
Algorithms 2015, 8, 292-308; doi:10.3390/a8020292

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Training Artificial Neural Networks by a Hybrid
PSO-CS Algorithm

Jeng-Fung Chen 1, Quang Hung Do 2,* and Ho-Nien Hsieh 1

1 Department of Industrial Engineering and Systems Management, Feng Chia University,

Taichung 40724, Taiwan; E-Mails: chenjengfung@gmail.com (J.-F.C.);

hsieh2301@gmail.com (H.-N.S.)
2 Department of Electrical and Electronic Engineering, University of Transport Technology,

Hanoi 100000, Vietnam

* Author to whom correspondence should be addressed; E-Mail: quanghung2110@gmail.com;

Tel.: +84-9-1222-2392.

Academic Editor: Toly Chen

Received: 14 March 2015 / Accepted: 29 May 2015 / Published: 11 June 2015

Abstract: Presenting a satisfactory and efficient training algorithm for artificial neural

networks (ANN) has been a challenging task in the supervised learning area. Particle

swarm optimization (PSO) is one of the most widely used algorithms due to its simplicity

of implementation and fast convergence speed. On the other hand, Cuckoo Search (CS)

algorithm has been proven to have a good ability for finding the global optimum; however,

it has a slow convergence rate. In this study, a hybrid algorithm based on PSO and CS is

proposed to make use of the advantages of both PSO and CS algorithms. The proposed

hybrid algorithm is employed as a new training method for feedforward neural networks

(FNNs). To investigate the performance of the proposed algorithm, two benchmark

problems are used and the results are compared with those obtained from FNNs trained by

original PSO and CS algorithms. The experimental results show that the proposed hybrid

algorithm outperforms both PSO and CS in training FNNs.

Keywords: Cuckoo Search algorithm; artificial neural network; prediction; flow

forecasting; reservoir

OPEN ACCESS

Algorithms 2015, 8 293

1. Introduction

The artificial neural network (ANN), a soft computing technique, has been successfully applied to

many manufacturing and engineering areas [1]. Neural networks, which originated in mathematical

neurobiology, are being used as an alternative to traditional statistical models. Neural networks have

the notable ability to derive meaning from complicated or imprecise data and can be used to extract

patterns and detect trends that are too complicated to be recognized by either humans or traditional

computing techniques. This means that neural networks have the ability to identify and respond to

patterns that are similar but not identical to the ones with which they have been trained [2]. ANN has

become one of the most important data mining techniques, and can be used for both supervised and

unsupervised learning. In fact, feedforward neural networks (FNNs) are the most popular neural

networks in practical applications. For a given set of data, a multi-layered FNN can provide a good

non-linear relationship. Studies have shown that an FNN, even with only one hidden layer, can

approximate any continuous function [3]. Therefore, it is the most commonly used technique for

classifying nonlinearly separable patterns [4,5] and approximating functions [6,7].

The training process is an important aspect of an ANN model when performance of ANNs is mostly

dependent on the success of the training process, and therefore the training algorithm. The aim of the

training phase is to minimize a cost function defined as a mean squared error (MSE), or a sum of

squared error (SSE), between its actual and target outputs by adjusting weights and biases. Presenting a

satisfactory and efficient training algorithm has always been a challenging task. A popular approach

used in the training phase is the back-propagation (BP) algorithm, which includes the standard BP [8] and

the improved BP [9–11]. However, researchers have pointed out that the BP algorithm—a gradient-based

algorithm—has disadvantages [12,13]. These drawbacks include the tendency to become trapped in local

minima [14] and slow convergence rates [15]. Heuristic algorithms are known for their ability to

produce optimal or near optimal solutions for optimization problems. In recent years, several heuristic

algorithms—including genetic algorithm (GA) [16], particle swarm optimization (PSO) [17], and ant

colony optimization (ACO) [18]—have been proposed for the purpose of training neural networks to

enhance the problems of BP-based algorithms. Some algorithms could reduce the probability of being

trapped in local minima; however, they still suffer from slow convergence rates. Among heuristic

algorithms, PSO is one of the most efficient optimization algorithms in terms of reducing the

aforementioned drawbacks of back propagation [19]. However, conventional PSO suffers from the

premature convergence problem, especially in complex problems. Cuckoo Search (CS) is a recent

heuristic algorithm that has been proposed and developed in recent years by Yang and Deb [20,21].

This algorithm was inspired by the lifestyle of the cuckoo bird. The particular egg laying and breeding

characteristics of the cuckoo bird, in that it lays its eggs in another bird’s nest, was the basis for the

development of this optimization algorithm. The CS and improved CS algorithms have been used in

solving various problems, and are considered to outperform other algorithms [22–24]. Though PSO

converges quickly, it may have premature convergence. CS may converge slightly slower, but it has

better explorative ability. In this paper, a hybrid algorithm of PSO and CS (PSOCS) is proposed for

training FNNs. In particular, this hybrid algorithm is used to train FNN weights and biases for function

approximation and classification problems. The performance of PSOCS, PSO, and CS in training FNNs

is also investigated to show the efficiency of the proposed algorithm.

Algorithms 2015, 8 294

The remainder of this paper is organized as follows: several previous related works are presented in

Section 2; the proposed algorithm is presented in Section 3; Section 4 discusses the method of

applying algorithms for training FNNs. In Section 5, the experimental results for the benchmark

problems are demonstrated. Finally, Section 6 concludes the paper.

2. Previous Works

Feedforward neural networks (FNNs) have been applied to a wide variety of problems arising from

a variety of disciplines, including mathematics, computer science, and engineering [25]. However, the

training algorithm has a profound impact on the learning capacity and performance of the network.

Two challenges need to be resolved in training neural networks: how to avoid local minimum and how

to achieve a fast convergence rate. The ANN training process is an optimization task that aims to find a

set of weights and biases to minimize an error value. Since the search space is highly dimensional,

ANN training needs more powerful optimization techniques; therefore, several conventional gradient

descent algorithms, such as back-propagation (BP), are used to solve this issue. However, gradient-based

algorithms are sometimes susceptible to being converged into local optima, because they are local

search methods in which the final solution depends strongly on the initial weights.

In order to cope with the local minimum problem, heuristic optimization algorithms, such as GA,

ACO, and PSO have been adopted for training ANNs. These algorithms do not use any gradient

information, and have a better chance in avoiding local optima by simultaneously sampling multiple

regions of the search space. They have the advantage of being applicable to any type of ANN,

feedforward or not, with any activation function [26]. They are particularly useful for dealing with

large complex problems, which generate many local optima. In order to find the global optimum, a

heuristic algorithm should have two main characteristics: exploration and exploitation [27].

Exploration is the ability to search whole parts of problem space, whereas exploitation is the convergence

ability to reach the best solution. Several recent heuristic algorithms, including Backtracking Search

Optimization (BSO), Differential Search Optimization (DSO), Artificial Bee Colony (ABC), Harmony

Search Algorithm (HSA), Gravitational Search Algorithm (GSA) and Cuckoo Search (CS), all inspired

by the behavior of natural phenomena, were developed for solving optimization problems. To a certain

extent, through some comparison and test studies, these algorithms have been proven to be powerful in

solving various problems such as real-valued numerical optimization problems and the problem of

transforming the geocentric Cartesian coordinates into geodetic coordinates [28–32]. An algorithm is

efficient when it has a balance between the ability of exploration and exploitation. Many studies have

shown that merging different algorithms is a way to achieve this balance.

PSO is a population-based heuristic global optimization algorithm, and is often referred to as a

swarm-intelligence technique. Due to its merits, including simplicity, convergence rate, and its ability

to search for a global optimum, PSO is one of the most commonly used algorithms in hybrid methods,

such as PSOGA [33,34], PSODE [35], and PSOACO [36]. These hybrid algorithms are aimed at reducing

the probability of being trapped in local optimum. The convergence rate and the global search ability

of the aforementioned works can be further improved. The idea of developing hybrid algorithm has

appeared for a long time. However, as far as we are aware, not much research has been undertaken to

combine PSO with CS. Ghodrati and Lotfi [37] added swarm intelligence to the cuckoo birds, in order

Algorithms 2015, 8 295

to increase the chance of their eggs’ survival. Each cuckoo bird will record the best personal

experience during its own life. The goal of this is to inform each other from their position and help

each other to immigrate to a better place. By the use of swarm intelligence, it can be seen that the

hybrid algorithm observes more search space and can effectively reach better solutions. In our work,

another hybrid algorithm of the PSO and CS is proposed. In the proposed algorithm, the remarkable

strengths of both PSO and CS algorithms are integrated to ensure finding the global optimum.

3. The Hybrid PSOCS Algorithm

This section describes the proposed hybrid PSO and CS algorithm. First, the basics of the PSO and

CS are provided. Then, the hybrid strategy of the proposed PSOCS algorithm is presented.

3.1. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an evolutionary algorithm that was inspired by the social

behavior of bird flocking [17]. Like other evolutionary algorithms, the PSO starts with initial solutions

and finds the best global optimum. In particular, it considers a number of particles to be candidate

solutions. Each particle flies around in the search space with a velocity to the best solution. The best

solution found so far by a particle is called pbest. The best pbest among all the particles is called gbest.

In order to modify its position, each particle must consider the current position, the current velocity,

the distance to pbest, and the distance to gbest. The equation for this modification was given as

follows:

() ()t
i

t
ii

t
i

t
i xgbestrandcxpbestrandcvwv −××+−××+×=+

21
1

 (1)

11 ++ += t
i

t
i

t
i vxx (2)

where t
iv is the velocity of particle i at iteration t, w is inertia weight, c1 and c2 are acceleration

coefficients, rand is a random number within 0 and 1, t
ix denotes the current position of particle i at

iteration t, pbesti represents the pbest of agent i at iteration t, and gbest is the best solution so far.

In each iteration, the velocities of particles are obtained by Equation (1). Then, the positions of

particles are calculated by Equation (2). The particle positions will be changed until a stopping

condition is met.

3.2. Cuckoo Search Algorithm

Cuckoo Search is an optimization algorithm introduced by Yang and Deb [20,21]. This algorithm

was inspired by the special lifestyle of the cuckoo species. The cuckoo bird lays its eggs in the nest of

a host bird; however, in the process, they may remove the eggs of the host bird. Some of these eggs,

which look similar to the host bird’s eggs, have the opportunity to grow up and become adult cuckoos.

In other cases, the eggs are discovered by host birds and the host birds will throw them away or leave

their nests and find other places to build new ones. The aim of the CS is to maximize the survival rate

of the eggs. Each egg in a nest stands for a solution, and a cuckoo egg stands for a new solution. The

CS uses new and potentially better solutions to replace the not-so-good solutions in the nests. The CS

is based on the following rules: each cuckoo lays one egg at a time, and dumps this egg in a randomly

Algorithms 2015, 8 296

chosen nest; the best nests with high quality eggs (solutions) will carry over to the next generation; and

the number of available host nests is fixed, and a host bird can detect an alien egg with a probability of

pa ∈ [0, 1]. In this case, the host bird can either throw the egg away or abandon the nest to build a new

one elsewhere. The last assumption can be estimated by the fraction pa of the n nests being replaced by

new nests (with new random solutions). For a maximization problem, the quality or fitness of a

solution can be proportional to the objective function. Other forms of fitness can be defined in a

similar way to the fitness function in genetic algorithms. Based on the above-mentioned rules, the steps

of the CS can be described as the pseudo code in Figure 1. The algorithm can be extended when each nest

has multiple eggs representing a set of solutions.

Figure 1. Pseudo code of the Cuckoo Search (CS).

When generating new solutions, x(t + 1), for the ith cuckoo at iteration (t + 1), the following Lévy

flight is performed:

xi
(t + 1) = xi

(t) + α S (xi
(t) − xbest

(t)) r (3)

where xbest
(t) is the current best solution, α is the step size parameter, r is a random number from a

standard normal distribution, and S is a random walk based on the Lévy flight. The Lévy flight

basically gives a random walk with a step length drawn from a Lévy distribution. There are several

ways to apply Lévy flights; however, the Mantegna algorithm is the most efficient. Therefore in this

research, the Mantegna algorithm will be utilized. In the Mantegna algorithm, the step length S is

calculated by

S = μ/|ν|1/β (4)

where β is a parameter between [1,2], and μ and ν are from normal distribution as

Μ ~ N(0, σμ2) and ν ~ N(0, σν2) (5)

with
1/

(1)/2

(1)sin(/ 2)
,

[(1) / 2] 2

β

μ β−

 Γ + β πβσ =  Γ + β β 
 σν = 1 (6)

Studies have shown that standard CS is very efficient in dealing with optimization problems. However,

several recent studies made some improvements to make the CS more practical for a wider range of

Algorithms 2015, 8 297

applications without losing the advantages of the standard CS. Yang and Deb [38] have provided a

review of the latest CS developments as well as its applications and future research.

3.3. The Proposed Algorithm

There is no algorithm that can effectively solve all optimization problems. Merging the existing

algorithms is one way to ensure that a global optimum solution can be achieved [13]. The PSO is one

of the most widely used algorithms in hybrid methods due to its simplicity and convergence speed. It

has also been proven that the CS is able to search for the global optimum, but it suffers from a slow

convergence rate. In order to resolve the aforementioned problem, a hybrid algorithm of PSO and CS

(PSOCS) is proposed. Basically, the hybrid PSOCS combines the ability of social communication in

PSO with the local search capability of CS. The aim of this combination is to inform cuckoo birds of

their positions; this, in turn, helps cuckoo birds to move to a better position. In each iteration, the

positions of cuckoo birds are updated as follows:

() ()t
i

t
ii

t
i

t
i xgbestrandcxpbestrandcvwv −××+−××+×=+

21
1 '' (7)

11 ++ += t
i

t
i

t
i vxx (8)

where vi
t is the velocity of cuckoo i at iteration t, c′1 and c′2 are acceleration coefficients, and xi

t is the

current position of the cuckoo.

In the hybrid PSOCS algorithm, eggs in the host nests are randomly initialized. Each egg in a nest is

considered a candidate solution. After initialization, the quality of a solution is calculated and evaluated.

After updating the best solution so far, the velocities of all cuckoos are calculated by Equation (5), the

positions of cuckoos are then updated using Equation (6). The remaining steps are similar to those of

the CS. In the proposed algorithm, each cuckoo considers the best personal experience to be pbest; the

best pbest among all the cuckoos is gbest. The communication is established through both the pbest

and gbest.

In order to improve the performance, another modification was also made to the PSOCS. The values

of pt
a and tα at iteration t are calculated as follows:

()minmaxmax aaa
t
a pp

N

t
pp −−=

(9)

()tkt .expmaxαα = (10)

where 







=

max

minln
1

α
α

N
k and N is the number of iterations. The values of pt

a and tα are gradually decreased

from the first generation until the final generation.

The hybrid PSOCS algorithm has the following remarks:

• The cuckoos near good solutions try to communicate with the other cuckoos that are

exploring a different part of the search space.

• When all cuckoos are near good solutions, they move slowly. Under the circumstances,

gbest helps them to exploit the global best.

• The algorithm uses gbest to memorize the best solution found so far, and it can be accessed

at any time.

Algorithms 2015, 8 298

• Each cuckoo can see the best solution (gbest) and has the tendency to go toward it.

• The abilities of local searching and global searching can be balanced by adjusting c′1 and c′2.

• Finally, by adjusting the values of pa and α in each iteration, the convergence rates of the

PSOCS are improved.

The proposed hybrid algorithm has the advantage of being comprised of two algorithms, which is

reflected in the aforementioned remarks. In this proposed algorithm, the interactive information among

solutions is improved to encourage a global search. In the following sections, the proposed hybrid

algorithm is evaluated in training the neural network.

4. Training FNNs

In this section, the process of using the proposed hybrid algorithm to train FNN is explained.

4.1. The One Hidden Layer FNN Architecture

An ANN has two types of basic components, namely, neuron and link. A neuron is a processing

element and a link is used to connect one neuron with another. Each link has its own weight. Each

neuron receives stimulation from other neurons, processes the information, and produces an output.

Neurons are organized into a sequence of layers. The first and the last layers are called input and output

layers, respectively, and the middle layers are called hidden layers. The input layer is a buffer that

presents data to the network. It is not a neural computing layer because it has no input weights and no

activation functions. The hidden layer has no connections to the outside world. The output layer

presents the output response to a given input. The activation coming into a neuron from other neurons

is multiplied by the weights on the links over which it spreads, and then is added together with other

incoming activations. A neural network, in which activations spread only in a forward direction from

the input layer through one or more hidden layers to the output layer, is known as a multilayer

feedforward network. FNN, which is also known as Multi-Layer Perceptions (MLP), is an attractive

approach due to its high capability to forecasting and classification [4]. In FNNs, signals flow from the

input layer through the output layer by unidirectional connections, the neurons are connected from one

layer to the next, but not within the same layer. Figure 2 shows an example of a feedforward network

with one hidden layer. In Figure 2, R, N, and S are the numbers of input, hidden neurons, and output,

respectively; iw and hw are the input and hidden weights matrices, respectively; hb and ob are the bias

vectors of the hidden and output layers, respectively; x is the input vector of the network; ho is the

output vector of the hidden layer; and y is the output vector of the network. The neural network in

Figure 2 can be expressed through the following equations:

hoi = f(
=

R

j
jji xiw

1
, . + hbi), for i = 1,..,N, (11)

yi = f(
=

N

k
kki hohw

1
, . + obi), for i = 1,..,S, (12)

where f is an activation function.

Algorithms 2015, 8 299

When implementing a neural network, it is necessary to determine the structure in terms of number

of layers and number of neurons in the layers. The larger the number of hidden layers and nodes, the

more complex the network will be. A network with a structure that is more complicated than necessary

over fits the training data [39]. This means that it performs well on data included in the training set, but

may perform poorly on data within a testing set.

Figure 2. A feedforward network with one hidden layer.

4.2. Training Method

Once a network has been structured for a particular application, it is ready for training. There have

been three methods of using a heuristic algorithm for training ANNs. The three methods are: heuristic

algorithms are utilized to find a combination of weights and biases that provide a minimum error; heuristic

algorithms are used to find a suitable ANN structure in a particular problem; and heuristic algorithms

are used to tune the parameters of a gradient-based learning algorithm, such as learning rate and

momentum. In this study, the first method is used.

In the first method, training a network, means finding a set of weights and biases that will give

desired values at the network’s output when presented with different patterns at its input. When

network training is initiated, the iterative process of presenting the training data set to the network’s

input continues until a given termination condition is satisfied. This usually happens based on a

criterion indicating that the current achieved solution is good enough to stop training. Some of the

common termination criteria are sum of squared error (SSE) and mean squared error (MSE). Through

continuous iterations, the optimal solution is finally achieved, which is regarded as the weights and

biases of a neural network. Suppose that there are m input-target sets, xkp − tkp for k = 1, 2, …, m and

p = 1, 2, ..., S; ykp and tkp are predicted and target values of pth output unit for sample k. Thus, network

variables arranged as iw, hw, hb, and ob are to be changed to minimize an error function, E, such as the

SSE between network outputs and desired targets is as follows:

E = 
=

m

k
kE

1

 where ()
=

−=
S

p
kpkpk ytE

1

2 (13)

Algorithms 2015, 8 300

4.3. Encoding Strategy

There are three ways of encoding and representing the weights and biases of FNN for every solution

in evolutionary algorithms [15]. They are the vector, matrix, and binary encoding methods. In this

study, we utilized the vector encoding method. The objective function is to minimize SSE. The

proposed hybrid PSOCS algorithm was used to search optimal weights and biases of neural networks.

The amount of error is determined by the squared difference between the target output and actual

output. In the implementation of the hybrid algorithm to train a neural network, all training parameters,

θ = {iw, hw, hb, ob}, are converted into a single vector of real numbers, as shown in Figure 3. Each

vector represents a complete set of FNN weights and biases.

Figure 3. The vector of training parameters.

4.4. Criteria for Evaluating Performance

For the approximation problem, the Sum of Squared Error (SSE) was employed as shown in

Equation (11). For the classification problem, in addition to SSE criterion, accuracy rate was used.

This rate measures the ability of the classifier to produce accurate results and can be computed as

follows:

Number of correctly classified objects by the classifier
Accuracy

Number of objects in the dataset
= (14)

These criteria are commonly used to know how well an algorithm works. The lower the SSE the

better and the higher the accuracy rate the better.

5. Experimental Results

In order to test and evaluate the proposed algorithm for training FNNs, experiments are commonly

performed over synthetic and real (benchmark) problem sets. In the following experiments, we used

two examples to compare the performances of PSO, CS, and PSOCS algorithms in training FNNs.

For FNN trained by PSO (hereinafter, we refer to as PSO-FNN), c1 and c2 were set to 2, w decreased

linearly from 0.9 to 0.4, and the initial velocities of particles were randomly generated in [0, 1].

For FNN trained by CS (hereinafter, we refer to as CS-FNN), the step size (α) was 0.25; the net

discovery rate (pa) was 0.1; and λ was set to 1.5.
For FNN trained by PSOCS (hereinafter, we refer to as PSOCS-FNN), minα and maxα were 0.01 and

0.5, respectively; pamin and pamax were 0.05 and 0.5, respectively; λ was set to 1.5; c′1 and c′2 were set

to 2; w decreased linearly from 0.9 to 0.4; and the initial velocities of particles were randomly

generated in [0,1].

Algorithms 2015, 8 301

The population sizes of PSO-FNN, CS-FNN, and PSOCS-FNN for all problems were 50. The criterion

for finishing the training process is to complete the maximum number of iterations (equal to 500 in this

study). The best results are signified in bold type.

A popular solution to the overfitting problem is stopping early. In our work, the number of

iterations has been chosen as an early stopping condition.

5.1. Experiment 1: Approximation Problem

In this experiment, we used FNNs with the structure of 1-S1-1 to approximate the function

f = sin(2x)e−x, where S1 is the number of hidden nodes with S1 = 3, 4, ..., 7. The training dataset was

constructed when x is in the range of [0, π] with increments of 0.03, while the testing dataset was

obtained at an interval of 0.04 in the range of [0, π]. So, the numbers of samples in the training and

testing dataset are 105 and 78, respectively. The search space was [–10, 10]. For every fixed hidden

node number, the three algorithms were run five times. Table 1 gives the performance comparisons on

the testing dataset for the three algorithms.

Table 1. The performance comparisons of the PSO-FNN, CS-FNN, and PSOCS-FNN in

the function approximation problem.

Hidden
Node (S1)

Algorithm
SSE

Min Average Max Std. Dev.

3
PSO 1.504569 2.197208 2.64631 0.462301
CS 1.064576 1.765316 2.212237 0.463635

PSOCS 1.047247 1.737105 2.166139 0.457843

4
PSO 0.861025 1.225908 1.736935 0.348625
CS 0.414418 0.810047 1.323472 0.360855

PSOCS 0.427326 0.790218 1.27989 0.342118

5
PSO 0.691495 0.875569 1.299515 0.250296
CS 0.286534 0.453186 0.877309 0.248645

PSOCS 0.253777 0.430846 0.822753 0.233818

6
PSO 0.513046 0.828988 0.969032 0.181192
CS 0.127328 0.414455 0.554916 0.167307

PSOCS 0.088938 0.384225 0.512852 0.171315

7
PSO 0.619243 0.91505 1.150879 0.190815
CS 0.206532 0.48647 0.670016 0.170129

PSOCS 0.155654 0.462798 0.725362 0.202521

The results in Table 1 indicate that PSOCS-FNN has the best performance in almost all criteria. Table 1

also reveals that the best architecture for this function approximation problem is with S1 = 6. Figure 4

shows the convergence rates of PSO-FNN, CS-FNN, and PSOCS-FNN based on the average values of

SSE in 500 iterations. It is clearly seen that during the initial iterations the convergence of the

PSO-FNN was very fast; however, in the last iterations, it had almost no improvement and was trapped

in local minima of the parameter space. These figures indicate that PSOCS-FNN and CS-FNN have

very close results, but PSOCS-FNN is better.

Algorithms 2015, 8 302

5.2. Experiment 2: Classification Problem

A popular benchmark classification problem—the Iris classification problem—was also used to test

the performance of the proposed hybrid algorithm in training FNNs. The Iris dataset consists of 150

samples that can be divided into three classes, including Setosa, Versicolor, and Virginica. Each class

accounts for 50 samples. All samples have four features: sepal length, sepal width, petal length, and

petal width. Therefore, we used FNNs with the structure 4-S2-3 to solve this classification problem,

where S2 is the number of hidden nodes with S2 = 4, 5, 6, ..., 16. In this study, 100 samples were used for

training and the rest were used for testing. The search space was [−50, 50]. Every procedure was run

five times successively, and then the mean values were calculated for these five results and are shown

in Table 2. The results show that PSOCS-FNN outperforms PSO-FNN and CS-PSO.

Figure 4. Convergence of PSO-FNN, CS-FNN, and PSOCS-FNN in the function

approximation with S1 = 3, 4, 5, 6, and 7.

Algorithms 2015, 8 303

Table 2. The comparison of the performances of the PSO-FNN, CS-FNN, and

PSOCS-FNN in the Iris classification problem.

Hidden Node (S2) Algorithm SSE Training Accuracy Testing Accuracy

4
PSO 39.39494 0.794 0.76
CS 34.353 0.824 0.776

PSOCS 34.21615 0.866 0.788

5
PSO 38.52052 0.81 0.792
CS 33.29272 0.836 0.824

PSOCS 33.1576 0.854 0.8

6
PSO 37.81462 0.82 0.744
CS 32.06983 0.826 0.824

PSOCS 31.92559 0.838 0.788

7
PSO 34.48936 0.818 0.8
CS 29.9164 0.868 0.888

PSOCS 29.77234 0.872 0.816

8
PSO 33.87586 0.814 0.804
CS 28.26575 0.844 0.852

PSOCS 28.14429 0.876 0.824

9
PSO 31.9543 0.83 0.816
CS 26.24346 0.852 0.824

PSOCS 26.10769 0.878 0.832

10
PSO 31.13578 0.83 0.84
CS 25.40347 0.852 0.84

PSOCS 25.25101 0.9 0.864

11
PSO 30.12397 0.8 0.824
CS 24.69134 0.866 0.86

PSOCS 24.57097 0.87 0.876

12
PSO 28.62928 0.868 0.856
CS 22.72357 0.876 0.848

PSOCS 22.57407 0.94 0.872

13
PSO 28.14103 0.828 0.828
CS 21.52259 0.836 0.88

PSOCS 21.38662 0.952 0.896

14
PSO 26.44765 0.888 0.804
CS 20.3495 0.888 0.848

PSOCS 20.21154 0.982 0.948

15
PSO 28.36295 0.82 0.816
CS 23.45967 0.832 0.832

PSOCS 23.31919 0.928 0.84

Figure 5 shows the convergence rates of PSO-FNN, CS-FNN, and PSOCS-FNN based on the

average values of SSE with S2 = 10, 11, 12, 13, 14, and 15. This figure confirms that the PSOCS-FNN

had a trade-off between avoiding premature convergence and exploring the whole search space for all

values of hidden numbers. From Figure 6, it can be inferred that PSOCS-FNN has a better accuracy

rate than PSO-FNN and CS-FNN. For the testing dataset, the best accuracy rates for PSO-FNN and

Algorithms 2015, 8 304

CS-FNN were 0.856 and 0.868, respectively; while the best accuracy rate for PSOCS-FNN was 0.948.

These results prove that PSOCS-FNN is capable of solving the Iris classification problem more

reliably and accurately than PSO-FNN and CS-FNN.

Based on the obtained results, it can be concluded that PSOCS-FNN outperforms PSO-FNN and

CS-FNN due to the capability of the proposed hybrid PSOCS algorithm.

Figure 5. Convergence of PSO-FNN, CS-FNN, and PSOCS-FNN in the Iris classification

problem with S2 = 10, 11, 12, 13, 14, and 15.

Algorithms 2015, 8 305

Figure 6. Accuracy rate of PSO-FNN, CS-FNN, and PSOCS-FNN in the Iris

classification problem.

6. Conclusions

In this study, we proposed a hybrid PSOCS algorithm based on the PSO and CS algorithms. This

algorithm combines the PSO algorithm’s strong ability regarding convergence rate and the CS algorithm’s

strong ability in global search. Therefore, it has a trade-off between avoiding premature convergence

and exploring the whole search space. We can get better search results using this hybrid algorithm.

The PSO, CS, and PSOCS were utilized as training algorithms for FNNs. For the two benchmark

problems, the comparison results showed that PSOCS-FNN outperforms PSO-FNN and CS-FNN in

terms of convergence rate and being trapped in local minima. It can be concluded that the proposed

hybrid PSOCS algorithm is suitable for use as a training algorithm for FNNs. The results of the present

study also show the fact that a comparative analysis of different training algorithms is always

supportive in enhancing the performance of a neural network. For future research, we will focus on

how to apply this hybrid PSOCS algorithm to deal with more optimization problems.

Acknowledgment

This research was funded by the National Science Council of Taiwan under Grant No. MOST

103-2221-E-035-052.

Algorithms 2015, 8 306

Author Contributions

Jeng-Fung Chen initiated the idea of the work. Quang Hung Do conducted the literature review. All of

the authors developed the research design and implemented the research. The final manuscript was

approved by all authors.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Paliwal, M.; Kumar, U.A. Neural networks and statistical techniques: A review of applications.

Expert Syst. Appl. 2009, 36, 2–17.

2. Vosniakos, G.C.; Benardos, P.G. Optimizing feedforward Artificial Neural Network Architecture.

Eng. Appl. Artif. Intell. 2007, 20, 365–382.

3. Funahashi, K. On the approximate realization of continuous mappings by neural networks. Neural

Netw. 1989, 2, 183–192.

4. Norgaard, M.R.O.; Poulsen, N.K.; Hansen, L.K. Neural Networks for Modeling and Control of

Dynamic Systems. A Practitioner’s Handbook; Springer: London, UK, 2000.

5. Mat Isa, N. Clustered-hybrid multilayer perceptron network for pattern recognition application.

Appl. Soft Comput. 2011, 11, 1457–1466.

6. Homik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal

approximators. Neural Netw. 1989, 2, 359–366.

7. Malakooti, B.; Zhou, Y. Approximating polynomial functions by feedforward artificial neural

network: Capacity analysis and design. Appl. Math. Comput. 1998, 90, 27–52.

8. Hush, R.; Horne, N.G. Progress in supervised neural networks. IEEE Signal Proc. Mag. 1993, 10,

8–39.

9. Hagar, M.T.; Menhaj, M.B. Training feedforward networks with the Marquardt algorithm.

IEEE Trans. Neural Netw. 1994, 5, 989–993.

10. Adeli, H.; Hung, S.L. An adaptive conjugate gradient learning algorithm for efficient training of

neural networks. Appl. Math. Comput. 1994, 62, 81–102.

11. Zhang, N. An online gradient method with momentum for two-layer feedforward neural networks.

Appl. Math. Comput. 2009, 212, 488–498.

12. Gupta, J.N.D.; Sexton, R.S. Comparing backpropagation with a genetic algorithm for neural

network training. Omega 1999, 27, 679–684.

13. Mirjalili, S.A.; Mohd Hashim, S.Z.; Sardroudi, H.M. Training feedforward neural networks using

hybrid particle swarm optimization and gravitational search algorithm. Appl. Math. Comput. 2012,

218, 11125–11137.

14. Gori, M.; Tesi, A. On the problem of local minima in back-propagation. IEEE Trans. Pattern

Anal. Mach. Intell. 1992, 14, 76–86.

Algorithms 2015, 8 307

15. Zhang, J.R.; Zhang, J.; Lock, T.M.; Lyu, M.R. A hybrid particle swarm optimization–back-

propagation algorithm for feedforward neural network training. Appl. Math. Comput. 2007, 185,

1026–1037.

16. Goldberg, E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison

Wesley: Boston, MA, USA, 1989.

17. Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the 1995 IEEE

International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995;

Volume 4, pp. 1942–1948.

18. Dorigo, M.; Maniezzo, V.; Golomi, A. Ant system: Optimization by a colony of cooperating

agents. IEEE Trans. Syst. Man Cybernet. 1996, 26, 29–41.

19. Cells, M.; Rylander, B. Neural network learning using particle swarm optimizers. In Advances in

Information Science and Soft Computing; WSEAS Press: Cancun, Mexico, 2002; pp. 224–226.

20. Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the IEEE World Congress

on Nature and Biologically Inspired Computing (NaBIC 2009), Coimbatore, India, 9–11 December

2009; pp. 210–214.

21. Yang, X.S.; Deb, S. Engineering Optimisation by Cuckoo Search. Int. J. Math. Model. Numer. Optim.

2010, 1, 330–343.

22. Valian, E.; Mohanna, S.; Tavakoli, S. Improved Cuckoo Search Algorithm for Feedforward

Neural Network Training. Int. J. Artif. Intell. Appl. 2009, 2, 36–43.

23. Ouaarab, A.; Ahiod, B.; Yang, X.S. Discrete cuckoo search algorithm for the travelling salesman

problem. Neural Comput. Appl. 2014, 24, 1659–1669.

24. Zhou, Y.; Zheng, H. A novel complex valued Cuckoo Search algorithm. Sci. World J. 2013.

doi:10.1155/2013/597803.

25. Li, L.K.; Shao, S.; Yiu, K.F.C. A new optimization algorithm for single hidden layer feedforward

neural networks. Appl. Soft Comput. 2013, 13, 2857–2862.

26. Kiranyaz, S.; Ince, T.; Yildirim, A.; Gabbouj, M. Evolutionary artificial neural networks by

multi-dimensional particle swarm optimization. Neural Netw. 2009, 22, 1448–1462.

27. Mirjalili S.; Hashim, S.Z.M. A New Hybrid PSOGSA Algorithm for Function Optimization.

In Proceedings of the International Conference on Computer and Information Application (ICCIA

2010), Tianjin, China, 3–5 December 2010; pp. 374–377.

28. Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci.

2009, 179, 2232–2248.

29. Civicioglu, P. Transforming Geocentric Cartesian Coordinates to Geodetic Coordinates by Using

Differential Search Algorithm. Comput. Geosci. 2012, 46, 229–247.

30. Civicioglu, P. Artificial cooperative search algorithm for numerical optimization problems. Inf.

Sci. 2013, 229, 58–76.

31. Civicioglu, P.; Besdok, E. A conceptual comparison of the cuckoo-search, particle swarm

optimization, differential evolution and artificial bee colony algorithms. Artif. Intell. Rev. 2013,

39, 315–346.

32. Civicioglu, P. Backtracking Search Optimization Algorithm for numerical optimization problems.

Appl. Math. Comput. 2013, 219, 8121–8144.

Algorithms 2015, 8 308

33. Lai, X.; Zhang, M. An efficient ensemble of GA and PSO for real function optimization.

In Proceedings of 2nd IEEE International Conference on Computer Science and Information

Technology, Beijing, China, 8–11 August 2009; pp. 651–655.

34. Esmin, A.A.A.; Lambert-Torres, G.; Alvarenga, G.B. Hybrid Evolutionary Algorithm Based on

PSO and GA mutation. In Proceeding of the Sixth International Conference on Hybrid Intelligent

Systems (HIS 06), Auckland, New Zealand, 13–15 December 2006; p. 57.

35. Li, L.; Xue, B.; Niu, B.; Tan, L.; Wang, J. A Novel PSO-DE-Based Hybrid Algorithm for Global

Optimization. Lect. Notes Comput. Sci. 2007, 785–793.

36. Holden, N.; Freitas, A.A. A Hybrid PSO/ACO Algorithm for Discovering Classification Rules in

Data Mining. J. Artif. Evolut. Appl. 2008, doi:10.1155/2008/316145.

37. Ghodrati, A.; Lotfi, S. A Hybrid CS/PSO Algorithm for Global Optimization, Intelligent Information

and Database Systems. Lect. Notes Comput. Sci. Vol. 2012, 7198, 89–98.

38. Yang, X.S.; Deb, S. Cuckoo Search: Recent Advances and Applications. Neural Comput. Appl.

2014, 24, 169–174.

39. Caruana, R.; Lawrence, S.; Giles, C.L. Overfitting in neural networks: Backpropagation,

conjugate gradient, and early stopping. In Advances Neural Information Processing Systems;

Leen, T.K., Dietterich, T.G., Tresp, V., Eds.; MIT Press: Denver, CO, USA, 2000; Volume 13,

pp. 402–408.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

