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Abstract: Aiming at improving the well-known fuzzy compactness and separation 

algorithm (FCS), this paper proposes a new clustering algorithm based on feature 

weighting fuzzy compactness and separation (WFCS). In view of the contribution of 

features to clustering, the proposed algorithm introduces the feature weighting into the 

objective function. We first formulate the membership and feature weighting, and analyze 

the membership of data points falling on the crisp boundary, then give the adjustment 

strategy. The proposed WFCS is validated both on simulated dataset and real dataset. The 

experimental results demonstrate that the proposed WFCS has the characteristics of hard 

clustering and fuzzy clustering, and outperforms many existing clustering algorithms with 

respect to three metrics: Rand Index, Xie-Beni Index and Within-Between(WB) Index.  

Keywords: fuzzy clustering; hard clustering; fuzzy compactness and separation;  

feature weighting 

 

1. Introduction 

Similar data belongs to a cluster, while different data belongs to different clusters [1–3]. The fuzzy 

C-means (FCM) algorithm is a classical pattern recognition method [4], and many FCM-type 
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clustering algorithms were proposed [5,6]. However, the between-cluster separation is ignored in these 

clustering techniques because these algorithms partition data points only by minimizing the distances 

between data points and cluster centers (i.e., the within-cluster compactness). Therefore, Wu et al. 

proposed a fuzzy compactness and separation (FCS) algorithm [7]. The proposed FCS algorithm 

assigns a crisp boundary for each cluster so that hard memberships and fuzzy memberships can co-

exist in the clustering results.  

For high dimensional dataset clustering, features of data are assigned weights which illustrate the 

importance degree of features. A major problem of un-weighted clustering algorithms lies in treating 

all features equally in the clustering process. Therefore, many contributions attempt to weight features 

with various methods and to optimize the FCM-type algorithms [8–13]. Frigui and Nasraoui [8] 

proposed the simultaneous clustering and attribute discrimination algorithm, in which clustering and 

feature weighting can be performed simultaneously in an unsupervised manner; Wang et al. [9] 

discussed that the weight assignment can be given by learning according to the gradient descent 

technique; Jing et al. proposed an EWkmeans [10] which minimizes the within-cluster compactness 

and maximizes the negative weight entropy to stimulate more features contributing to the identification 

of a cluster; Wang et al. [11] presented a new fuzzy C-means algorithm with variable weighting 

(WFCM) for high dimensional data analysis; Wang et al. [12] put forward a feature weighting fuzzy 

clustering algorithm integrating rough sets and shadowed sets (WSRFCM); Deng et al. [13] introduced 

the between-cluster separation into the EWkmeans and proposed the enhanced soft subspace clustering 

(ESSC) algorithm. The WFCM and WSRFCM employ only the within-cluster compactness while 
updating the membership matrix and feature weights. ESSC uses a parameter  to balance the  

within-cluster compactness and between-cluster separation. However, negative values may be 

produced in the membership matrix if the balancing parameter is too large. Therefore, to avoid the 
negative membership value,  could be set zero. In this case, ESSC would degrade to the EWkmeans. 

In the real world, some data points belong to a cluster strictly (i.e., hard clustering) and others 

belong to a cluster ambiguously (i.e., fuzzy clustering). For maximizing the between-cluster separation 

and minimizing the within-cluster compactness, we proposed a new feature weighting fuzzy 

compactness and separation (WFCS) algorithm with fusion of hard clustering and fuzzy clustering. 

The rest of this paper is organized as follows. Section 2 introduces both the FCS and the WFCS 

algorithms, addresses the flaw of FCS and discusses the adjustment of membership and feature 

weighting of WFCS. The proposed algorithm is evaluated in section 3. Finally, this paper is concluded 

and the future work is discussed in Section 4. 

Table 1 illustrates the main symbols that appear in the following formulas. 

2. The FCS and WFCS Algorithms  

In this section, the FCS algorithm is reviewed and data points on the crisp boundary are discussed. 

Then we present the WFCS algorithm, demonstrate the formulas of the membership and feature weight 

and give the adjustment strategy of these formulas. 

 1 2, ,..., nX x x x  is a dataset in an s-dimensional Euclidean space sR , and X  denotes the grand 

mean of .X  
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Table 1. Symbols list. 

Symbol Description 
n  the numbers of data 
c  the numbers of clusters 
s  the numbers of features 

jx  the thj  data, s
jx R  

ia  the thi  cluster center, s
ia R  

ij  the membership of the thj  data belonging to the thi  cluster 
m  the fuzzy exponent 

k  the thk  feature weight 
  the feature weighting exponent 
  the parameter to control the influence of between-cluster separation 

2.1. FCS Algorithm [7] 

The fuzzy within-cluster compactness FWS  and the fuzzy between-cluster separation FBS  are 

defined as: 

2
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= || ||
c n
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FW ij j i

i j
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Objective function is formulated as: 

2 2

1 1 1 1

= = || || || ||
c n c n

m m
FCS FW FB ij j i i ij i

i j i j

J S S x a a X   
   

       

 
1

. . 0,1 , =1
c

ij ij
i

s t  


   

(3)

where 1={ ,..., }.c    

In Equation (3), 2|| ||i ia X   represents the crisp kernel size of thi  cluster (2-dimensional diagram is 

shown in Figure 1). The parameter i  guarantees that no two crisp kernels will overlap [7] and can be 

demonstrated as: 
2
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where 0 1   and 1,..., .t c   

By minimizing ,FCSJ we have: 
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According to Equations (5) and (6), dataset X can be partitioned into c clusters by iteratively 

updating cluster centers and membership value. 

The data point in the thi  crisp kernel belongs to the thi  cluster strictly, which is called hard 
clustering. However, if a data point falls on the crisp boundary (see Figure 1), membership value ij  

will be infinite. Hence, according to Equation (6) the FCS algorithm fails. 

 

Figure 1. Illustration of the crisp kernel. 

2.2. WFCS Algorithm  

2.2.1. The Principle of WFCS 

Aiming at clustering data more reasonably, we introduce feature weight into the FCS. Firstly, we 
define the feature weighting fuzzy within-cluster matrix WFWS  and between-cluster matrix WFBS  as 

follows: 

2
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We extend the formula of i  as: 
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Based on Equation (7) and Equation (8), the objective function is shown as: 

2 2

1 1 1 1 1 1

= || || || ||
c n s c n s

m m
WFCS ij k jk ik i ij k ik k

i j k i j k

J x a a X
     

     

     (10)

Hence, WFCS can be formulated as an optimization problem which can be expressed as: 
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Equation (11) can be solved via the Lagrange multiplier. The L function can be given by:  
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Let the partial derivatives of L function with respect to ij , k , j  and   equal to zero. Then we have: 
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According to Equations (13)–(15), dataset X can be partitioned into c  clusters by iteratively 
updating a ,   and  . 

We note here that the objective functions of WFCS and ESSC include the within-cluster 
compactness and between-cluster separation. However, in ESSC the parameter   will be assigned a 

value at the beginning of the iteration procedure and will be fixed. Furthermore, if =0,  the ESSC will 

degrade to the entropy weighting clustering algorithm without the between-cluster information. 
However, in the proposed WFCS,   will be calculated automatically by the between-cluster 

information and will not be zero if the parameter 0   . 

2.2.2. The Adjustment Strategies 

(1) Adjustment of k  

Let  

 2 2

=1 =1

= || || || ||
c n

m
k ij jk ik i ik k

i j

x a a X      (16)

then Equation (14) can be written as: 
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If the value of k  is zero, this means that the thk  feature has exactly the same effect on all clusters 

then k  should be zero. 

Here, k is the grand fuzzy distance between data points and crisp kernels on the thk  feature. 

Hence, k is non-negative when distribution of data points is balance and so is k . On the contrary, 

k is negative when distribution of data points is imbalance and k could be negative. Consequently, 

we have to make some adjustment. Here,  | 0, 1,..., .p k k k s      Therefore, the projection 

function may be expressed as: 

     
0

= = min min
q

p p p t qP
 

        (18)

where 1,...,t s  and 1,..., .p s  

After the adjustment, the feature weighting can be given by Equation (14).  
(2) Adjustment of ij  

Let 

 2 2
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then Equation (15) can be presented as: 
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If jx  falls on the thi  crisp boundary, 0ij  . Accordingly, the membership value of jx  is infinite. 

The fact is that the membership value of jx  is fuzzier than that of data point in the crisp kernel. 

Furthermore, the membership value of jx  is greater than that of data point lying outside crisp kernel. 

Based on the discussions above, we have the projection function as Equation (21): 

 
0

= = min( )
tq

tqP
 

      (21)

where  | 0, 1,..., , 1,..., ,ij ij i c j n      1,...,t c and 1,...,q n . 

After the adjustment, ij can be given by Equation (15). 

2.2.3. The Implement of WFCS 

Step 1. Choose , ,m  and the iterative error threshold .  Assign a random membership partition 

matrix  ij  and random values between 0 and 1 to  . Set the initial iteration counter as 1l  ; 

Step 2. Update ( )l
ia  with ( 1)l

ij
 , ( 1)l

i
 according to Equation (13); 
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Step 3. Update ( )l
k  with ( 1)l

ij
 , ( -1)l

ia , ( 1)l
i
 based on both Equations (14) and (18); 

Step 4. Update ( )l
ij  with ( -1)l

k , ( -1)l
ia , ( 1)l

i
 according to Equations (15) and (21); 

Step 5. Compute ( )l
i  with  , ( )l

ia  according to Equation (9); 

Step 6. Set 1l l   and return to Step 2 until convergence has been reached. 

3. Performance Evaluation and Analysis  

In this section, the proposed WFCS algorithm has been evaluated by a large number of experiments 

performed on the simulated dataset and the real dataset. The real datasets include eight UCI 

benchmarking datasets [14] and a CFM56-type engine dataset (named as ENGINE (ENGINE data can 

be provided by sending email to the corresponding author)) with measurement noise which has been 

collected from Air Company. In order to obtain the simulated data, an aero-engine gas path data with 

Gauss noise (named as LTT) was obtained by a simulation software (developed by the Laboratory of 

Thermal Turbo machines at the National Technical University of Athens (Downloaded from 

http://www.ltt.mech.ntua.gr/index.php/softwaremn/teachesmn)). The ENGINE and the LTT datasets 

present the aero-engine’s states, including healthy states and degrade states. In these experiments, all 

datasets are normalized into (0, 1) [13]. 

First, the datasets information, validation criteria and parameters setting are described. Then, the 

properties of the WFCS are investigated based on the experimental results of the Iris dataset. A 

detailed comparison with other three feature weighting fuzzy clustering algorithms (ESSC, WFCM, 

WSRFCM) and one un-weighted fuzzy clustering algorithm (FCS) is performed at last.  

3.1. Datasets Information, Validation Criteria and Experimental Setting 

The 10 datasets information are summarized in Table 2. 

Table 2. Summary of 10 datasets. 

Datasets Size of Dataset Number of Dimensions Number of Clusters 

Australian 690 14 2 
Balance-scale 625 4 3 
Breast Cancer 569 30 2 

Heart 270 13 2 
Iris 150 4 3 

Pima 768 8 2 
Vehicle 846 18 4 
Wine 178 13 3 

ENGINE 186 3 2 
LTT 300 3 2 

The rand index (RI) [15], the Xie-Beni index (XB) [16] and Within-Between index (WB) [17] are 

used for evaluating the performance of the proposed WFCS algorithm. The WB index is a recently 
proposed one. RI index is defined to evaluate the accuracy of partition—the higher the value is, the 

higher accuracy we get. XB and WB index are to evaluate the with-cluster compactness and between-
cluster separation—the smaller the XB and WB values are, the better the clustering results is. 
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The parameter setting is: 0   or 1   [18], 1,m   -6=10  and  0.005,0.05,0 1 ..5,   

Parameter values in experiments are tabulated in Table 3, which is based on the best clustering results 

in terms of the means and standard deviations of the RI index. We conduct each algorithm 10 times. 

All experiments were implemented on a computer with 2.5 GHz CPU and 8 GB RAM. 

Table 3. Parameter values for 10 datasets. 

Datasets 
WFCS ESSC WSRFCM WFCM FCS 

    
Australian 1 −7 1000 0.9 −2 −7 1 

Breast Cancer 1 −9 5 0.5 −10 −10 1 
Balance-scale 0.01 4 100 0.7 −6 −5 0.05 

Heart 0.005 2 100 0 −5 −10 0.5 
Iris 1 2 1 0.01 2 2 1 

Pima 0.5 −9 100 0.2 −6 −9 1 
Vehicle 1 2 50 0.01 4 −10 1 
Wine 1 −1 50 0.01 −1 −1 1 

ENGINE 1 2 1 0 −10 2 1 
LTT 1 −2 1 0 −1 −10 1 

3.2. Property Analysis of WFCS  

Figure 2 demonstrates the original distribution of Iris dataset and the clustering results of the five 

algorithms. As shown in Figure 2a, Iris dataset contains three clusters of 50 data points each, where 

each cluster refers to a type of iris plant. It is obvious that Cluster1 is linearly separable from the other 

two while the latters are overlapped. Hence, it is more reasonable for data points in Cluster1 to be hard 

clustered than to be fuzzy clustered. 

(1) Clustering performance 

Figure 2 shows that clustering results of feature weighted clustering algorithms (WFCS, ESSC, 

WFCM and WSRFCM) are similar to the distribution of original data (shown in Figure 2 (a)). Data 

points in Cluster1 can be recognized very well by the five algorithms. Moreover, most data points in 

Cluster2 and Cluster3 can be recognized by the four feature weighted algorithms. In Figure 2 (f), it is 

obvious that some data in Cluster3 are misclassified into Cluster2 by FCS. 

The cluster centers of five algorithms are different from each other. Furthermore, the distance 

between Cluster1, Cluster2 and Cluster3 center obtained by the five algorithms are shown in Figure 3. 

With regard to WFCS, ESSC and FCS integrating the within-cluster compactness and  

between-cluster separation, the distances between the overlapped Cluster2 and Cluster3 center are 

larger than that of WSRFCM and WFCM. However, FCS can’t partition the data points belonging to 

Cluster2 or Cluster3 correctly for it has not included the feature weight though the biggest value of 

distance is obtained. 
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Figure 2. (a) The original data distribution; (b) The clustering results of weighting fuzzy 

compactness and separation algorithm (WFCS); (c) The clustering results of enhanced soft 

subspace clustering algorithm (ESSC); (d) The clustering results of the feature weighting 

fuzzy clustering algorithm integrating rough sets and shadowed sets (WSRFCM); (e) The 

clustering results of the feature weighting fuzzy c-means algorithm (WFCM); (f) The 

clustering results of the fuzzy compactness and separation algorithm (FCS). 

 

Figure 3. The distance between three cluster centers. 
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Since different clustering algorithms have different objective functions, we introduce the iteration 

function  
2
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 in order to evaluate the convergence of algorithm.  

Figure 4 shows the convergence curves of the five algorithms. 

 

Figure 4. Convergence of the five algorithms. 

As shown in Figure 4, the five convergence curves descend fast in the first two iterations, and the 

convergence curves vary slowly after three iterations. Furthermore, the smaller iteration number means 

the higher convergence speed. Overall, WFCS has a higher speed of convergence. The convergence 

speed of WFCM is lower than that of WFCS and ESSC, while the FCS has the lowest  

convergence speed. 

(2) Hard clustering 

Figure 5 shows the fuzzy membership values for Cluster1 of 150 data points in WFCS when   is 1, 

0.5, 0.05 and 0.005 respectively. When membership value is equal to 1, data point is hard clustered 

into Cluster1. When membership value is 0, data point is hard clustered into the other two clusters.  

In Figure 5a–c, there are 50, 31 and 12 data points hard clustered into Cluster1 respectively. In 

Figure 5d, all data point membership values are smaller than 1, then all data points are fuzzy clustered 
into Cluster1. As seen in Figure 5, the membership value becomes fuzzier when   is smaller. Hence, 

WFCS has the characteristics of both hard clustering and fuzzy clustering. 

3.3. Clustering Evaluation  

The best RI indexes of the five algorithms are presented in Table 4. 
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Figure 5. Fuzzy membership value on the first cluster with different   (a) =1 ;  

(b) =0.5 ; (c) =0.05 ; (d) =0.005 . 

It is evident in Table 4 that WFCS demonstrates the best performance except for Breast-cancer, 

Vehicle and ENGINE datasets. The performance of WFCM and WSRFCM are mostly comparable or 
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to achieve the best clustering result performance for the dataset Wine. Tables 5 and 6 list the XB and 

WB index values of the five algorithms respectively. By comparing Tables 4–6, we found that the best 

clustering performance as indicated through RI is not always the smallest value as indicated through 

XB or WB index. Therefore, no single algorithm can always be superior to the others for all datasets. 

The average performances of the five algorithms are shown in Figure 6.  
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Figure 6. The average performances of the five algorithms. 

Table 4. The best clustering results obtained for the 10 datasets with rand index (RI). 

Dataset WFCS ESSC WSRFCM WFCM FCS 

Australian 

mean 0.7336 0.7162 0.7302 0.7265 0.6995 
std 0.0000 0.1134 0.0033 0.0569 0.0125 

Breast Cancer 

mean 0.8721 0.8779 0.8630 0.8600 0.8627 
std 0.0009 0.0057 0 0.0000 0.0000 

Balance-scale 

mean 0.6427 0.6389 0.6101 0.6099 0.6201 
std 0.0758 0.0287 0.0586 0.0578 0.0662 

Heart 

mean 0.7163 0.7114 0.7120 0.6939 0.6833 
std 0.0000 0.0019 0.0023 0.0000 0.0000 

Iris 

mean 0.9495 0.9195 0.9495 0.9495 0.8679 
std 0.0000 0.0000 0.0081 0.0000 0.0000 

Pima 

mean 0.5841 0.5564 0.5698 0.5837 0.5576 
std 0.0000 0.0005 0.0044 0.0009 0.0000 

Vehicle 

mean 0.6654 0.6539 0.6778 0.6581 0.6528 
std 0.0025 0.0028 0.0006 0.0038 0.0000 

Wine 

mean 0.9551 0.9398 0.9324 0.9398 0.9551 
std 0.0000 0.0095 0.0000 0.0000 0.0000 

ENGINE 

mean 0.8600 0.7823 0.7693 0.8600 0.7903 
std 0.0000 0.0005 0.0067 0.0000 0.0000 

LTT 

mean 0.9671 0.96 0.9543 0.9671 0.9607 
std 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table 5. Xie-Beni (XB) index of algorithms. 

Dataset WFCS ESSC WSRFCM WFCM FCS 

Australian 

mean 0.0400 0.7194 1.4636 1.2056 0.1995 
std 0.0007 0.3455 0.8407 1.0488 0.0267 

Breast Cancer 

mean 0.3216 0.2961 0.4288 0.3270 0.1094 
std 0.0021 0.0344 0.0903 0.0003 0.0000 

Balance-scale 

mean 0.4435 0.7051 0.6970 0.7392 2.8475 
std 0.0000 0.0248 0.0287 0.0725 0.0979 

Heart 

mean 0.1593 0.4033 0.7942 0.6348 0.2267 
std 0.0081 0.0982 0.7522 0.5030 0.0000 

Iris 

mean 0.0844 0.0861 0.2700 0.1964 0.2922 
std 0.0019 0.0059 0.0226 0.0000 0.0000 

Pima 

mean 0.1443 0.4942 0.7610 0.5955 0.4759 
std 0.0002 0.0235 0.1977 0.0406 0.0000 

Vehicle 

mean 0.2532 0.2601 0.8538 0.5480 3.2949 
std 0.0000 0.0917 0.0372 0.0047 0.0097 

Wine 

mean 0.2577 0.3970 0.6775 0.4987 0.4061 
std 0.0034 0.0009 0.0640 0.0000 0.0000 

ENGINE 

mean 0.1699 0.1836 0.3755 0.2130 0.1267 
std 0.0030 0.0685 0.0295 0.0217 0.0000 

LTT 

mean 0.1019 0.1075 0.3299 0.2131 0.2105 
std 0.0014 0.0983 0.0029 0.0000 0.0000 

In Figure 6, we can see that WFCS obtained the best mean values of RI (0.7946) and XB (0.1976) 

with the least standard variation (0.0079, 0.0021 respectively) for the 10 datasets. WFCM, WSRFCM 

and ESSC perform similarly in terms of RI. It can be seen that the feature weighting clustering 

algorithms are superior to the un-weighted clustering one. The average XB and WB index values of 

WFCS, ESSC and FCS are smaller than those of WFCM and WSRFCM, which demonstrate that these 

three algorithms integrating between-cluster separation and within-cluster compactness can partition 

data points more reasonably. 
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Table 6. Within-Between(WB) index of algorithms. 

Dataset WFCS ESSC WSRFCM WFCM FCS 

Australian 

mean 0.0551 0.1730 0.6312 0.7261 0.5971 
std 0.0000 0.1313 0.0011 0.4054 0.2144 

Breast Cancer 

mean 0.3849 0.3843 0.5388 0.6035 0.4510 
std 0.0010 0.0084 0.0000 0.0000 0.0000 

Balance-scale 

mean 2.1924 3.6567 5.8354 6.1232 5.6191 
std 0.7932 0.1983 0.0911 0.1686 0.7135 

Heart 

mean 1.1191 1.1191 2.3297 3.3005 1.8087 
std 0.0000 0.0991 0.0012 0.0000 0.0000 

Iris 

mean 0.0729 0.3300 0.8423 0.6224 0.5366 
std 0.0079 0.0097 0.6452 0.0311 0.0000 

Pima 

mean 0.2828 0.6195 1.0043 0.4897 0.4832 
std 0.0012 0.0003 0.0627 0.0073 0.0000 

Vehicle 

mean 0.1908 0.2850 0.5000 0.4128 0.6351 
std 0.0010 0.0087 0.0149 0.0000 0.0000 

Wine 

mean 0.9821 0.9934 2.0174 1.4317 0.8599 
std 0.0038 0.0350 0.0028 0.0000 0.0000 

ENGINE 

mean 0.4866 0.8500 1.6315 1.6072 0.8484 
std 0.0079 0.0060 0.0056 2.3408 0.0000 

LTT 

mean 0.9206 1.6253 3.0179 1.9023 1.8894 
std 0.0075 0.0281 0.0106 0.0002 0.0000 

4. Conclusions  

In this paper, a fuzzy clustering algorithm is proposed based on FCS by maximizing the  

between-cluster matrix and minimizing the within-cluster matrix with weighted features. Two 
adjustment formulations are derived for adjusting the values of ij  and the k  respectively. Through 

the proposed WFCS, problem for the membership of the data point lying on the crisp boundary can be 

solved. Experimental results show that the proposed WFCS generally outperforms the four existing 

clustering algorithms (FCS, WFCM, WSRFCM and ESSC).  

The proposed algorithm can handle linear datasets, whereas, the high-dimensional nonlinear data 

has not been considered in this paper. In the future, we will employ the kernel methodology [19–21] to 

analyze the high-dimensional nonlinear data. 
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