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Abstract: The construction of a similarity matrix is one significant step for the spectral 

clustering algorithm; while the Gaussian kernel function is one of the most common 

measures for constructing the similarity matrix. However, with a fixed scaling parameter, 

the similarity between two data points is not adaptive and appropriate for multi-scale 

datasets. In this paper, through quantitating the value of the importance for each vertex of 

the similarity graph, the Gaussian kernel function is scaled, and an adaptive Gaussian kernel 

similarity measure is proposed. Then, an adaptive spectral clustering algorithm is gotten 

based on the importance of shared nearest neighbors. The idea is that the greater the 

importance of the shared neighbors between two vertexes, the more possible it is that these 

two vertexes belong to the same cluster; and the importance value of the shared neighbors is 

obtained with an iterative method, which considers both the local structural information and 

the distance similarity information, so as to improve the algorithm’s performance. 

Experimental results on different datasets show that our spectral clustering algorithm 

outperforms the other spectral clustering algorithms, such as the self-tuning spectral 

clustering and the adaptive spectral clustering based on shared nearest neighbors in 

clustering accuracy on most datasets. 
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1. Introduction 

Over the past several decades, the spectral clustering algorithm has attracted a great amount of 

attention in the field of pattern recognition and become a research hot spot [1]. It has the feature that it 

does not assume for the global structure of the dataset, but directly finds the global optimal solution on 

a relaxed continuous domain through decomposition of the Laplacian matrix of the graph. Therefore, it 

is simple to implement and is solved efficiently by standard linear algebra, so that it often outperforms 

the traditional clustering algorithms, such as the k-means algorithm [2]. 

Spectral clustering consists of one significant step in which a similarity matrix (graph) with a kind of 

similarity measure should be constructed. The main goal of constructing the similarity matrix is to model 

the local neighborhood relationships between the data vertexes. A good similarity matrix is greatly 

responsible for the performance of spectral clustering algorithms [3]. 

The Gaussian kernel function is one of the most common similarity measures for spectral clustering, 

in which a scaling parameter   controls the speed of the similarity falling off with the distance between 

the vertexes. Though its computation is simple and the results of the positive definite similarity matrix 

can simplify the analysis of eigenvalues, it does not work well on some complex datasets, e.g., a  

multi-scale dataset [4]. Moreover, the scaling parameter   is specified manually, so that the similarity 

between two vertexes is only determined by their Euclidean distance. 

In recent years, there have appeared some new construction methods of the similarity matrix.  

Fischer et al. [5] proposed a path-based clustering algorithm for texture segmentation. Their algorithm 

utilizes a connectedness criterion, which considers two objects as similar if there exists a mediating  

intra-cluster path without an edge with large cost, and it is used for spectral clustering. The construction 

method mainly combines the Gaussian kernel function with the shortest path, which is effective on some 

datasets, but sensitive to outliers. Chang et al. [6] utilized the idea of M-estimation and developed a 

robust path-based spectral clustering method by defining a robust path-based similarity measure for 

spectral clustering, which can effectively reduce the influence of outliers. Yang et al. defined adjustable 

line segment lengths, which can squeeze the distances in high density regions, but widen them in low 

density regions, and proposed a density-sensitive distance similarity function for the spectral clustering [7]. 

Assuming that each data point can be linearly reconstructed from its local neighborhoods, Gong et al. 

utilized the contributions between different vertexes in neighborhoods through n  standard quadratic 

programming to get the similarity, rather than Gaussian kernel function, and to get a better cluster 

performance [8]. Zhang et al. adopted multiple methods of vector similarity measurement to produce 

diverse similarity matrices to get a new similarity matrix through particle swarm optimization and 

proposed a new similarity measure [9]. The construction methods utilized the idea of ensemble learning, 

which is helpful to improve the cluster performance. Cao et al. utilized the maximum flow to be computed 

as the new similarity between data points, which carried the global and local relations between data and 

worked well on a dataset with a nonlinear and elongated structure [10]. 



Algorithms 2015, 8 179 

 

 

The multi-scaled self-tuned kernel function for spectral clustering is also a significant research 

direction. Erdal Yenialp et al. proposed a multi-scale density-based spatial clustering algorithm with 

noise. The proposed algorithm represents the images in multiple scales by using Gaussian smoothing 

functions and evaluates a density matrix for each scale. The density matrices in each scale are then fused 

to capture salient features in each scale. The developed algorithm does not include a training phase, so 

computationally-efficient solutions could be reached to segment the region-of-interest [11].  

Hsieh Fushing et al. developed a new methodology, called data cloud geometry-tree, which derived from 

the empirical similarity measurements a hierarchy of clustering configurations that captures the 

geometric structure of the data, and had a built-in mechanism for self-correcting clustering membership 

to multi-scale clustering, which provided a better quantification of the multi-scale geometric structures 

of the data [12]. Raghvendra et al. created a parameter-free kernel spectral clustering model and 

exploited the structure of the projections in the eigenspace to automatically identify the number of 

clusters, which showed the efficiency for large-scale complex networks [13]. Manor et al. introduced a 

self-tuning scaling parameter for the Gaussian kernel function, and on that basis, Li et al. introduced a 

parameter for the shared nearest neighbors self-tuning Gaussian kernel function and proposed an 

adaptive spectral clustering algorithm based on the shared nearest neighbors. This algorithm exploited 

the information about local density embedded in the shared nearest neighbors, thereby learning the 

implicit information of the cluster’s structure and improving the algorithm’s performance [14,15]. 

Due to the non-homogeneous of the network topology, each node in the network is of different 

importance. The similarity of two vertices relates not only to the number of neighbors shared, but also 

closely to the importance of the shared neighbor vertices. In a graph, the importance of a vertex is related 

to the vertex’s out-degree, in-degree and neighboring vertexes’ importance. The greater the importance 

of the shared neighbors between two vertexes, the more possible it is that these two vertexes belong to 

the same cluster. Blondel et al. introduced hubs and authorities based on the idea of characterizing the 

most important vertices in a graph representing the connections between vertices [16]. From an implicit 

relation, an “authority score” and a “hub score” to each vertex of a given graph can be obtained as the limit 

of a converging iterative process, which can be used to represent the importance of the vertices [17]. 

In this paper, we propose the importance of a shared nearest neighbors-based similarity measure for 

constructing the similarity matrix, originating from the idea of “authority score” and “hub score”. In this 

measure, we first find the importance of every vertex through the limitation of a converging iterative 

process and then look for the maximal importance in shared nearest neighbors between each of two 

vertices. The greater the maximal importance, the more similar the two vertices are. Therefore, we can 

get structure information between every two vertices and then utilize this information to self-tune the 

Gaussian kernel function. Finally, we get the similarity measure based on the importance of shared 

nearest neighbors. 

The rest of this paper is organized as follows. In Section 2, we give a brief outline of similarity graphs. 

In Section 3, we propose a new similarity measure and apply it to the construction of the similarity 

matrix. In Section 4, we present the experiment results for the proposed algorithm on some datasets, 

followed by the concluding remarks given in Section 5. 
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2. Similarity Graphs 

Given a set of data points 1, , nx x  and some notion of similarity 0ijs   between all pairs of data 

points ix  and jx , the intuitive goal of clustering is to divide the data points into several groups, so that 

points in the same group are similar and points in different groups are dissimilar to each other. If we do 

not have more information than similarities between data points, a nice way of representing the data is 
in the form of the similarity graph ( , )G V E . Each vertex iv  in this graph represents a data point ix . 

Two vertices are connected if the similarity ijs between the corresponding data points ix and jx  is 

positive or larger than a certain threshold and the edge is weighted by ijs . The problem of clustering can 

now be reformulated by using the similarity graph: we want to find a partition of the graph so that the 

edges between different groups have very low weights and the edges within a group have high weights. 

The goal of constructing similarity graphs is to model the local neighborhood relationships between 

the data points. As far as we know, the Gaussian kernel function is still an important construction method; 

and the important feature of the Gaussian kernel function is that the construction form is based on the 

Gaussian kernel model, which can be defined as Equation (1). 

2 2exp( ( , ) )

1
ij

i jd i j
S

i j

  
  

 (1)

Where, the ( , )d i j  is the Euclidean distance between ix  and jx , and   is the kernel parameter, which 

is a fixed parameter and cannot vary with the change of the surroundings. Zelnik-Manor et al. proposed 
a local scale parameter i  for each point to replace the fixed parameter  [14], which allows the 

similarity self-tuning capability. Usually, ( , )i i md x x  , where mx  is the m -th closest neighbor of the 

point ix , and the similarity function is defined as Equation (2). 

2exp( ( , ) ( ))

1
i j

ij

i jd i j
S

i j

   
  

 (2)

Jarvis et al. proposed a conception of the shared nearest neighbor, which is used to characterize the 
local density of different vertices [18]. Supposing the closest kd  nearest neighbors of point ix can 

construct a set ( )iN x  and point jx  can construct a set ( )jN x , then the shared neighbor vertexes between 

ix  and jx  are defined as Equation (3). 

( , ) ( ) ( )i j i jSNN x x N x N x   (3)

Li et al. assumed that vertexes in the same manifold have a higher similarity and a higher local density 

region than those in different manifolds. They used the number of the shared nearest neighbors to 
characterize the similarity between vertex ix  and jx  [15]. The construct similarity function is defined 

as Equation (4). 
2exp( ( , ) ( ( ( , ) 1)))

1
i j i j

ij

i jd i j SNN x x
SNN

i j

    
  

 (4)

According to this method, the similarity between two vertexes is higher if there are more common 

shared nearest neighbors. Due to the non-homogeneity of the network topology, the importance of each 
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node in the network is different, and the similarity of two vertices relates to not only the number of 

neighbors shared, but also closely to the importance of the shared neighbor vertices. 

3. Similarity Matrix Based on the Importance of Shared Nearest Neighbors 

3.1. The Importance of Node 

Some efficient web searching engines are often based on the idea of characterizing the most important 

vertices in a graph representing the connections or links between pages on the web, such as Google. 

Because the linkages between pages can be interpreted as interrelated and mutually supportive between 

pages, the importance of a page can be determined according to the linkages. Kleinberg et al. proposed 

a similar method to identify in a set of pages relevant to a query search the subset of pages that are good 

hubs or the subset of pages that are good authorities [17]. Good hubs are pages that point to good 

authorities, and good authorities are pages that are pointed to by good hubs. From these implicit relations, 

Kleinberg derived an iterative method that assigns an “authority score” and a “hub score” to every vertex 

of a given graph. 
Given a graph ( , )G V E  with vertex set V  and with edge set E , let ih  and ia  be the hub and 

authority scores of vertex i . The hub score of vertex i  is set equal to the sum of the authority scores of 

all vertices pointed to by i , and similarly, the authority score of vertex i  is the set equal to the sum of 
the hub scores of all vertices pointing to i . The scores of  and  can be calculated as Equation (5). 

:( , )

:( , )

i jj i j E

i jj i j E

h a

a h





 







 (5)

Let these scores be initialized by some positive values and then update them simultaneously for all 

vertices; the “authority score” and “hub score” can be obtained as a limit of a converging iterative process 

according to Equation (6):  

1

0
0,1

0T

k k

h B h
k

a B a


     
      

     
  (6)

Where, B  is the matrix whose entry ( , )i j  is equal to the number of edges between the vertices i  and j  

in G  (the adjacency matrix of G ). Blondel et al. has proven that in the initial condition 
0

1
h

a

 
 

 
; 

Equation (4) will converge when the number of iterations is odd or even times, respectively [16]. When 

getting the “authority score” and a “hub score” for every vertex, the score of vertex importance can be 
calculated as Im ( )h a  . Obviously, the importance of one vertex is related to the vertex’s out-degree,  

in-degree and neighboring vertexes’ importance, to represent the structure and properties characteristics of the 

network. Similarly, we can utilize the score of vertex importance to construct a similarity matrix in graph G . 

3.2. Similarity Matrix Based on the Importance of Shared Nearest Neighbors 

In this section, we propose a new similarity matrix construction method based on the importance of 

shared nearest neighbors. There exists a local high density area in the same cluster, and it can be 

expressed by the numbers of shared nearest neighbors. Obviously, the role of every node in the local 

ih ia
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area is different, so in the shared nearest neighbors, the more important the role of one node, the more 

impact of the vertexes for the graph. Though we cannot give an explicit expression of the role of each 

node, we hold the opinion that the importance of one vertex is helpful to find some potential “critical 

nodes” and reflects the global and local importance of the node. The greater the importance of the node, 

the more it is close to the center of network. In the shared nearest neighbors between two vertices, the 

greater the neighbor’s scores are, the more similar the two vertices are. On the basis of this idea, a new 

kind of similarity measure based on the importance of shared nearest neighbors is proposed. The steps 

of computing the similarity matrix is described in Table 1. 

Assume the matrix SNEW  to be the similarity matrix based on the importance of shared nearest 

neighbors. We can derive that the construction method is similar to the adaptive Gaussian kernel function 

based on shared nearest neighbors, SNN , while the difference is that the maximal importance in shared 

nearest neighbor vertexes is used to replace the number of shared neighbor vertexes. In fact, through 

adjusting different parameters, SNEW can become the Gaussian kernel function described in self-tuning 

spectral clustering or SNN . Meanwhile, it is worth noting that there are many choices of shared 

neighbors, but we choose the vertex with the maximal importance in shared nearest neighbors, not only 

because the importance of the vertex can express the structural information of global graph, but also the 

maximal importance can affect the similarity between vertexes in the local structure of the graph. 

Nevertheless, the shared nearest neighbors reflect the local density information, so the matrix SNEW  

has considered both structure attributes of the graph and the local density information, so the measure 

can represent the inner link between vertexes more reasonably. 

Table 1.The algorithm of similarity matrix based on the importance of shared  

nearest neighbors. 

Similarity matrix based on the importance of shared nearest neighbors: 
Input: n  data vertexes,  1, , nX x x  ; 

Output: similarity matrix SNEW . 

Step1. Construct an adjacency matrix B  of graph G according to Equation (7). The construction of 

adjacency matrix B  can be similar to the  -neighborhood technique. 

1 ( , )
( , )

0
i j

i j

d x x TH
B x x

else


 


 
(7)

Where, the ( , )i jd x x is the Euclidean distance between ix and jx , and the TH  is an ordinary 

threshold about Euclidean distance d  and is set as the mean value of d . 

Step2. Set 1
h

a

 
 

 
, and iterate an even number of times with Equation (4). Stop upon 

convergence and get the importance score of every vertex 
,Im 1,i i ih a i n    . 

Step3. Look for shared nearest neighbor vertexes between ix  and jx , and find the maximal 

importance in shared nearest neighbors; set it as: max Im( , ) 1, , ; 1, ,i jSNN x x i n j n    ; 

Step4. Get a new kind of similarity matrix by Equation (8): 
2

maxexp( ( , ) ((1 Im) ))

1
i j i j

ij

i jd x x SNN
SNEW

i j

    
  

 
(8)

Where α  is a regulation parameter, and 0  ; add 1 to make sure that it not divided by zero. 
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3.3. An Improved Adaptive Spectral Clustering Algorithm 

Spectral clustering is a clustering method that is based on graph theory and uses the feature vectors 

of a data similarity matrix to make the clustering. It can identify a data space of arbitrary shape and 

converge to the global optimal solution. 
Let us consider a set V of N  data points, or vertices. We write ijS for the similarity between the i -th 

and the j -th data point, and ijS S  for the N N similarity matrix. Let us define the degrees iiD  of 

vertex i V  by Equation (9): 

ii ijj V
D S


   (9)

Without loss of generality, we assume that all vertices have non-zero degrees. Then, we write 
( )ijD D  for the  N N  diagonal matrix. 

One spectral clustering technique, commonly used for image segmentation, is the normalized cuts 

algorithm or Shi-Malik algorithm introduced by Shi and Malik [19]. It partitions points into k sets, 

 1 2, , , }kA A A , based on the eigenvectors   corresponding to the first k  biggest eigenvalues of the 

symmetric normalized Laplacian defined as, 1/2 1/2:normL D SD  . 

We introduce the proposed similarity matrix SNEW   to the standard spectral clustering and then get 

a new adaptive spectral clustering algorithm based on the importance of shared nearest neighbors. The 

steps of improved adaptive spectral clustering algorithm is described in Table 2: 

Table2. Adaptive spectral clustering algorithm based on the importance of shared nearest neighbors. 

Adaptive spectral clustering algorithm based on the importance of shared nearest neighbors: 

Input:  n  data vertexes:  1, , d
nX x x R  , clustering number: K : 

Output: K  clusters,  1, , nA A   

Step1. Get the similarity matrix SNEW  according to the calculation steps of the Table1; 

Step2. Define D  to be the diagonal matrix, where 
1

n

ii iji
D SNEW


 , and compute the 

Laplacian matrix  1/2 1/2( )L D SNEW D  ; 

Step3.Compute the first K  largest eigenvalues of the Laplacian matrix and their corresponding 
eigenvectors 1 2, , , kv v v ; construct a matrix 1 2{ , , , }kU v v v  ; 

Step4. Construct the matrix Y  by normalizing each row in U , where  2
ij ij ijj

Y U u  ; 

Step5. Treat each row of  Y  as a vertex in space kR  and cluster them into K  clusters via k-means or 

other clustering algorithms for the ultimate clustering results,  1, , nA A . 

 

4. Experiments 

To evaluate the performance of the adaptive spectral clustering algorithm based on the importance of shared 

nearest neighbors (SNNISC), experiments are conducted on the synthetic, UCI Machine Learning 

Repository (UCI) and the MNIST database of handwritten digits (MNIST) in comparison with the other 

two spectral clustering algorithms, the self-tuning spectral clustering (SSC) [14] and the adaptive 

spectral clustering based on shared nearest neighbors (SNNSC) [15], respectively.  
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4.1. Evaluation Metric 

Given a dataset with n  samples, clustering is classified as a relationship between samples; the 

samples are divided into the same clusters, or different clusters. In following experiments, we adopt the 

adjusted Rand index (ARI) as the performance metric. 

The adjusted Rand index assumes the generalized hyper geometric distribution as the model of 

randomness, i.e., the different partitions of the objects are picked at random, such that the number of 

objects in the partitions to compare is fixed. The general form of ARI can be simplified as Equation (10). 

. .
,

. . . .

[ ] /
2 2 2 2

1
[ ] [ ] /

2 2 2 2 2 2

ij i j
i j i j

i j i j

i j i j

n n n n

ARI
n n n n n

       
       

       
         

          
         

  

   

 
(10)

Where, the ijn  is the number of objects that are both in different partitions; the .in  and .jn  are the number 

of objects in different clusters, respectively. The ARI can take on a wider range of values between zero 

and one, with the increasing sensitivity of the index. 

4.2. Parameter Settings 

In SSC, a similar local scale parameter i  is used and is actually computed as its distance to the M-th 

neighbor. In our experiments, the range of M  is  2,20 , and the one that gets the best ARI values is 

used. SNNSC involves the number of shared nearest neighbors’ parameter kd . The range of kd   
is  5,50 , and the one that gets the best ARI value is picked. The range of   is [10, 20] . The value of 

TH  is set as the mean value of Euclidean distance of all vertexes. 

4.3. Experiments on Synthetic Datasets  

As shown in Figure 1, six synthetic datasets [20] with different structure are used in the experiments, 

and the results are shown in Table 3. 

 

Figure 1. Synthetic datasets. 

0 10 20
10

15

20

25

30

Flame
0 50

0

10

20

30

Jain
0 20 40

0

10

20

30

40

Spiral

0 50
5

10

15

20

25

Compound
0 20 40

0

10

20

30

Aggregations
0 10 20

0

5

10

15

20

R15



Algorithms 2015, 8 185 

 

 

This example is used to test the ability of identifying different structures on synthetic datasets. In 

Table 3, the average value is used to show the average performance of algorithms on different datasets, 

and the best value is marked by boldface. It can be seen from the Table 3 that SSC, SNNSC and SNNISC 

get similar results on all the datasets (about 97%, except on the forth dataset), which indicates that the 

proposed similarity measure can effectively identify different synthetic datasets. 

Table 3. The results of adjusted Rand index (ARI) on synthetic datasets. SSC, self-tuning 

spectral clustering; SNNSC, spectral clustering based on shared nearest neighbors, SNNISC, 

the adaptive spectral clustering algorithm based on the importance of shared  

nearest neighbors. 

Datasets 
Spectral Clustering Algorithm 

SSC SNNSC SNNISC 

Flame 0.95 0.97 0.97 
Jain 1 1 1 

Spiral 1 1 1 
Compound 0.54 0.54 0.54 

Aggregations 0.97 0.98 0.97 
R15 0.99 0.99 0.99 

4.4. Experiments on UCI Datasets 

To test the performance of SNNISC further, eight real-word datasets are adopted from UCI datasets 

about classification and clustering [21–29], and the results are shown in Table 4. From the boldface in 

the Table 4, we observe that the clustering performance of SNNISC is superior to SSC and SNNSC on 

four datasets in addition to “Breast Tissue” and “Data Bank”. In particular, for the dataset “Iris”, one 

cluster is linearly separable from the other two nonlinearly clusters, which is challenging for clustering 

algorithms. Although the ARI value of SSC and SNNSC can reach to about 83%, SNNISC can achieve 

92%. On dataset “Seeds”, SNNISC, SNNSC and SSC get the same ARI value (71%). 

On dataset “Glass”, the ARI value of SNNISC (24%) is less than SSC (27%), but better than SNNSC 

(23%). Meanwhile, it can be found that SNNISC is more stable, which is just less than the best result 

between 0.2%~0.3%.Therefore, we conclude that the SNNISC can improve the performance of the 

spectral clustering algorithm. 

Table 4. The results of ARI on the UCI Machine Learning Repository. 

Datasets 
Spectral Clustering Algorithm 

SSC SNNSC SNNISC 

Iris 0.82 0.83 0.92 
Ionosphere 0.22 0.22 0.23 

Breast Tissue 0.20 0.22 0.18 
Banknote  0.29 0.58 0.56 

Seeds 0.71 0.71 0.71 
Fertility 0.11 0.11 0.12 
Libras 0.37 0.37 0.38 
Glass 0.27 0.23 0.24 
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4.5. Experiments on MNIST Datasets 

The MNIST dataset of handwritten digits [30] contains 10 digits with a total of 50,000 examples 

(Figure 2). Every example is a 28 × 28 grayscale image, and the dimension is 784. To obtain a 

comparable result, in our experiments, the first 900 examples are used. Each pair of the digits is used for 

clustering, with a total of 45 tests. Figure3 shows the results. The mean value and standard deviation of 

ARIs of different methods on the 45 tests are shown in Table 5. 

From Figure 3, we observe that SNNISC and SNNSC get a similar ARI value in some tests, but in 

most cases (about 73% of tests), SNNISC is superior to SNNSC and SSC. From Table 5, we find that the 

mean value of SNNISC (74%) is better than SNNSC (73%) and SSC (59%), and the standard deviation 

of SNNISC (23%) is less than SNNSC (24%) and SSC (28%). This shows that the proposed method has 

the best performance and is robust for most data. 

 

Figure 2. Some examples from the MNIST datasets of handwritten digits. 

 

Figure 3. The ARI results of 45 tests on all pairs of 10 digits. 
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Table 5. Mean and standard deviation of ARIs of different spectral clustering methods. 

Clustering Results 
Spectral Clustering Algorithm 

SSC SNNSC SNNISC 

Mean 0.59 0.73 0.74 
Standard deviation 0.28 0.24 0.23 

5. Conclusions 

The construction of a similarity matrix is important for spectral clustering algorithms. In this paper, 

we propose an adaptive Gaussian kernel similarity measure and its corresponding spectral clustering 

algorithm. The algorithm introduces the importance of nodes from the complex networks and uses an 

iterative method to get the numerical value of the importance of different vertexes to scale the Gaussian 

kernel function. The new measure exploits the structural information of the neighborhood and local 

density information and reflects the idea that the greater the importance of the shared neighbors between 

two vertexes is, the more likely these two vertexes are to belong to the same cluster. From the experiments 

on different datasets, we observe that it achieves improvements over the self-tuning spectral clustering 

algorithm and the adaptive spectral clustering algorithm based on shared nearest neighbors on most 

datasets and that it is less sensitive to the parameters. In this paper, we mainly consider the impact on the 

similarity of the vertex with maximal importance in shared nearest neighbors, and one important future 

work is to investigate the impact of other vertexes in shared nearest neighbors. 
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