn+1 = xn −
f(xn) + f(yn)

f [xn, wn]
−

(
2f(xn) + af(yn)

f [xn, wn]

(
f(yn)

f(xn)

)2
)(

1− βf [xn, wn]

2 + 2βf [xn, wn]

)
, a ∈ R,

(4)

where β ∈ R\{0}. The construction of this family is based on Potra-Pták’s method. However, we do not
have any higher-order derivative-free modifications of Potra-Pták’s method till date.

With this aim, we intend to propose a new derivative-free modification of Potra-Pták’s method
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having optimal eighth-order convergence. The construction of the proposed class is based on weight
function approach. It is found by way of illustrations that the proposed methods are very useful in high
precision computations.

2. Development of Derivative-Free Methods and Convergence Analysis

In this section, we intend to develop a new derivative-free class of three-point methods having optimal
eighth-order convergence.

Thus, we consider the following iteration scheme

yn = xn −
f(xn)

f ′(xn)
,

zn = yn −
f(yn)

f ′(xn)
,

xn+1 = zn −
f(zn)

f ′(zn)
,

(5)

where first two steps of the well-known Potra-Pták’s method are composed with the Newton step.
It satisfies the following error equation

en+1 = 4c52e
6
n + (−36c62 + 28c42c3)e

7
n +O(e8n), (6)

where en = xn − α and ck =
1

k!

fk(α)

f ′(α)
, k ≥ 2.

According to the Kung-Traub conjecture, the above scheme Equation (5) is not optimal because
it has sixth-order convergence and requires five functional evaluations per full iteration. Following
Cordero-Torregrosa conjecture [8], we replace derivatives in all three steps by suitable approximations
that use available data. Therefore, we approximate

f ′(xn) ≈ f [xn, wn],

f ′(zn) ≈ f [xn, wn],
(7)

wherewn = xn+βf(xn)
3, β ∈ R\{0} and f [x, y] =

f(x)− f(y)
x− y

denotes a divided difference (without

index n).
Substituting these approximations in Equation (5), we get a derivative-free three-point iterative

method given by 

yn = xn −
f(xn)

f [xn, wn]
,

zn = yn −
f(yn)

f [xn, wn]
,

xn+1 = zn −
f(zn)

f [xn, wn]
.

(8)

It satisfies the following error equation

en+1 = 4c32e
4
n + (−26c42 + 20c22c3)e

5
n +O(e6n).



Algorithms 2015, 8 312

Again, the family of methods Equation (8) is not optimal according to the Kung-Traub conjecture.
Therefore, to further improve its order of convergence, we shall now make use of weight function
approach. Therefore, we consider

yn = xn −
f(xn)

f [xn, wn]
, wn = xn + βf(xn)

3,

zn = xn −
(
f(xn) + f(yn)

f [xn, wn]

)
G(τ), τ =

f(yn)

f(xn)
,

xn+1 = zn −
f(zn)

f [xn, wn]
H(τ, φ), φ =

f(zn)

f(yn)
,

(9)

where β ∈ R\{0} and G and H are parametric functions of one and two variables, respectively.
Theorem (1) illustrates that under what conditions on weight functions, convergence order of family
Equation (9) will arrive at the optimal level eight.

3. Convergence Analysis

Theorem 1. Assume that function f : D ⊆ R → R is sufficiently differentiable and has a simple
zero α ∈ D. If an initial guess x0 is sufficiently close to α ∈ D, then the iterative scheme defined by
Equation (9) has optimal convergence of order eight when

G(0) = 1, G′(0) = 0, G′′(0) = 4 and |G(3)(0)| ≤ ∞, β ∈ R\{0},

H00 = 1, H10 = 2, H01 = 1, H20 =
G(3)(0)

3
+ 6, H11 = 4, H30 = 3G(3)(0) +

G(4)(0)

4
,

where Hij =
1

i!j!

∂H(u, v)

∂uivj
|(0,0), i = 0, 1, 2, 3 and j = 0, 1, 2, 3.

It satisfies the following error equation

en+1 =
1

432
c2
(
(−18 +G(3)(0))c22 + 6c3

)[(
H02(−18 +G(3)(0))2 − 3(648 + 2H21(−18 +G(3)(0))− 28G(3)(0)

+ 3G(4)(0))
)
c42 + 36(−2 +G(2)(0))c23 − 12c22

(
6βf ′(α)

3
+ (−102 + 18H02 + 3H21 +G(3)(0)−G(2)(0)G(3)(0))c3

)
− 72c2c4

]
e8n +O(e9n),

(10)

where en and ck are already defined in Equation (6).

Proof. Using Taylor’s series and symbolic computation, we can determine the asymptotic error constant
of three-step derivative-free class of methods Equation (9). Furthermore, taking into account that
f(α) = 0, we can expand f(xn) about xn = α. Therefore, we get

f(xn) = f ′(α)(en + c2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n + c7e

7
n + c8e

8
n) +O(e9n). (11)

Using that wn = xn + βf(xn)
3, one gets

f [xn, wn] = f ′(α) + 2f ′(α)c2en + 3f ′(α)c3e
2
n + f ′(α)

(
βf ′(α)3c2 + 4c4

)
e3n

+ f ′(α)
(
3βf ′(α)3c22 + 3βf ′(α)3c3 + 5c5

)
e4n +O(en)

5.
(12)
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From Equations (11) and (12), we have

yn − α = xn − α−
f(xn)

f [xn, wn]
= c2e

2
n + (−2c22 + 2c3)e

3
n + (βf ′(α)3c2 + 4c32 − 7c2c3 + 3c4)e

4
n +O(e5n).

(13)
Expanding f

(
xn − f(xn)

f [xn,wn]

)
about xn = α, we have

f(yn) = f

(
xn −

f(xn)

f [xn, wn]

)
= f ′(α)c2e

2
n + f ′(α)

(
−2c22 + 2c3

)
e3n + f ′(α)

(
5c32 + c2

(
βf ′(α)3 − 7c3

)
+ 3c4

)
e4n

+O[en]
5,

(14)

and

τ =
f(yn)

f(xn)
= c2en + (−3c22 + 2c3)e

2
n + (3c4 − 10c2c3 + 8c32 + βf ′(α)3c2)e

3
n +O(e4n). (15)

In the same vein, by considering G(0) = 1, G′(0) = 0, G′′(0) = 4 and |G(3)(0)| ≤ ∞, we obtain

zn − α = xn − α−
(
f(xn) + f(yn)

f [xn, wn]

)
G(τ) =

((
3− G(3)(0)

6

)
c32 − c2c3

)
e4n +O(e5n). (16)

Moreover, we find

f(zn) = f ′(α)

[(
3− G3(0)

6

)
c32 − c2c3

]
e4n + f ′(α)

[(
−16 + 3G3(0)

2
− G(4)(0)

24

)
c42

−2c23 − c22
(
βf ′(α)3 + (−20 +G3(0))c3

)
− 2c2c4

]
e5n +O(e6n),

(17)

and

φ =
f(zn)

f(yn)
=

1

6

(
18c22 −G(3)(0)c22 − 6c3

)
e2n +

1

24

(
−24βf ′(α)3c2 − 240c32 + 28G(3)(0)c32

− G(4)(0)c32 + 288c2c3 − 16G(3)(0)c2c3 − 48c4
)
e3n +O(e4n).

(18)

Since, it is clear from Equations (15) and (18) that τ and φ are of order en and e2n, respectively.
Therefore, we can expand weight function H(τ, φ) in the neighborhood of origin by Taylor series
expansion up to third order terms as follows:

H(τ, φ) = H00+H10τ+H01φ+
1

2!
(H20τ

2+2H11τφ+H02φ
2)+

1

3!
(H30τ

3+3H21τ
2φ+3H12τφ

2+H03φ
3).

(19)
Using Equations (17) and (19) in the last step of Equation (9), we get

en+1 =
1

6
(−1 +H00)c2

(
(−18 +G(3)(0))c22 + 6c3

)
e4n

+

(
1

24
(−384 + 4H10(−18 +G(3)(0)) + 36G(3)(0)−G(4)(0) +H00(528− 44G(3)(0) +G(4)(0)))c42

+ 2(−1 +H00)c
2
3 + c22

(
βf ′(α)3(−1 +H00) + (20 +H10 +H00(−22 +G(3)(0))−G(3)(0))c3

)
+2(−1 +H00)c2c4) e

5
n + . . .+O(e9n).

(20)
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This implies that the derivative-free class of methods Equation (9) arrive at optimal eighth-order of
convergence by choosing the weight functions as follow:

G(0) = 1, G′(0) = 0, G′′(0) = 4 and |G(3)(0)| ≤ ∞, β ∈ R\0,

H00 = 1, H10 = 2, H01 = 1, H20 =
G(3)(0)

3
+ 6, H11 = 4, H30 = 3G(3)(0) +

G(4)(0)

4
.

(21)

Finally, using Equations (21) in (20), we get the following error equation

en+1 =
1

432
c2
(
(−18 +G(3)(0))c22 + 6c3

)[(
H02(−18 +G(3)(0))2 − 3(648 + 2H21(−18 +G(3)(0))− 28G(3)(0)

+ 3G(4)(0))
)
c42 + 36(−2 +G(2)(0))c23 − 12c22

(
6βf ′(α)

3
+ (−102 + 18H02 + 3H21 +G(3)(0)−G(2)(0)G(3)(0))c3

)
− 72c2c4

]
e8n +O(e9n).

(22)

This concludes the proof.

Remark 1. It is straightforward to see that all the proposed methods of family Equation (9) require four
functional evaluations, viz., f(xn), f(yn), f(wn), f(zn), per full iteration. Therefore, these methods
are optimal in the sense of Kung-Traub conjecture and have the efficiency indices E = 8

1
4 ≈ 1.682.

Furthermore, by choosing appropriate weight functions in family Equation (9), we can develop several
new optimal derivative-free families having optimal eighth-order convergence.

Remark 2. From the application point of view, when the given problem is complicated, it becomes very
difficult to evaluate derivatives. For example, the nonlinear function h(x) = (cot x)ex

√
(1/(2x2 coshx)

(see Figure 1), has a very complicated first derivative. Such shortcomings lead us to investigate new
optimal iterative methods which are totally free from derivatives.
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Figure 1. The graph of h(x) and its root.
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4. Special Cases

In this section, we introduce some concrete methods based on the proposed class Equation (9).
Method 1 Let us consider the weight functions defined by

G(τ) =
γ

6
τ 3 + 2τ 2 + 1 and H(τ, φ) =

γ

2
τ 3 +

(γ
6
+ 3
)
τ 2 + 4τφ+ 2τ + φ+ 1,

where τ =
f(yn)

f(xn)
, φ =

f(zn)

f(yn)
and γ is any free disposable parameter.

It can be easily seen that the above mentioned weight functions G(τ) and H(τ, φ) satisfy all the
conditions of Theorem (1). Therefore, we get a new derivative-free optimal family of eighth-order
methods given by

yn = xn −
f(xn)

f [xn, wn]
, wn = xn + βf(xn)

3,

zn = xn −
(
f(xn) + f(yn)

f [xn, wn]

)[
γ

6

(
f(yn)

f(xn)

)3

+ 2

(
f(yn)

f(xn)

)2

+ 1

]
,

xn+1 = zn −
f(zn)

f [xn, wn]

[
γ

2

(
f(yn)

f(xn)

)3

+
(γ
6
+ 3
)( f(yn)

f(xn)

)2

+ 4
f(yn)

f(xn)

f(zn)

f(yn)
+ 2

f(yn)

f(xn)
+
f(zn)

f(yn)
+ 1

]
.

(23)

Method 2 Now, we consider the following weight functions

G(τ) =
τ(1− 12(µ+ 2)τ)− 12

τ(1− 12µτ)− 12
and H(τ, φ) =

−24 +
(
299
3

+ 48µ
)
τ 3

4(−6 + 6φ+ (12− 5τ)τ)
,

where τ =
f(yn)

f(xn)
, φ =

f(zn)

f(yn)
and µ is any free disposable parameter.

These weight functions satisfy all the conditions of Theorem (1). Therefore, we obtain another new
derivative-free optimal family of eighth-order methods given by

yn = xn −
f(xn)

f [xn, wn]
, wn = xn + βf(xn)

3,

zn = xn −
(
f(xn) + f(yn)

f [xn, wn]

)
f(yn)

f(xn)
(1− 12(µ+ 2)

f(yn)

f(xn)
)− 12

f(yn)

f(xn)
(1− 12µ

f(yn)

f(xn)
)− 12

 ,

xn+1 = zn −
f(zn)

f [xn, wn]


−24 +

(
299
3

+ 48µ
) f(yn)
f(xn)

3

4(−6 + 6
f(zn)

f(yn)
+ (12− 5

f(yn)

f(xn)
)
f(yn)

f(xn)
)

 .
(24)

Method 3 Consider the weight functions defined by

G(τ) =
6η − τ + 12ητ 2 + (η − 2)τ 3

6η − τ
and H(τ, φ) =

τ 2 − 6η (12 + 25τ 2)

τ 2 + 6η(−12 + 12φ+ (24− 35τ)τ)
,
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where τ =
f(yn)

f(xn)
, φ =

f(zn)

f(yn)
and η is any free disposable parameter.

These weight functions also satisfy all the conditions of Theorem (1). Therefore, we get another new
optimal family of eighth-order methods given by

yn = xn −
f(xn)

f [xn, wn]
, wn = xn + βf(xn)

3,

zn = xn −
(
f(xn) + f(yn)

f [xn, wn]

)
6η − f(yn)

f(xn)
+ 12η

f(yn)

f(xn)

2

+ (η − 2)
f(yn)

f(xn)

3

6η − f(yn)

f(xn)

 ,

xn+1 = zn −
f(zn)

f [xn, wn]


f(yn)

f(xn)

2

− 6η

(
12 + 25

f(yn)

f(xn)

2
)

f(yn)

f(xn)

2

+ 6η(−12 + 12
f(zn)

f(yn)
+ (24− 35

f(yn)

f(xn)
)
f(yn)

f(xn)
)

 .
(25)

Method 4 The method by Kung and Traub, see [2], denoted by KTM8, is

yn = xn + βf(xn), β ∈ R− {0},

zn = yn − β
f(xn)f(yn)

f(yn)− f(xn)
,

wn = zn −
f(xn)f(yn)

f(zn)− f(xn)

[
1

f [yn, xn]
− 1

f [zn, yn]

]
,

xn+1 = zn −
f(xn)f(yn)f(zn)

f(wn)− f(xn)

[
1

f [yn, xn]

{
1

f [wn, zn]
− 1

f [zn, yn]

}
− 1

f [zn, xn]

{
1

f [zn, yn]
− 1

f [yn, xn]

}]
.

(26)

Method 5 The method by Soleymani, see [10], denoted by SM1
8 , is

yn = xn −
f(xn)

f [xn, wn]
, wn = xn + f(xn),

zn = yn −
f(yn)

f [xn, yn]

[
1 +

f(yn)

f(wn)
+

(
f(yn)

f(wn)

)2
]
,

xn+1 = zn −
f(zn)

f [zn, yn]

[
1 +

1

f [xn, wn] + 1

(
f(yn)

f(xn)

)2

+ (2 + f [xn, wn])
f(zn)

f(wn)

]
.

(27)

Method 6 The method by Zheng et al., see [11], denoted by ZM8, is

yn = xn −
f(xn)

f [xn, wn]
, wn = xn + βf(xn),

zn = yn −
f(yn)

f [xn, yn] + f [yn, wn]− f [xn, wn]
,

xn+1 = zn −
f(zn)

f [zn, yn] + f [zn, xn, xn](zn − yn) + f [zn, yn, xn, wn](zn − yn)(zn − xn)
.

(28)
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Method 7 The method by Soleymani, see [12], denoted by SM2
8 , is

yn = xn −
f(xn)

f [xn, wn]
, wn = xn + βf(xn),

zn = yn −
f(yn)

f [xn, yn] + f [yn, wn]− f [xn, wn]
,

xn+1 = zn −
f(zn)

{
1 +

(
f(yn)

f(xn)

)4

− (1 + βf [xn, wn])

(
f(yn)

f(wn)

)3

−
(
f(zn)

f(yn)

)2

+
f(zn)

f(wn)
+

(
f(zn)

f(xn)

)2
}

f [xn, zn] + f [zn, yn]− f [xn, yn]
.

(29)

5. Numerical Experiments

In this section, we shall check the effectiveness of the newly proposed methods. We employ the
present methods Equation (23) (for β = 1, γ = 12 ), Equation (24) (for β = 1, µ = 12) and
Equation (25) (for β = 1, η = 12 ), denoted byMM1

8 ,MM2
8 andMM3

8 , respectively to solve nonlinear
equations. We compare them with Kung and Traub method Equation (26) (KTM8) , Soleymani method
Equation (27) (SM1

8 ), Zheng et al. method Equation (28) (ZM8), Soleymani et al. method Equation (29)
(SM2

8 ), respectively. The test functions and their roots are displayed in Table 1. Comparison of different
eighth-order derivative-free iterative methods with respect to the same number of functional evaluations
(TNE = 12) are provided in Tables 2–4. All computations have been performed using the programming
package Mathematica 9 with multiple precision arithmetic. We use ε = 10−35 as a tolerance error.
The following stopping criteria are used for computer programs: (i) |xn+1−xn| < ε , (ii) |f(xn+1)| < ε.
These methods are employed to solve some nonlinear equations of two classes: smooth functions and
non-smooth functions:

g1(x) = |x2 − 2|, α ≈ 1.4142135623730950488016887242096981, x0 = 1.3.

g2(x) =

x(x− 1) if x ≤ 0

−2x(x+ 1) if x ≥ 0, α = 0, x0 = 0.5.

Table 1. Test functions and their roots.

Test functions Roots Initial guess

f1(x) = (sinx)2 + x α = 0 x0 = 0.5

f2(x) = x2 − (1− x)25 α ≈ 0.14373925929975369826697493201066691 . . . x0 = 0.4

f3(x) = sin−1(x2 − 1)− x

2
+ 1 α ≈ 0.59481096839836917752265623515213618 . . . x0 = 0.3

f4(x) = tan(log x) + cos(x3)
1√
2x

α ≈ 0.44326078355676706795301995624689113 . . . x0 = 0.41

f5(x) = 10xe−x
2 − 1 α ≈ 1.6796306104284499406749203388379704 . . . x0 = 1.5
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Table 2. Comparison of different methods for smooth functions.

f KTM8 SM1
8 ZM8 SM2

8 MM1
8 MM2

8 MM3
8

f1 |f(x1)| 1.21e−3 1.22e−3 4.33e−3 1.67e−3 0.9e−3 5.86e−4 7.81e−4
|f(x2)| 5.84e−22 3.06e−22 1.00e−13 4.85e−21 7.46e−24 1.44e−24 6.59e−25
|f(x3)| 7.16e−168 4.67e−171 1.63e−77 2.60e−161 1.31e−184 1.92e−189 3.35e−193

f2 |f(x1)| 4.37e−3 4.08e−3 1.18e−2 3.02e−3 2.08e−3 3.49e−5 3.49e−3
|f(x2)| 3.21e−12 1.06e−11 1.16e−6 1.18e−12 2.69e−16 8.72e−20 8.09e−15
|f(x3)| 1.01e−85 1.81e−80 5.09e−31 4.59e−88 1.06e−118 1.32e−144 1.26e−107

f3 |f(x1)| 1.06e−7 6.23e−8 6.50e−6 3.92e−7 1.94e−8 4.81e−8 1.55e−8
|f(x2)| 9.23e−59 1.07e−60 3.25e−33 2.65e−54 4.55e−66 1.73e−62 2.44e−66
|f(x3)| 3.15e−467 8.39e−483 5.05e−197 1.15e−431 0.1e−490 4.93e−498 0.1e−492

f4 |f(x1)| 9.31e−5 1.25e−4 1.46e−5 1.83e−5 1.00e−8 4.94e−7 1.21e−6
|f(x2)| 8.46e−30 2.55e−29 5.66e−29 5.52e−36 1.08e−65 8.35e−49 9.70e−470
|f(x3)| 3.95e−230 7.45e−227 1.92e−169 3.76e−280 0.1e−492 5.53e−383 1.68e−367

f5 |f(x1)| 1.00e−3 3.79e−4 2.80e−3 1.78e−4 2.61e−5 1.79e−6 1.84e−6
|f(x2)| 4.54e−26 9.35e−85 4.27e−49 7.58e−87 1.42e−39 1.06e−47 4.60e−48
|f(x3)| 7.83e−205 4.28e−234 1.00e−101 5.17e−257 1.09e−313 1.58e−377 7.04e−381

Table 3. Comparison of different methods for non-smooth function g1(x).

Methods |g1(x1)| |g1(x2)| |g1(x3)|

Method KTM8 Equation (26) 9.81e−3 4.14e−6 8.18e−13
Method SM1

8 Equation (27) 1.03e−2 3.21e−6 3.21e−13
Method ZM8 Equation (28) 3.28e−3 6.23e−11 8.36e−42
Method SM2

8 Equation (29) 2.89e−2 6.28e−5 3.66e−10
Our Method MM1

8 Equation (23) 2.97e−3 2.43e−22 4.69e−175
Our Method MM2

8 Equation (24) 5.98e−4 3.56e−24 1.31e−188
Our Method MM3

8 Equation (25) 1.33e−4 5.87e−33 6.67e−258

Table 4. Comparison of different methods for non-smooth function g2(x).

Methods |g2(x1)| |g2(x2)| |g2(x3)|

Method KTM8 Equation (26) D D D
Method SM1

8 Equation (27) D D D
Method ZM8 Equation (28) 2.63e−1 6.16e−7 1.87e−40
Method SM2

8 Equation (29) 0.786e+3 0.12e+1 1.03e−4
Our Method MM1

8 Equation (23) 1.09e−1 7.44e−7 5.53e−13
Our Method MM2

8 Equation (24) 2.61e−3 4.05e−25 1.40e−199
Our Method MM3

8 Equation (25) 2.52e−3 3.94e−25 1.43e−199

D: stands for divergent.
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6. Conclusions

In this study, we contribute further to the development of the theory of iteration processes and
propose a new derivative-free optimal family of eighth-order methods for solving nonlinear equations
numerically. It is noteworthy that the given scheme can produce several new derivative-free optimal
eighth-order methods by choosing different types of weight functions. The asserted superiority of
proposed methods is also corroborated by numerical results displayed in the Tables 2–4. The numerical
experiments suggest that the new class would be valuable alternative for solving nonlinear equations.
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