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Abstract: The auxiliary problem principle is a powerful tool for solving multi-area 

economic dispatch problem. One of the main drawbacks of the auxiliary problem principle 

method is that the convergence performance depends on the selection of penalty parameter. 

In this paper, we propose a self-adaptive strategy to adjust penalty parameter based on the 

iterative information, the proposed approach is verified by two given test systems. The 

corresponding simulation results demonstrate that the proposed self-adaptive auxiliary 

problem principle iterative scheme is robust in terms of the selection of penalty parameter 

and has better convergence rate compared with the traditional auxiliary problem  

principle method. 
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1. Introduction 

The aim of economic dispatch (ED) problem in power systems field is to determine the allocation of 

real power outputs for the generating units economically while satisfying corresponding physical and 

operational constraints [1]. With the growing scale of power systems, traditional centered ED 

algorithm is inclined to bring many problems like disaster of dimensionality, bottleneck of network 

communication. Furthermore, the modern power systems are composed of numerous sub-networks 

interconnected by tie-lines, each sub-network has its own energy management system (EMS) and most 

data in sub-network is treated confidentially and used internally. Thus, it is necessary to propose a 
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distributed algorithm and each sub-network only exchanges its boundary information with its neighbor 

sub-networks, rather than exchanging all data with all sub-networks in power systems. 

Wei Yan proposed a new decomposition-coordination interior point method (DIPM) to tackle the 

multi-area optimal reactive power flow problem [2]. Actually, the proposed DIPM is parallel 

distributed algorithm. However, DIPM needs a coordinator server which communicates with all sub-

systems for exchanging required information, a great deal of data interchange will lead to 

communication bottlenecks. Approximate Newton directions method is applied to address multi-area 

optimal power flow problem [3,4], the upside is that it allows the EMS in each sub-network to operate 

its system independently while obtaining an optimal coordinated but decentralized solution; the 

downside is that it is limited by strict condition which is a difficult requirement to meet in practice. 

Auxiliary problem principle (APP) has been originally introduced by Cohen in 1980 [5], this 

method has been extensive applied in power systems field, such as daily generation scheduling 

optimization [6], unit commitment [7] and distributed optimal power flow [8,9]. However, APP 

method has a major drawback: it is very sensitive to the value of related penalty parameter, i.e., the 

convergence performance of APP will be poor if penalty parameter is selected improperly. Meanwhile, 

the suitable penalty parameter varies with different systems, it is impossible to obtain a generic penalty 

parameter in advance. In this paper, we propose a self-adaptive APP for solving multi-area economic 

dispatch (MAED) problem, the key is that penalty parameter is allowed to vary per iteration according 

to the iterate information for better convergence performance. 

The rest of this paper is organized as follows. In section 2, we give the formulation of the multi-area 

economic dispatch problem. Then, section 3 describes the traditional auxiliary problem principle. After 

that, we propose a self-adaptive APP iterative scheme in section 4, during which the corresponding 

penalty parameter c is allowed to adjust based on the iterate message. In section 5, two test systems are 

given to verify the effectiveness of the proposed method, and we conclude in section 6. 

2. The Formulation of Multi-Area Economic Dispatch 

2.1. The Traditional MAED Formulation 

The aim of MAED is to minimize the total production cost while satisfying various physical and 

operational constraints [10]. In this section, we employ a two-area economic dispatch formulation to 

illustrate the MAED problem. 

The objective function F, which represents total generator fuel cost of two areas, can be written as 
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(1) 

where Pmn is the real power output of the nth generating unit in area m. fmn(Pmn) is the fuel cost 

function of the nth generating unit in area m and is usually expressed as a quadratic function without 

considering valve-point effect, the corresponding cost coefficients for fmn(Pmn) are given as amn, bmn, 

cmn. Nm represents there are Nm generating units in area m. In addition, the objective function is 

minimized and subjected to the following physical constraints [11,12]. 

1) Real power balance constraints without considering transmission loss 
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where PmD is the total demand in area m; PL is the tie-line real power transfer between area 1 and area 

2. PL is positive when power flow transfers from area 1 to area 2. By contrast, PL is negative when 

power flow transfers from area 2 to area 1. 

2) Tie-line capacity constraints 

L,maxLP P  (4) 

where PL,max is the maximum tie-line power flow between area 1 and area 2. 

3) Real power generation capacity constraints 

,min ,maxmn mn mnP P P 
 (5) 

where Pmn,min and Pmn,max are the minimum and maximum generation limits of the nth generating unit n 

in area m. 

2.2. Area-based Decentralization for MAED 

Kim proposed a coarse-grained distributed optimal power flow method in [13]. Inspired by this 

idea, we add a “dummy bus X” between area1 and area 2, the corresponding variable for this “dummy 

bus” is tie-line power flow PL. By duplicating the “dummy bus” as X1 and X2, we get two separated 

systems as shown in Fig. 1. Meanwhile, PL is duplicated as P1L and P2L, i.e., a new consistency 

constraint 1 2 0L LP P   is introduced. Then the equivalent form of traditional MAED problem can be 

expressed as follows. 
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(6) 

For convenience, the compact form of problem (6) is expressed as follows. 
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(7) 

where  1f x  and  2g x  are total fuel cost in area 1 and area 2 respectively;  
11 1,1 1,2 1,N 1, , , ,

T

Lx P P P P   and 
 

22 2,1 2,2 2,N 2, , , ,
T

Lx P P P P   are the vectors of corresponding control variables in area 1 and area 2; 1  and 2  are 

feasible regions representing operational constraints on x1 and x2; equation  1 2,x x  represents the new 

introduced consistency constraint, during which A and B are given matrices. 
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Figure 1. Decentralization of an interconnected power system. 

3. Auxiliary Problem Principle for MAED Problem 

As shown in (7), it is clear that there is a coupling relationship between adjacent areas through the 
consistency constraint  1 2,x x . In this section, with the concept of augmented lagrangian relaxation 

method and auxiliary problem principle, we will discuss how to divide the original problem (7) into 

independent sub-problems with the consistency constraint decoupled. 

3.1. Augmented Lagrangian Relaxation Method 

In this section, we first employ augmented lagrangian relaxation method to deal with the 

consistency constraint  1 2,x x . Then, the problem (7) can be rewritten as follows. 

      2

1 2 1 2 1 2

1 1

2 2

min
2

:

    




T c
f x g x Ax Bx Ax Bx

subject to x

x  

(8) 

where   is the Lagrangian multiplier for  1 2,x x ; c>0 is the given penalty factor. Tx x x  denotes the 

Euclidean norm of vector x. 

In addition, problem (8) is equivalent to solving a saddle-point problem via the following iterative 

scheme: 
 1 1

1 2,k kx x   is obtained by solving 

        21 1 ,
1 2 1 2 1 2 1 2 1 1 2 2, arg min ,

2
k k T k c

x x f x g x Ax Bx Ax Bx x x           
  

(9) 

then, 
1k 
 is obtained by updating 

 1 1 1
1 2     k k k kc Ax Bx

 (10) 
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3.2. Auxiliary Problem Principle 

In this section, we take advantage of auxiliary problem principle to cope with the non-separable 

quadratic term 
2

1 22

c
Ax Bx . The iterative scheme APP for solving problem (8) can be expressed as 

follows [14,15]. 

Step1. Compute 

  2 21 ,
1 1 1 1 2 1 1 1 1arg min

2 2
k T k k kc c

x f x Ax Ax Bx Ax Ax x
         

  
(11) 

Step2. Compute 

  2 21 ,
2 2 2 1 2 2 2 2 2arg min

2 2
k T k k kc c

x g x Bx Ax Bx Bx Bx x
         

  
(12) 

Step3. Lagrange multiplier updating 

 1
1 2

k k k kAx Bx     
 (13) 

Step4. Check the stop criterion. If  

 1 1 1
1 1 2 2max , ,k k k k k kAx Ax Bx Bx       

 (14) 

then stop. If not k=k+1, go to Step1. 

where β is given APP parameter and ε denotes step size. The sufficient condition for convergence of 

APP iterative scheme is given as follow [13]. 

2c    (15) 

Furthermore, experience on applications has illustrated that, for the given penalty parameter c, the 

selection of parameters β and ε has a significant influence on convergence performance of APP 

iterative scheme. Ren has pointed that APP iterative scheme can get the best convergence performance 

when 2c   and c   [16]. Moreover, kim has pointed that convergence performance of APP was 

reliable with the choice [13]: 

= =
2

c
  (16) 

As a result, for the best convergence performance, we choice the APP parameters satisfying 
= = / 2c   in this paper. 

4. Auxiliary Problem Principle Method with Self-Adaptive Penalty Parameter 

Although, the intrinsic relationship between parameters β, ε and c has been discussion in section 

3.2, how to achieve proper parameters for APP proved to be a challenge. Experience on applications 

has shown that the convergence results depend on the selection of penalty parameter c; hence, it is 

important to estimate a proper penalty parameter. Inspired by Bingsheng He’s modified alternating 

direction method [17], we proposed a self-adaptive APP which makes progress in the choice of penalty 

parameter. 
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4.1. Motivation 

Bingsheng He proposed a modified alternating direction method to deal with problem (8). To be 

more exact, this method adjusts the penalty parameter c based on the iterate message [17]. 

Now we give the details on how to adjust the penalty parameter c for better convergence 

performance. In fact, the solution of problem (8) is equivalent to finding a zero point e(wk): 
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(17) 

where 

1

2 1 2, ,r k

x

w x W R w W



 
       
 
 

 (18) 

 P   is the projection on Ω.  f   and  g   denote the gradient of  f   and  g   respectively. 

Equation (17) offers us an inspiration on how to adjust penalty parameter c. For the sake of balance, 
we should adjust the penalty parameter c such that      

1 2

k k k
x xe w e w e w  , but it is always difficult to 

achieve. Fortunately, if we use alternating direction method to deal with problem (8), then we will find 

that [17]: 

    2 2 2 2 2 0k k k k T k
xe w x P x g x B 

         (19) 

Now, we only need to adjust the penalty parameter c such that    
1

k k
xe w e w , it is relatively easy to be 

achieved. To be more exact, for an iterate kw , if    
1

k k
xe w e w we should increase penalty parameter c. 

By contrast, if    
1

k k
xe w e w , we should decrease penalty parameter c.  

4.2. Self-Adaptive Penalty Parameter for Two-Area Economic Dispatch Problem  

Inspired by Bingsheng He’s idea, we employ the concept of balance to adjust penalty parameter c 

during APP’s iteration. However, it is difficult to achieve a balance between  
1

k
xe w ,  

2

k
xe w  and  ke w  

directly, so we first give Lemma 1 which gives a basic convergence property for APP iterative scheme 

and is useful for further analysis about how to adjust penalty parameter. 

Lemma 1 Let sequence {wk} is generated by the iterative scheme APP and w* is the solution of 

problem (8). Then we have 
2 2 2* 1 * 1k k k k
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The M-norm M
x  is denoted by Tx Mx . 

Proof. 
Solving optimization problem (11) and (12) is equivalent to solving  1 1

1 2,k kx x   which satisfies [18] 
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and using  1 1 1
1 2

k k k kc Ax Bx      , we get 
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Setting w=w* in (24), we get, 
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(26) 

Using the concept of variational inequality [18], solving optimization problem (8) is equivalent to 

solving w* which satisfies 

           * * * *
1 2 1 2 0,

T
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In fact, F is monotone operator [19]. We have, 

       1 * 1 * *T Tk kw w F w w w F w     (28) 

Combing (25) and (28), we get 

   
   
       

* 1 1

* 1 1

* 1 1 1

0

0

Tk k k

Tk k k k k

T Tk k k k k k k

w w M w w

w w w w M w w

w w M w w w w M w w

 

 

  

  

     

       

(29) 

Using (29), we get, 
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Based on above discussion, the proof of Lemma 1 is completed. 

Furthermore, (20) can be rewritten as follow. 
2 2 2* 1 * 1k k k k
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where 
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It is clear that (31) is Fejér monotone, so we get [20] 
1 1 1

1 1 2 2lim 0, lim 0, lim 0k k k k k k

k k k
Ax Ax Bx Bx    

  
     

 (33) 

Interestingly, (33) is consistent with APP’s stop criterion, so it is clear that if 
21 0k k

M
w w   , then wk+1 

can be denoted by w*. Hence, the magnitude of 
21k k

M
w w   can measure the error between wk and w*. 

According to β=2c which is described in (16), we get, 
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Now, for the sake of balance, we only need to adjust penalty parameter c such that 
   1 1

1 1 2
1

12
k k k k k

c
c

kAx Ax Bx Bx        . 

4.3. The Extension of Self-Adaptive Penalty Parameter for MAED Problem  

Problem (7) is the two-area economic dispatch model. Apparently, Problem (7) can be easily 

extended to N-area system. By denoting  , 0i j ij i ij jx x A x B x     for the consistency constraint between area i 

and area j, the corresponding lagrangian multiplier and penalty parameter for  ,i jx x  are defined as ij  

and cij. In consideration of the most complex case, each area exchanges active power with all the other 

areas, a general formulation for the N-area model of MAED can be expressed as follows: 
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For solving problem (35), the corresponding APP iterative scheme can be expressed as follows. 
 1 1 1
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then, 1k
ij
  is obtained by updating 

 1 1 1 , , 1,2, ,k k k k
ij ij ij ij i ij jc A x B x i j n and j i       

 (37) 

Like the proof of Lemma 1 and (31), taking advance of the concept of variational inequality to deal 

with (36) and using (37), it is easy to get 
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For the sake of balance, we only need to adjust penalty parameter such that 
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In order to achieve balance in (40), we have to create a coordinator server which communicates with 

all sub-systems for exchanging required information. However, it is impossible for practical 

applications. In fact, achieving the balance in (40) provided that 
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The corresponding self-adaptive strategy for adjusting penalty parameter can be expressed as 

follows. 
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(43) 

It is clear that the proposed SAPP only uses existing information to adjust penalty parameter, no 
extra information is needed. In addition，in comparison with the optimization problem (36), the 

calculation cost of (42) and (43) is slight and can be neglected. Therefore, the proposed SAPP scheme 

is implementable for practical applications. 

5. Simulation Results 

In this section, we employ two test systems to verify the effectiveness of the proposed self-adaptive 

APP iterative scheme (SAPP) which is compared with traditional APP iterative scheme. Throughout 

this paper, stop criterion is set to be 410  , the initial lagrangian multiplier is set to be 0ij  , the 

maximum iteration kmax is set to be 100 and the intrinsic relationship between APP’s parameters βij, 

εij and cij is set to be cij=εij =βij/2. 
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5.1. Test System 1 

This system is composed of four generating units without considering valve-point effect and 

transmission loss, and all data about generating unit is strict from [21]. The total load demand for test 

system 1 is 800MW. In details, all generating units are divided into two areas. Area 1 includes 2 

generating units and the corresponding load demand accounts for 70% of the total load demand. Area 2 

consists of 2 generating units and makes up 30% of the total load demand. The maximum power flow 

between area 1 and area 2 is 200 MW. 

5.2. Test System 2 

This system is constituted of ten generators; valve-point effect and transmission loss are neglected 

here. The total load demand is set to be 2700 MW. Moreover, test system 2 is divided into three areas 

as shown in Fig. 2. Area 1 consists of four generating units; area 2 is comprised of three generating 

units; area 3 is made up of four generating units. The load demand in area 1 accounts for 50% of the 

total load demand, the corresponding proportion for area 2 and area 3 are both 25%. The generating 

unit data with three different fuel options has been taken from [22]. In this paper, we take the fuel 

option 1 as the fuel cost. In addition, there are three tie-lines in this system and the limits for tie-lines 

are all set to be 100MW. 

Area 1 Area 2

Area 3

P1
P2
P3
P4

P5
P6
P7

P8
P9
P10

 

Figure 2. Test system 2, three-area power system. 

5.3. Simulation Analysis 

Table I and table II reflect the convergence information of test system 1 and test system 2 

respectively. The first column gives initial value of penalty parameter. The second and third columns 

indicate total number of iterations when the corresponding iterative scheme satisfies stop criterion. The 

fourth column shows total cost as objective function for MAED problem. Simulation results 

demonstrate that the APP is sensitive to the selection of initial penalty parameter, if penalty parameter 

is chosen too big or too small, APP need more number of iteration to reach the optimum. By contrast, 

the proposed SAPP has better stability in convergence with different penalty parameter, and has better 

convergence rate.  

6. Conclusion 

Auxiliary problem principle is one of the attractive approaches to solve multi-area economic 

dispatch problem and has been applied in many other fields in power systems. However, its 
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convergence performance is significantly influenced by the selection the penalty parameter. In this 

paper, we propose a self-adaptive APP iterative scheme, which allow the penalty parameter increase or 

decrease according to iterative information. Simulation results illustrate that the proposed SAPP is 

superior to the traditional APP in terms of stability in convergence. 

Table 1. Comparison of results for test system 1. 

Penalty parameter 
Number of iterations 

Total cost ($/h)
APP SAPP 

102 Fail to convergence with maximum iteration 100 6 

7.7549×103 

101 Fail to convergence with maximum iteration 100 6 
100 Fail to convergence with maximum iteration 100 6 
10-1 Fail to convergence with maximum iteration 100 6 
10-2 15 7 
10-3 45 10 
10-4 Fail to convergence with maximum iteration 100 14 
10-5 Fail to convergence with maximum iteration 100 17 
10-6 Fail to convergence with maximum iteration 100 21 

Table 2. Comparison of results for test system 2. 

Penalty parameter 
Number of iterations 

Total cost ($/h)
APP SAPP 

102 Fail to convergence with maximum iteration 100 46 

718.0707 

101 Fail to convergence with maximum iteration 100 31 

100 Fail to convergence with maximum iteration 100 27 

10-1 Fail to convergence with maximum iteration 100 27 

10-2 Fail to convergence with maximum iteration 100 11 

10-3 31 23 

10-4 Fail to convergence with maximum iteration 100 23 

10-5 Fail to convergence with maximum iteration 100 31 

10-6 Fail to convergence with maximum iteration 100 28 
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