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Abstract: Presenting a satisfactory and efficient training algorithm for artificial neural 

networks (ANN) has been a challenging task in the supervised learning area. Particle 

swarm optimization (PSO) is one of the most widely used algorithms due to its simplicity 

of implementation and fast convergence speed. On the other hand, Cuckoo Search (CS) 

algorithm has been proven to have a good ability for finding the global optimum; however, 

it has a slow convergence rate. In this study, a hybrid algorithm based on PSO and CS is 

proposed to make use of the advantages of both PSO and CS algorithms. The proposed 

hybrid algorithm is employed as a new training method for feedforward neural networks 

(FNNs). To investigate the performance of the proposed algorithm, two benchmark 

problems are used and the results are compared with those obtained from FNNs trained by 

original PSO and CS algorithms. The experimental results show that the proposed hybrid 

algorithm outperforms both PSO and CS in training FNNs. 

Keywords: Cuckoo Search algorithm; artificial neural network; prediction; flow 

forecasting; reservoir 
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1. Introduction 

The artificial neural network (ANN), a soft computing technique, has been successfully applied to 

many manufacturing and engineering areas [1]. Neural networks, which originated in mathematical 

neurobiology, are being used as an alternative to traditional statistical models. Neural networks have 

the notable ability to derive meaning from complicated or imprecise data and can be used to extract 

patterns and detect trends that are too complicated to be recognized by either humans or traditional 

computing techniques. This means that neural networks have the ability to identify and respond to 

patterns that are similar but not identical to the ones with which they have been trained [2]. ANN has 

become one of the most important data mining techniques, and can be used for both supervised and 

unsupervised learning. In fact, feedforward neural networks (FNNs) are the most popular neural 

networks in practical applications. For a given set of data, a multi-layered FNN can provide a good 

non-linear relationship. Studies have shown that an FNN, even with only one hidden layer, can 

approximate any continuous function [3]. Therefore, it is the most commonly used technique for 

classifying nonlinearly separable patterns [4,5] and approximating functions [6,7]. 

The training process is an important aspect of an ANN model when performance of ANNs is mostly 

dependent on the success of the training process, and therefore the training algorithm. The aim of the 

training phase is to minimize a cost function defined as a mean squared error (MSE), or a sum of 

squared error (SSE), between its actual and target outputs by adjusting weights and biases. Presenting a 

satisfactory and efficient training algorithm has always been a challenging task. A popular approach 

used in the training phase is the back-propagation (BP) algorithm, which includes the standard BP [8] and 

the improved BP [9–11]. However, researchers have pointed out that the BP algorithm—a gradient-based 

algorithm—has disadvantages [12,13]. These drawbacks include the tendency to become trapped in local 

minima [14] and slow convergence rates [15]. Heuristic algorithms are known for their ability to 

produce optimal or near optimal solutions for optimization problems. In recent years, several heuristic 

algorithms—including genetic algorithm (GA) [16], particle swarm optimization (PSO) [17], and ant 

colony optimization (ACO) [18]—have been proposed for the purpose of training neural networks to 

enhance the problems of BP-based algorithms. Some algorithms could reduce the probability of being 

trapped in local minima; however, they still suffer from slow convergence rates. Among heuristic 

algorithms, PSO is one of the most efficient optimization algorithms in terms of reducing the 

aforementioned drawbacks of back propagation [19]. However, conventional PSO suffers from the 

premature convergence problem, especially in complex problems. Cuckoo Search (CS) is a recent 

heuristic algorithm that has been proposed and developed in recent years by Yang and Deb [20,21]. 

This algorithm was inspired by the lifestyle of the cuckoo bird. The particular egg laying and breeding 

characteristics of the cuckoo bird, in that it lays its eggs in another bird’s nest, was the basis for the 

development of this optimization algorithm. The CS and improved CS algorithms have been used in 

solving various problems, and are considered to outperform other algorithms [22–24]. Though PSO 

converges quickly, it may have premature convergence. CS may converge slightly slower, but it has 

better explorative ability. In this paper, a hybrid algorithm of PSO and CS (PSOCS) is proposed for 

training FNNs. In particular, this hybrid algorithm is used to train FNN weights and biases for function 

approximation and classification problems. The performance of PSOCS, PSO, and CS in training FNNs 

is also investigated to show the efficiency of the proposed algorithm. 
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The remainder of this paper is organized as follows: several previous related works are presented in 

Section 2; the proposed algorithm is presented in Section 3; Section 4 discusses the method of 

applying algorithms for training FNNs. In Section 5, the experimental results for the benchmark 

problems are demonstrated. Finally, Section 6 concludes the paper. 

2. Previous Works 

Feedforward neural networks (FNNs) have been applied to a wide variety of problems arising from  

a variety of disciplines, including mathematics, computer science, and engineering [25]. However, the 

training algorithm has a profound impact on the learning capacity and performance of the network. 

Two challenges need to be resolved in training neural networks: how to avoid local minimum and how 

to achieve a fast convergence rate. The ANN training process is an optimization task that aims to find a 

set of weights and biases to minimize an error value. Since the search space is highly dimensional, 

ANN training needs more powerful optimization techniques; therefore, several conventional gradient 

descent algorithms, such as back-propagation (BP), are used to solve this issue. However, gradient-based 

algorithms are sometimes susceptible to being converged into local optima, because they are local 

search methods in which the final solution depends strongly on the initial weights. 

In order to cope with the local minimum problem, heuristic optimization algorithms, such as GA, 

ACO, and PSO have been adopted for training ANNs. These algorithms do not use any gradient 

information, and have a better chance in avoiding local optima by simultaneously sampling multiple 

regions of the search space. They have the advantage of being applicable to any type of ANN, 

feedforward or not, with any activation function [26]. They are particularly useful for dealing with 

large complex problems, which generate many local optima. In order to find the global optimum, a 

heuristic algorithm should have two main characteristics: exploration and exploitation [27]. 

Exploration is the ability to search whole parts of problem space, whereas exploitation is the convergence 

ability to reach the best solution. Several recent heuristic algorithms, including Backtracking Search 

Optimization (BSO), Differential Search Optimization (DSO), Artificial Bee Colony (ABC), Harmony 

Search Algorithm (HSA), Gravitational Search Algorithm (GSA) and Cuckoo Search (CS), all inspired 

by the behavior of natural phenomena, were developed for solving optimization problems. To a certain 

extent, through some comparison and test studies, these algorithms have been proven to be powerful in 

solving various problems such as real-valued numerical optimization problems and the problem of 

transforming the geocentric Cartesian coordinates into geodetic coordinates [28–32]. An algorithm is 

efficient when it has a balance between the ability of exploration and exploitation. Many studies have 

shown that merging different algorithms is a way to achieve this balance. 

PSO is a population-based heuristic global optimization algorithm, and is often referred to as a  

swarm-intelligence technique. Due to its merits, including simplicity, convergence rate, and its ability 

to search for a global optimum, PSO is one of the most commonly used algorithms in hybrid methods, 

such as PSOGA [33,34], PSODE [35], and PSOACO [36]. These hybrid algorithms are aimed at reducing 

the probability of being trapped in local optimum. The convergence rate and the global search ability 

of the aforementioned works can be further improved. The idea of developing hybrid algorithm has 

appeared for a long time. However, as far as we are aware, not much research has been undertaken to 

combine PSO with CS. Ghodrati and Lotfi [37] added swarm intelligence to the cuckoo birds, in order 
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to increase the chance of their eggs’ survival. Each cuckoo bird will record the best personal 

experience during its own life. The goal of this is to inform each other from their position and help 

each other to immigrate to a better place. By the use of swarm intelligence, it can be seen that the 

hybrid algorithm observes more search space and can effectively reach better solutions. In our work, 

another hybrid algorithm of the PSO and CS is proposed. In the proposed algorithm, the remarkable 

strengths of both PSO and CS algorithms are integrated to ensure finding the global optimum. 

3. The Hybrid PSOCS Algorithm 

This section describes the proposed hybrid PSO and CS algorithm. First, the basics of the PSO and 

CS are provided. Then, the hybrid strategy of the proposed PSOCS algorithm is presented. 

3.1. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is an evolutionary algorithm that was inspired by the social 

behavior of bird flocking [17]. Like other evolutionary algorithms, the PSO starts with initial solutions 

and finds the best global optimum. In particular, it considers a number of particles to be candidate 

solutions. Each particle flies around in the search space with a velocity to the best solution. The best 

solution found so far by a particle is called pbest. The best pbest among all the particles is called gbest. 

In order to modify its position, each particle must consider the current position, the current velocity, 

the distance to pbest, and the distance to gbest. The equation for this modification was given as 

follows: 
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where t
iv  is the velocity of particle i at iteration t, w is inertia weight, c1 and c2 are acceleration 

coefficients, rand is a random number within 0 and 1, t
ix  denotes the current position of particle i at 

iteration t, pbesti represents the pbest of agent i at iteration t, and gbest is the best solution so far. 

In each iteration, the velocities of particles are obtained by Equation (1). Then, the positions of 

particles are calculated by Equation (2). The particle positions will be changed until a stopping 

condition is met. 

3.2. Cuckoo Search Algorithm 

Cuckoo Search is an optimization algorithm introduced by Yang and Deb [20,21]. This algorithm  

was inspired by the special lifestyle of the cuckoo species. The cuckoo bird lays its eggs in the nest of 

a host bird; however, in the process, they may remove the eggs of the host bird. Some of these eggs, 

which look similar to the host bird’s eggs, have the opportunity to grow up and become adult cuckoos. 

In other cases, the eggs are discovered by host birds and the host birds will throw them away or leave 

their nests and find other places to build new ones. The aim of the CS is to maximize the survival rate 

of the eggs. Each egg in a nest stands for a solution, and a cuckoo egg stands for a new solution. The 

CS uses new and potentially better solutions to replace the not-so-good solutions in the nests. The CS 

is based on the following rules: each cuckoo lays one egg at a time, and dumps this egg in a randomly 
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chosen nest; the best nests with high quality eggs (solutions) will carry over to the next generation; and 

the number of available host nests is fixed, and a host bird can detect an alien egg with a probability of 

pa ∈  [0, 1]. In this case, the host bird can either throw the egg away or abandon the nest to build a new 

one elsewhere. The last assumption can be estimated by the fraction pa of the n nests being replaced by 

new nests (with new random solutions). For a maximization problem, the quality or fitness of a 

solution can be proportional to the objective function. Other forms of fitness can be defined in a 

similar way to the fitness function in genetic algorithms. Based on the above-mentioned rules, the steps 

of the CS can be described as the pseudo code in Figure 1. The algorithm can be extended when each nest 

has multiple eggs representing a set of solutions. 

 

Figure 1. Pseudo code of the Cuckoo Search (CS). 

When generating new solutions, x(t + 1), for the ith cuckoo at iteration (t + 1), the following Lévy 

flight is performed: 

xi
(t + 1) = xi

(t) + α S (xi
(t) − xbest

(t)) r (3)

where xbest
(t) is the current best solution, α is the step size parameter, r is a random number from a 

standard normal distribution, and S is a random walk based on the Lévy flight. The Lévy flight 

basically gives a random walk with a step length drawn from a Lévy distribution. There are several 

ways to apply Lévy flights; however, the Mantegna algorithm is the most efficient. Therefore in this 

research, the Mantegna algorithm will be utilized. In the Mantegna algorithm, the step length S is 

calculated by  

S = μ/|ν|1/β (4)

where β is a parameter between [1,2], and μ and ν are from normal distribution as  

Μ ~ N(0, σμ2) and ν ~ N(0, σν2) (5)

with 
1/

( 1)/2

(1 )sin( / 2)
,

[(1 ) / 2]  2

β

μ β−

 Γ + β πβσ =  Γ + β β 
 σν = 1 (6)

Studies have shown that standard CS is very efficient in dealing with optimization problems. However, 

several recent studies made some improvements to make the CS more practical for a wider range of 
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applications without losing the advantages of the standard CS. Yang and Deb [38] have provided a 

review of the latest CS developments as well as its applications and future research. 

3.3. The Proposed Algorithm 

There is no algorithm that can effectively solve all optimization problems. Merging the existing 

algorithms is one way to ensure that a global optimum solution can be achieved [13]. The PSO is one 

of the most widely used algorithms in hybrid methods due to its simplicity and convergence speed. It 

has also been proven that the CS is able to search for the global optimum, but it suffers from a slow 

convergence rate. In order to resolve the aforementioned problem, a hybrid algorithm of PSO and CS 

(PSOCS) is proposed. Basically, the hybrid PSOCS combines the ability of social communication in 

PSO with the local search capability of CS. The aim of this combination is to inform cuckoo birds of 

their positions; this, in turn, helps cuckoo birds to move to a better position. In each iteration, the 

positions of cuckoo birds are updated as follows: 
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where vi
t is the velocity of cuckoo i at iteration t, c′1 and c′2 are acceleration coefficients, and xi

t is the 

current position of the cuckoo. 

In the hybrid PSOCS algorithm, eggs in the host nests are randomly initialized. Each egg in a nest is 

considered a candidate solution. After initialization, the quality of a solution is calculated and evaluated. 

After updating the best solution so far, the velocities of all cuckoos are calculated by Equation (5), the 

positions of cuckoos are then updated using Equation (6). The remaining steps are similar to those of 

the CS. In the proposed algorithm, each cuckoo considers the best personal experience to be pbest; the 

best pbest among all the cuckoos is gbest. The communication is established through both the pbest 

and gbest. 

In order to improve the performance, another modification was also made to the PSOCS. The values 

of pt
a and tα  at iteration t are calculated as follows: 
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k  and N is the number of iterations. The values of pt

a and tα  are gradually decreased 

from the first generation until the final generation. 

The hybrid PSOCS algorithm has the following remarks: 

• The cuckoos near good solutions try to communicate with the other cuckoos that are 

exploring a different part of the search space. 

• When all cuckoos are near good solutions, they move slowly. Under the circumstances, 

gbest helps them to exploit the global best. 

• The algorithm uses gbest to memorize the best solution found so far, and it can be accessed 

at any time. 
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• Each cuckoo can see the best solution (gbest) and has the tendency to go toward it. 

• The abilities of local searching and global searching can be balanced by adjusting c′1 and c′2. 

• Finally, by adjusting the values of pa and α  in each iteration, the convergence rates of the 

PSOCS are improved. 

The proposed hybrid algorithm has the advantage of being comprised of two algorithms, which is 

reflected in the aforementioned remarks. In this proposed algorithm, the interactive information among 

solutions is improved to encourage a global search. In the following sections, the proposed hybrid 

algorithm is evaluated in training the neural network. 

4. Training FNNs 

In this section, the process of using the proposed hybrid algorithm to train FNN is explained. 

4.1. The One Hidden Layer FNN Architecture 

An ANN has two types of basic components, namely, neuron and link. A neuron is a processing 

element and a link is used to connect one neuron with another. Each link has its own weight. Each 

neuron receives stimulation from other neurons, processes the information, and produces an output. 

Neurons are organized into a sequence of layers. The first and the last layers are called input and output 

layers, respectively, and the middle layers are called hidden layers. The input layer is a buffer that 

presents data to the network. It is not a neural computing layer because it has no input weights and no 

activation functions. The hidden layer has no connections to the outside world. The output layer 

presents the output response to a given input. The activation coming into a neuron from other neurons 

is multiplied by the weights on the links over which it spreads, and then is added together with other 

incoming activations. A neural network, in which activations spread only in a forward direction from 

the input layer through one or more hidden layers to the output layer, is known as a multilayer 

feedforward network. FNN, which is also known as Multi-Layer Perceptions (MLP), is an attractive 

approach due to its high capability to forecasting and classification [4]. In FNNs, signals flow from the 

input layer through the output layer by unidirectional connections, the neurons are connected from one 

layer to the next, but not within the same layer. Figure 2 shows an example of a feedforward network 

with one hidden layer. In Figure 2, R, N, and S are the numbers of input, hidden neurons, and output, 

respectively; iw and hw are the input and hidden weights matrices, respectively; hb and ob are the bias 

vectors of the hidden and output layers, respectively; x is the input vector of the network; ho is the 

output vector of the hidden layer; and y is the output vector of the network. The neural network in 

Figure 2 can be expressed through the following equations: 

hoi = f(
=

R

j
jji xiw

1
, .  + hbi), for i = 1,..,N, (11)

yi = f(
=

N

k
kki hohw

1
, .  + obi), for i = 1,..,S, (12)

where f is an activation function. 
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When implementing a neural network, it is necessary to determine the structure in terms of number 

of layers and number of neurons in the layers. The larger the number of hidden layers and nodes, the 

more complex the network will be. A network with a structure that is more complicated than necessary 

over fits the training data [39]. This means that it performs well on data included in the training set, but 

may perform poorly on data within a testing set. 

 

Figure 2. A feedforward network with one hidden layer. 

4.2. Training Method 

Once a network has been structured for a particular application, it is ready for training. There have 

been three methods of using a heuristic algorithm for training ANNs. The three methods are: heuristic 

algorithms are utilized to find a combination of weights and biases that provide a minimum error; heuristic 

algorithms are used to find a suitable ANN structure in a particular problem; and heuristic algorithms 

are used to tune the parameters of a gradient-based learning algorithm, such as learning rate and 

momentum. In this study, the first method is used. 

In the first method, training a network, means finding a set of weights and biases that will give 

desired values at the network’s output when presented with different patterns at its input. When 

network training is initiated, the iterative process of presenting the training data set to the network’s 

input continues until a given termination condition is satisfied. This usually happens based on a 

criterion indicating that the current achieved solution is good enough to stop training. Some of the 

common termination criteria are sum of squared error (SSE) and mean squared error (MSE). Through 

continuous iterations, the optimal solution is finally achieved, which is regarded as the weights and 

biases of a neural network. Suppose that there are m input-target sets, xkp − tkp for k = 1, 2, …, m and  

p = 1, 2, ..., S; ykp and tkp are predicted and target values of pth output unit for sample k. Thus, network 

variables arranged as iw, hw, hb, and ob are to be changed to minimize an error function, E, such as the 

SSE between network outputs and desired targets is as follows: 

E = 
=

m

k
kE

1

 where ( )
=

−=
S

p
kpkpk ytE

1

2  (13)
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4.3. Encoding Strategy 

There are three ways of encoding and representing the weights and biases of FNN for every solution 

in evolutionary algorithms [15]. They are the vector, matrix, and binary encoding methods. In this 

study, we utilized the vector encoding method. The objective function is to minimize SSE. The 

proposed hybrid PSOCS algorithm was used to search optimal weights and biases of neural networks. 

The amount of error is determined by the squared difference between the target output and actual 

output. In the implementation of the hybrid algorithm to train a neural network, all training parameters, 

θ = {iw, hw, hb, ob}, are converted into a single vector of real numbers, as shown in Figure 3. Each 

vector represents a complete set of FNN weights and biases. 

    

 

Figure 3. The vector of training parameters. 

4.4. Criteria for Evaluating Performance 

For the approximation problem, the Sum of Squared Error (SSE) was employed as shown in  

Equation (11). For the classification problem, in addition to SSE criterion, accuracy rate was used. 

This rate measures the ability of the classifier to produce accurate results and can be computed as 

follows: 

Number of correctly classified objects by the classifier
Accuracy

Number of objects in the dataset
=  (14)

These criteria are commonly used to know how well an algorithm works. The lower the SSE the 

better and the higher the accuracy rate the better. 

5. Experimental Results 

In order to test and evaluate the proposed algorithm for training FNNs, experiments are commonly 

performed over synthetic and real (benchmark) problem sets. In the following experiments, we used 

two examples to compare the performances of PSO, CS, and PSOCS algorithms in training FNNs. 

For FNN trained by PSO (hereinafter, we refer to as PSO-FNN), c1 and c2 were set to 2, w decreased 

linearly from 0.9 to 0.4, and the initial velocities of particles were randomly generated in [0, 1]. 

For FNN trained by CS (hereinafter, we refer to as CS-FNN), the step size (α ) was 0.25; the net 

discovery rate (pa) was 0.1; and λ  was set to 1.5. 
For FNN trained by PSOCS (hereinafter, we refer to as PSOCS-FNN), minα  and maxα  were 0.01 and 

0.5, respectively; pamin and pamax were 0.05 and 0.5, respectively; λ  was set to 1.5; c′1 and c′2 were set 

to 2; w decreased linearly from 0.9 to 0.4; and the initial velocities of particles were randomly 

generated in [0,1]. 



Algorithms 2015, 8 301 

 

 

The population sizes of PSO-FNN, CS-FNN, and PSOCS-FNN for all problems were 50. The criterion 

for finishing the training process is to complete the maximum number of iterations (equal to 500 in this 

study). The best results are signified in bold type. 

A popular solution to the overfitting problem is stopping early. In our work, the number of 

iterations has been chosen as an early stopping condition. 
 

5.1. Experiment 1: Approximation Problem 

In this experiment, we used FNNs with the structure of 1-S1-1 to approximate the function  

f = sin(2x)e−x, where S1 is the number of hidden nodes with S1 = 3, 4, ..., 7. The training dataset was 

constructed when x is in the range of [0, π] with increments of 0.03, while the testing dataset was 

obtained at an interval of 0.04 in the range of [0, π]. So, the numbers of samples in the training and 

testing dataset are 105 and 78, respectively. The search space was [–10, 10]. For every fixed hidden 

node number, the three algorithms were run five times. Table 1 gives the performance comparisons on 

the testing dataset for the three algorithms. 

Table 1. The performance comparisons of the PSO-FNN, CS-FNN, and PSOCS-FNN in 

the function approximation problem. 

Hidden 
Node (S1) 

Algorithm 
SSE 

Min Average Max Std. Dev. 

3 
PSO 1.504569 2.197208 2.64631 0.462301 
CS 1.064576 1.765316 2.212237 0.463635 

PSOCS 1.047247 1.737105 2.166139 0.457843 

4 
PSO 0.861025 1.225908 1.736935 0.348625 
CS 0.414418 0.810047 1.323472 0.360855 

PSOCS 0.427326 0.790218 1.27989 0.342118 

5 
PSO 0.691495 0.875569 1.299515 0.250296 
CS 0.286534 0.453186 0.877309 0.248645 

PSOCS 0.253777 0.430846 0.822753 0.233818 

6 
PSO 0.513046 0.828988 0.969032 0.181192 
CS 0.127328 0.414455 0.554916 0.167307 

PSOCS 0.088938 0.384225 0.512852 0.171315 

7 
PSO 0.619243 0.91505 1.150879 0.190815 
CS 0.206532 0.48647 0.670016 0.170129 

PSOCS 0.155654 0.462798 0.725362 0.202521 

The results in Table 1 indicate that PSOCS-FNN has the best performance in almost all criteria. Table 1 

also reveals that the best architecture for this function approximation problem is with S1 = 6. Figure 4 

shows the convergence rates of PSO-FNN, CS-FNN, and PSOCS-FNN based on the average values of 

SSE in 500 iterations. It is clearly seen that during the initial iterations the convergence of the  

PSO-FNN was very fast; however, in the last iterations, it had almost no improvement and was trapped 

in local minima of the parameter space. These figures indicate that PSOCS-FNN and CS-FNN have 

very close results, but PSOCS-FNN is better. 
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5.2. Experiment 2: Classification Problem 

A popular benchmark classification problem—the Iris classification problem—was also used to test 

the performance of the proposed hybrid algorithm in training FNNs. The Iris dataset consists of 150 

samples that can be divided into three classes, including Setosa, Versicolor, and Virginica. Each class 

accounts for 50 samples. All samples have four features: sepal length, sepal width, petal length, and 

petal width. Therefore, we used FNNs with the structure 4-S2-3 to solve this classification problem, 

where S2 is the number of hidden nodes with S2 = 4, 5, 6, ..., 16. In this study, 100 samples were used for 

training and the rest were used for testing. The search space was [−50, 50]. Every procedure was run 

five times successively, and then the mean values were calculated for these five results and are shown 

in Table 2. The results show that PSOCS-FNN outperforms PSO-FNN and CS-PSO. 

 

Figure 4. Convergence of PSO-FNN, CS-FNN, and PSOCS-FNN in the function 

approximation with S1 = 3, 4, 5, 6, and 7. 
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Table 2. The comparison of the performances of the PSO-FNN, CS-FNN, and  

PSOCS-FNN in the Iris classification problem. 

Hidden Node (S2) Algorithm SSE Training Accuracy Testing Accuracy 

4 
PSO 39.39494 0.794 0.76 
CS 34.353 0.824 0.776 

PSOCS 34.21615 0.866 0.788 

5 
PSO 38.52052 0.81 0.792 
CS 33.29272 0.836 0.824 

PSOCS 33.1576 0.854 0.8 

6 
PSO 37.81462 0.82 0.744 
CS 32.06983 0.826 0.824 

PSOCS 31.92559 0.838 0.788 

7 
PSO 34.48936 0.818 0.8 
CS 29.9164 0.868 0.888 

PSOCS 29.77234 0.872 0.816 

8 
PSO 33.87586 0.814 0.804 
CS 28.26575 0.844 0.852 

PSOCS 28.14429 0.876 0.824 

9 
PSO 31.9543 0.83 0.816 
CS 26.24346 0.852 0.824 

PSOCS 26.10769 0.878 0.832 

10 
PSO 31.13578 0.83 0.84 
CS 25.40347 0.852 0.84 

PSOCS 25.25101 0.9 0.864 

11 
PSO 30.12397 0.8 0.824 
CS 24.69134 0.866 0.86 

PSOCS 24.57097 0.87 0.876 

12 
PSO 28.62928 0.868 0.856 
CS 22.72357 0.876 0.848 

PSOCS 22.57407 0.94 0.872 

13 
PSO 28.14103 0.828 0.828 
CS 21.52259 0.836 0.88 

PSOCS 21.38662 0.952 0.896 

14 
PSO 26.44765 0.888 0.804 
CS 20.3495 0.888 0.848 

PSOCS 20.21154 0.982 0.948 

15 
PSO 28.36295 0.82 0.816 
CS 23.45967 0.832 0.832 

PSOCS 23.31919 0.928 0.84 

Figure 5 shows the convergence rates of PSO-FNN, CS-FNN, and PSOCS-FNN based on the 

average values of SSE with S2 = 10, 11, 12, 13, 14, and 15. This figure confirms that the PSOCS-FNN 

had a trade-off between avoiding premature convergence and exploring the whole search space for all 

values of hidden numbers. From Figure 6, it can be inferred that PSOCS-FNN has a better accuracy 

rate than PSO-FNN and CS-FNN. For the testing dataset, the best accuracy rates for PSO-FNN and 



Algorithms 2015, 8 304 

 

 

CS-FNN were 0.856 and 0.868, respectively; while the best accuracy rate for PSOCS-FNN was 0.948. 

These results prove that PSOCS-FNN is capable of solving the Iris classification problem more 

reliably and accurately than PSO-FNN and CS-FNN. 

Based on the obtained results, it can be concluded that PSOCS-FNN outperforms PSO-FNN and  

CS-FNN due to the capability of the proposed hybrid PSOCS algorithm. 

 

Figure 5. Convergence of PSO-FNN, CS-FNN, and PSOCS-FNN in the Iris classification 

problem with S2 = 10, 11, 12, 13, 14, and 15. 
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Figure 6. Accuracy rate of PSO-FNN, CS-FNN, and PSOCS-FNN in the Iris  

classification problem. 

6. Conclusions 

In this study, we proposed a hybrid PSOCS algorithm based on the PSO and CS algorithms. This 

algorithm combines the PSO algorithm’s strong ability regarding convergence rate and the CS algorithm’s 

strong ability in global search. Therefore, it has a trade-off between avoiding premature convergence 

and exploring the whole search space. We can get better search results using this hybrid algorithm.  

The PSO, CS, and PSOCS were utilized as training algorithms for FNNs. For the two benchmark 

problems, the comparison results showed that PSOCS-FNN outperforms PSO-FNN and CS-FNN in 

terms of convergence rate and being trapped in local minima. It can be concluded that the proposed 

hybrid PSOCS algorithm is suitable for use as a training algorithm for FNNs. The results of the present 

study also show the fact that a comparative analysis of different training algorithms is always 

supportive in enhancing the performance of a neural network. For future research, we will focus on 

how to apply this hybrid PSOCS algorithm to deal with more optimization problems. 
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