
Algorithms 2014, 7, 253-275; doi:10.3390/a7020253
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

A Faster Quick Search Algorithm
Jie Lin 1, Donald Adjeroh 2 and Yue Jiang 1,*

1 Faculty of Software, Fujian Normal University, Fuzhou 350108, China; E-Mail: linjie891@163.com
2 Lane Department of Computer Science and Electrical Engineering, West Virginia University,

Morgantown, WV 26506, USA; E-Mail: don@csee.wvu.edu

* Author to whom correspondence should be addressed; E-Mail: yueljiang@163.com;
Tel.: +86-591-22868468.

Received: 25 April 2014; in revised form: 30 May 2014 / Accepted: 4 June 2014 /
Published: 23 June 2014

Abstract: We present the FQS (faster quick search) algorithm, an improved variation of
the quick search algorithm. The quick search (QS) exact pattern matching algorithm and
its variants are among the fastest practical matching algorithms today. The FQS algorithm
computes a statistically expected shift value, which allows maximal shifts and a smaller
number of comparisons between the pattern and the text. Compared to the state-of-the-art
QS variants of exact pattern matching algorithms, the proposed FQS algorithm is the fastest
when |Σ| ≤ 128, where |Σ| is the alphabet size. FQS also has a competitive running time
when |Σ| > 128. Running on three practical text files, E. coli (|Σ| = 4), Bible (|Σ| = 63) and
World192 (|Σ| = 94), FQS resulted in the best performance in practice. Our FQS algorithm
will have important applications in the domain of genomic database searching, involving
DNA or RNA sequence databases with four symbols Σ = {A, C, G, T (/U)} or protein
databases with |Σ| = 20.

Keywords: exact pattern matching; quick search algorithm; maximum statistical
expected shift

1. Introduction

Given a text T = T [0, ..., n − 1] of length n and a pattern P = P [0, ...,m − 1] of length m over
an alphabet, Σ, the exact string matching problem is to find all occurrences of pattern P in the text, T .
In general, n ≥ m. The exact string matching problem is an important and well-studied subject [1,2].

Algorithms 2014, 7 254

Three popular exact matching algorithms with linear time complexity are the Knuth–Morris–Pratt (KMP)
algorithm [3], the Karp–Rabin (KR) algorithm [4] and the Boyer–Moore (BM) algorithm [5]. Like KMP,
the BM algorithm matches the pattern and the text by skipping characters that are not likely to result in
exact matching with the pattern. Unlike the other methods, it compares the strings from right to left
of the pattern. These algorithms need an O(|Σ| + m) time for preprocessing the pattern, and search in
O(n) or sometimes even sublinearly in practice. The total time will be O(|Σ| + n + m). A different
approach to pattern matching based on bitwise operations was introduced by R. Baeza-Yates and G.
Gonnet [6]. Here, the pattern is represented by a binary mask. Bitwise SHIFT and AND operations that
are considered as constant time are used to find the patterns. Under this framework, SHIFT and AND
correspond to the pattern movement and matching, respectively. The algorithm is effective for small
patterns, when the pattern length is less than a computer word (typically 32 or 64 characters), which is
usual for the text searching problem. Bitwise parallelism is the basis of some recent improved algorithms
for exact pattern matching. See [7,8] for examples.

Since Boyer and Moore published their famous BM algorithm in 1977 [5], many variants of the BM
algorithm have been proposed [2,9]. Among these variants, Sunday’s quick search [10] is widely used
because of its simplicity and efficiency.

Algorithms based on character comparisons can be classified into these three categories by the way
they scan the text [9]: forward orientation, backward orientation and no specific direction. Forward
orientation is comparing the text to the pattern from left to right. The KMP algorithm is in this category.
See, also, Apostolico et al. [11] and Crochemore et al. [12]. Under backward orientation, we compare the
text to the pattern from right to left; the BM is in this category. For the third category, some algorithms
used both forward and backward comparisons at the same time, for example, quick search by Sunday,
and its variants, the Franek–Jennings–Smyth (FJS) algorithm [13] and the Horspool algorithm [14]. See,
also, the book by Charras and Lecroq for other similar algorithms [1]. The other strategy is to determine
the preprocessing shift array according to the probability of symbol occurrences in the pattern [1,9].

The QS algorithm and its variants remain among the fastest practical exact pattern matching
algorithms to date [9]. In this paper, we introduce faster quick search (FQS), an improved algorithm
based on the QS exact pattern matching algorithm. The FQS algorithm computes a statistically expected
shift length, which allows for maximal shifts and a smaller number of comparisons between the pattern
and the text. FQS also utilizes the QS algorithm’s bad-character shift table (array) in preprocessing the
pattern. Compared to the state-of-the-art algorithms of the QS variety, FQS is the fastest algorithm when
|Σ| ≤ 128 and has a competitive running time when |Σ| > 128. Our FQS algorithm will have important
applications in the domain of genome database searching, where the DNA (RNA) sequence databases
consists of four symbols {A, C, G, T (/U)} and for protein databases with |Σ| = 20.

In this work, we have focused on the QS variants of the Boyer–Moore string matching algorithm.
More general discussions on exact string matching can be found in the textbooks, [2,12,15,16].
Two recent reviews related to the topic are [9,17].

This paper is organized as follows. First, we introduce the BM algorithm, the QS algorithm and its
variants in Section 2. Next, we present the proposed FQS algorithm in Section 3. In Section 4, we
present experimental results, including a comparison with three variants of the QS algorithm. Section 5
concludes the paper.

Algorithms 2014, 7 255

2. Boyer–Moore Algorithm and Its Variants

The Boyer–Moore (BM) algorithm is an efficient string searching algorithm introduced by Boyer
and Moore in 1977 [5]. The BM algorithm has been the standard benchmark algorithm in the exact
string matching literature since it was introduced [5]. The BM algorithm preprocesses the pattern, P ,
and utilizes the information gathered during the preprocessing step to skip blocks of text (rather than
character by character comparisons) during matching, resulting in a faster running time than many other
string algorithms. In general, the BM algorithm runs faster as the pattern length increases.

First, the BM preprocesses pattern P to construct a bad character shift array (abbreviated as
bad_shift) of length |Σ|, which is determined using Equation (1). Then, the BM uses the bad character
rule. The bad character rule stipulates that once a mismatch occurs, the algorithm jumps to the next
position, which is determined by the bad_shift array without performing brute-force comparisons.

bad_shift(σ) = min(m− 1− k : {0 ≤ k < m− 1|p[m− 1− k] = σ, σ ∈ Σ} ∪ {m}) (1)

The BM also uses the good suffix rule. The BM starts the comparison between text T and pattern P
from right to left. When a mismatch occurs in P [i] 6= T [j + i] with 0 < i < m and 0 < j < n, the suffix
of pattern P [i+1, ...,m−1] matches text T [i+j+1, ..., j+m−1]; the suffix of pattern P [i+1, ...,m−1]

is called the good suffix. The algorithm calculates a good-shift array of length m + 1 that determines
the next jumping position using the maximum possible shift distance from the structure of the pattern.
The overall shift value is then determined by choosing the longer distance between both the bad-shift
and good-shift arrays. The classic quick search algorithm and our improved variant do not use the good
suffix rule; hence, the corresponding good shift array equation is not presented here. Interested readers,
please refer to the original paper by Boyer and Moore [5]. The original BM algorithm has a worst-case
running time of O(mn) and a best-case time in O(n

m
). It has very good performance in general, and

there are simple modifications to achieve an overall worst-case time in O(n+m+ |Σ|) time [18,19].

2.1. Quick Search Algorithm

The quick search(QS) algorithm introduced by Sunday [10] is a simplification of the Boyer–Moore
algorithm without the good suffix rule. QS preprocesses pattern P using a modified bad_shift array
(called qbad_shift) of length |Σ| in a time complexity of Θ(m + |Σ|). The modified quick search bad
shift array is defined as follows:

qbad_shift(σ) = min(m− k : {0 ≤ k ≤ m− 1|p[m− k − 1] = σ, σ ∈ Σ} ∪ {m+ 1}) (2)

The preprocessing steps of the quick search algorithm are shown in Algorithm 1. In Algorithm 1,
array qsBc is the quick search bad character shift array, which is initialized to value m from Line 1 to
Line 3. Lines 4–6 implement Equation (2). For example, in the case of pattern P = “GCAGTCAG”
with m = 8 and Σ = {A, C, G, T}. Each element in bad_shift array qsBc[A, C, G, T] is
initialized to eight. After executing the forloop from Line 4 to Line 6, we have the bad_shift array
qsBc[A, C, G, T] = [2, 3, 1, 4].

Algorithms 2014, 7 256

Algorithm 1 The preprocessing of the quick search algorithm.
PREQS(P,m)

1 for i← 0 to |Σ|-1
2 qsBc[i]←m

3 end for
4 for i← 0 to m− 1

5 qsBc[P[i]]←m− i
6 end for
7 return qsBC[]

In Algorithm 1, Lines 1–3 run in |Σ| steps; Lines 4–6 run in m steps. Thus, the total preprocessing
time is Θ(m+ |Σ|).

Algorithm 2 shows the quick search algorithm. First, it calls the preprocessing procedure, preQS,
to compute the bad shift array. Lines 3–9 use a whileloop to compare the text, T , and the pattern, P .
Line 4 compares P [0, ...,m − 1] and T [j, ..., j + m − 1], where 0 ≤ j ≤ n − m. When a mismatch
occurs, the QS algorithm shifts to a new position as determined by the bad character in T , that is, using
the corresponding shift value for the symbol, T [j +m].

Algorithm 2 The quick search algorithm.
QS(P,m, T, n, |Σ|)
1 shift← preQS(P,m)
2 j ← 0
3 while (j ≤ n−m)
4 Compare P [0, ...,m− 1] and T [j, ..., j +m− 1]

5 if all matched then do
6 output j
7 end if
8 j ← j + shift[T [j +m]]

9 end while

The searching phase of the QS has a worst case time complexity of O(mn). In the case of each
time, a shift distance is maintained as on,e and the bad character is found in the last comparison of P [0]

to the corresponding text (QS starts the comparison from right to left). For example, if T = An and
P = BAm−1, in this case, the shift distance qsBc[A] = 1. That is, when each bad character occurs,
the shift distance is one. Additionally, the bad character is found at the last comparison of P [0] to the
corresponding text place, because the QS comparison is from right to left. However, this extreme worst
case is rare. Just like the BM, the QS has a very good practical performance in general [10].

2.2. Variants of the QS Algorithm

Algorithms 2014, 7 257

The QS algorithm was motivated by another simplification of the BM algorithm proposed earlier by
Horspool in 1980 [14]. It has a better performance than the BM in the case of smaller alphabet sizes.
The average number of comparisons for one character is between 1

|Σ| and 2
|Σ|+1

[14]. It has the same
preprocessing time of Θ(m+|Σ|) and the worst-case searching time ofO(mn), as with the QS algorithm.

Another QS variant is the FJS algorithm, introduced by Franek, Jennings and Smyth [13] in 2007.
FJS is a hybrid exact string matching algorithm that uses both the QS (i.e., Boyer–Moore) and
Knuth–Moris–Pratt(KMP) algorithms. It has a Θ(n + m) preprocessing time, similar to the QS. FJS
uses the KMP algorithm to ensure that, in the worst-case, its searching phase is O(n), which is better in
theory than the O(mn) of BM, QS and other QS variants. As shown in [13], when the pattern length is
small (less than 10 characters), FJS’s performance is slightly better than the other algorithms.

Another variation of the QS algorithm was proposed by Sheik et al. [20] and Thathoo et al. [21], by
combing the QS algorithm with an initial pre-testing stage, as earlier proposed by Raita [22]. That is,
after pre-computing the shift tables based on the QS algorithm, at the search phase, they introduce a
pre-testing step, before full pattern matching can commence. Within a pattern matching window on the
text, the last and first symbols in the pattern are first compared with their respective counterparts in the
window on the text. If both tests succeed, pattern matching on the remaining symbols will then proceed
as usual from right to left, using the QS algorithm. The idea is to establish some level of similarity
between the pattern and the text window, before pattern matching will continue. A similar idea was
used by Thathoo et al. [21], where they improved the basic approach and required a smaller number of
comparisons and larger shifts on average. Experimental results in the recent comprehensive survey by
Faro and Lecroq [9] showed that, indeed, the method of Thathoo et al. [21] was slightly better than the
approach of Sheik et al. [20], in general. However, the FJS algorithm produced an overall better result
when compared with the two methods. Thus, in our comparative analysis, we focused on FJS, HOR and
QS.

3. The FQS Algorithm

Faster quick search (FQS) is an improved version of the quick search algorithm. QS calculates a shift
table (array) using Equation (2). In addition to the same shift table in the QS algorithm, FQS calculates
two more elements: one is the maximal expected shift position (called pos); the other is a new shift table
for the prefix P [0, ..., pos− 1] using the QS algorithm. The expected shift (ES) is the sum of shifts when
a mismatch occurs in the pattern current position. In our algorithm, the shift is calculated by the bad
character rule, which shifts to right when matching the symbol of the text. In the uniform distribution of
symbols, the maximal expected shift position is the left most position of the pattern that has the maximal
expected shift value in all positions of the pattern. When the mismatching occurs in this position, it
will have the largest shift value in the average case. Equation (3) calculates the expected shift distance
for each position in pattern P . The maximal expected position, pos, is calculated in pattern P by using
Equation (4). Finally, the algorithm identifies a maximal location, pos, which has the maximal expected
shift position.

Before we introduce Equation (3), we first need to consider the array, preposj(c). Given the current
position, j, in pattern P and a symbol, c ∈ Σ, preposj(c) records the most recent occurrence position

Algorithms 2014, 7 258

of symbol c. For example, given a pattern P = “GCAG”, let us examine the preposj(c) array. First, the
size of array preposj(c) is the same as the alphabet size. Array preposj(c) is calculated by scanning
pattern P from left to right. The initial value of preposj(c) is set to “−1”. After scanning j = 0,
prepos0(G) is changed to zero, and all of the other symbols of preposj(c) are still “−1” (the initial
value). After scanning j = 1, prepos1(C) is updated to one, because the second character is C; all
of the other corresponding prepos1(c) remain the same as prepos0(c). After j = 2, prepos2(A) is
updated to two; the other elements are unchanged. After j = 3, prepos3(G) is updated to three, the
other elements remain unchanged: prepos3(A) = prepos2(A) = 2, prepos3(C) = prepos1(C) = 1 and
prepos3(T) = −1.

Now, consider Equation (3). ESj is the sum of the shifts in the current position, j, of pattern P if the
bad character rule is applied. For each position, j in P , where m − 1 ≥ j ≥ 0, ESj is calculated by
using Equation (3), which indicates the sum of shift values for each symbol, c ∈ Σ.

ESj =
∑
c

(j − preposj(c)), 0 ≤ j ≤ m− 1, c ∈ Σ (3)

The maximal expected shift position (pos) for pattern P is computed using Equation (4). pos is
defined as the first position in pattern P where the maximal ESj occur.

pos = min(k|ESk = max(ESj), 0 ≤ j ≤ m− 1) (4)

3.1. Preprocessing Phase

In the preprocessing phase, FQS needs to determine three elements: (1) The maximal expected shift
position (pos) for pattern P using Equation (4); (2) a shift table for pattern P using the QS algorithm;
and (3) a shift table for P [0, ..., pos− 1], the prefix of P , using the QS algorithm. The maximal expected
shift position (pos, from Equation (4)) is the maximal expected shift distance using the bad character
rule. pos is calculated from pattern P in the preprocessing phase.

3.1.1. Computing the ES array

In the naive computation, ESj =
∑

c (j − prepos(c)) for each symbol c, c ∈ Σ . The total time
complexity for computing all ESj , where 0 ≤ j ≤ m − 1, is O(m|Σ|). Needless to say, it can be
improved. The ESj can be calculated from ESj−1, when j > 0. That is, the expected skip value at the
current position can be calculated by utilizing the known expected skip value at the previous position.
The difference between ESj and ESj−1 is:

ESj − ESj−1 =
∑

c(j − preposj(c))−
∑

c(j − 1− preposj−1(c))

=
∑

c(j − preposj(c)− (j − 1− preposj−1(c)))

=
∑

c (1− (preposj(c)− preposj−1(c)))

=
∑

c (1)−
∑

c(preposj(c)− preposj−1(c))

(5)

Since
∑

c (1) = |Σ|, then ESj − ESj−1 = |Σ| −
∑

c(preposj(c)− preposj−1(c)).

Algorithms 2014, 7 259

For each c ∈ Σ and c 6= P [j], preposj−1(c) = preposj(c). That is, all symbols in pattern P have the
property that preposj−1(c) = preposj(c), except for the symbol at the current position, j. Put another
way, except the current symbol in pattern P , for all of the other symbols in Σ, their current preposj(c)
is equal to preposj−1(c). The difference between ESj and ESj−1 can be further analyzed:

ESj − ESj−1 = |Σ| −
∑

c(preposj(c)− preposj−1(c))

= |Σ| − (preposj(P [j])− preposj−1(P [j]))

= |Σ| − (j − preposj−1(P [j]))

(6)

Finally, we get:
ESj = ESj−1 + |Σ| − (j − preposj−1(P [j])) (7)

3.1.2. Preprocessing algorithm

The preprocessing procedure is shown in Algorithm 3. We use an array, PrePos, of length |Σ|, to
keep the previous position for each symbol, c, where c ∈ Σ. Following the above analysis, we can
get ESj from ESj = ESj−1 + |Σ| − (j − preposj−1(P [j])) (Equation (7)), where m − 1 ≥ j ≥ 1.
The computation can be done in constant time for each given j.

Algorithm 3 Get the maximal expected shift value.
GETPOS(P,m, |Σ|)
1 ES← 0, maxES← 0, pos← 0
2 for (i← 0 to |Σ| − 1) do
3 PrePos[i]←−1 /*initializing all of prepos*/
4 end for
5 for (j ← 0 to m− 1) do
6 ES← ES + |Σ| − (j − PrePos[P [j]]);
7 PrePos[P[j]]← j;
8 if ES ≥ maxES then
9 maxES← ES;
10 pos← j;
11 end if
12 end for
13 return pos

Algorithm 3 shows the detailed preprocessing steps to compute the maximal expected shift position
(pos) for pattern P [0, ...,m − 1] using Equation (4). In Algorithm 3, variable ES is the expected skip
value, which is initialized to zero. In the first step of the loop in Lines 5–12, ES0 will be set to |Σ| − 1.
Variable maxES is the maximal expected shift value. Additionally, pos, a position in pattern P , is the
location where the maximal expected shift value resides in the pattern, P .

Lines 2–4 initialize the value at each symbol to “−1” for the recent occurrence position array, PrePos
(denoted as prepos in Equation (3)). Lines 5–12 are a for loop, which calculates each position’s

Algorithms 2014, 7 260

expected shift value, ES, and determines the maximal expected value. Line 6 calculates the expected
shift value, ES, using the incremental method, as discussed above (Equation (7)). Lines 9–12 search
for the maximal expected shift value, maxES. The algorithm finally returns the maximal expected shift
position, pos, in Line 13. Note that this preprocessing is only performed once for the pattern, P , using
Θ(m+ |Σ|) time.

Recall that FQS calculates three elements in its preprocessing phase, namely: (1) the maximal
expected shift position (pos) for pattern P ; (2) a shift table for pattern P using the QS algorithm; and
(3) a shift table for P [0, ..., pos − 1], the pos-length prefix of P , again using the QS algorithm. From
the above calculation of the maximal expected shift position (pos), we know that the time complexity is
Θ(m + |Σ|). For element (2) and (3), the computations are based on the QS algorithm, requiring time
in Θ(pos + |Σ|) and Θ(m + |Σ|), respectively. Together, the overall preprocessing time complexity for
FQS is Θ(m+ |Σ|), since pos < m.

3.2. Search Phase

In the search phase, FQS starts to compare the position in the pattern, P , which has the maximal
expected shift value, rather than the rightest-most position in P , as in the QS (and the other BM variants).
Algorithm 4 shows the detailed steps.

Algorithm 4 FQS pattern matching algorithm.
FQS(P,m, T, n, |Σ|)
1 pos← GetPos (P,m,|Σ|)
2 next← preQS(P,pos)
3 shift← preQS(P,m)
4 j ← 0
5 while (j ≤ n−m)
6 while (P[pos] 6= T[j+pos])
7 j ← j + next[T [j + pos]]

8 ifj > n−m then do
9 return
10 end if
11 end while
12 Compare P [0, ...,m− 1] and T [j, ..., j +m− 1]

13 if all matched then do
14 output j
15 end if
16 j ← j + shift[T [j +m]]

17 end while

In Algorithm 4, the first three lines are the preprocessing steps. Line 1 calls Algorithm 3 to get the
location, pos, with the maximal expected shift. Lines 2 and 3 calculate two shift tables (called next and

Algorithms 2014, 7 261

shift) for the prefix P [0, ..., pos − 1] and the entire pattern, P , respectively, using the same procedure
as the classic QS preprocessing algorithm. Compared to the QS algorithm as shown in Algorithm 2, in
the preprocessing phase, FQS adds two more lines: Lines 1 and 2. The total time complexity of the three
steps is still O(m+ |Σ|).

FQS determines the maximal expected shift position. This maximal expected shift position has the
statistical maximum shift distance. Once a mismatch is found, the algorithm jumps to a new position,
which has the expected maximal shift distance. This mechanism significantly speeds up the FQS
algorithm (see the section on the results).

After the preprocessing step, the searching strategy of FQS is as follows:

• Step 1: Check the symbols at maximal expected shift position pos, that is, compare symbols P [pos]

and T [j + pos];

• Step 2: If there is a mismatch, shift pattern P based on the distance determined by next[T [j+pos]].
Go to Step 1 to continue checking position pos;

• Step 3: If otherwise, compare P [0, ...,m − 1] to T [j, ..., j + m − 1], the same way as in the QS
algorithm. If all matched, a matching pattern is found at position j in T ;

• Step 4: Whether all matched or not, shift the pattern to the right based on the value of
shift[T [j +m]] using the classic quick search algorithm;

• Step 5: Repeat the above Steps 1–4 in a loop until text T is exhausted (j > n−m).

In Algorithm 4, Lines 5–17 capture the searching phase. Compared with the QS algorithm, FQS adds
Lines 6–11 in the search phase. In this phase, initially, text T is aligned with pattern P , at positions T [j]

and P [0], respectively, where 0 ≤ j ≤ n −m. FQS first starts to compare the position of the maximal
expected shift, pos in P , to the corresponding position, j + pos in T . If a mismatch occurs, the pattern
is shifted to a position that is determined by the value, next[T [j + pos]]. These steps are performed
in Lines 6–11. Otherwise, the FQS algorithm does the same thing as the QS algorithm by starting to
compare pattern P [0, ...,m− 1] and T [j, ..., j +m− 1] from right to left.

3.3. Correctness and Complexity Analysis

3.3.1. Correctness Analysis

The correctness of the FQS algorithm essentially follows from the correctness of the QS algorithm. In
the search phase, the FQS algorithm uses two bad character shift arrays in two steps. When comparing
pattern P to text T , FQS first checks the position, pos in P , the expected maximal shift position,
comparing it to the position, j + pos in T . If there is a mismatch, it uses the shift array, next, to
shift the pattern to the next right position. The shift value is at most pos + 1. It will not miss any
potential matching position. After the first symbol comparison (P [pos] vs. T [j + pos]), the remaining
steps are the same as in the QS algorithm.

Algorithms 2014, 7 262

3.3.2. Complexity Analysis

Section 3.1 provided details on computing the expected maximal shift position and showed the time
complexity of Algorithm 3 to be in O(m + |Σ|). The other two preprocessing steps compute the shift
arrays using the bad character rule, hence the time required for these two steps are also in O(m + |Σ|)
according to the QS algorithm.

In the searching phase, the FQS algorithm integrates a pre-testing stage with the QS algorithm.
The time complexity of one pre-test is constant, and the total time complexity is in Θ(n). The worst-case
time complexity for searching phase in the FQS is O(mn), and the average time complexity is O(n).
The extra space required by the FQS is in O(|Σ|). The FQS algorithm has the same worst-case and
average-case time and space requirements as the QS algorithm. As with the general BM algorithm,
the worst case complexity can be improved to O(n + m + |Σ|) using the good suffix heuristic with
memorization [2,19].

3.4. An Example

Here, we show a short example of the proposed algorithm, where text T = “GCATCGCAGTCAG
TATACAGTAC” (n = 23) and pattern P = “GCAGTCAG” (m = 8). The text and pattern are DNA
sequences from the alphabet Σ = {A, C, G, T}, hence |Σ| = 4.

3.4.1. Computing the Maximal Expected Shift Position (pos) for Pattern P

For calculating the maximal expected shift value of the pattern P = “GCAGTCAG”, in Line 3 of
Algorithm 3, the recent occurrence position (PrePos array in Algorithm 3) for these four symbols are
initialized to “−1”. Then, Algorithm 3 calculates pos for the pattern, P , by scanning from left to right.

When the first character P [0] = G is read (i = 0), PrePos[G] is the initial value of −1. Line 6 sets
ES = 0 + 4− (0− (−1)1) = 3. This ES = 3 is the expected shift distance for Position 0 in pattern P .
In Line 7, PrePos[G] is set to the current Position 0; this indicates that character G has appeared at least
once at this time. In Lines 8–10, the maximal expected shift distance is set to maxES = 3.

When the second character P [1] = C is read (i = 1), Line 6 sets ES = 3 + 4 − (1 − (−1)) = 5.
In Line 7, PrePos[C] is set to its current position, 1. In Line 9, the maximal expected shift distance is
set to five.

When the third character P [2] = A is read (i = 2), Line 6 will set ES = 5 + 4 − (2 − (−1)) = 6.
In Line 7, PrePos[A] is set to its current position, 2. In Line 9, the maximal expected shift distance is
set to six.

When the fourth character P [3] = G is read (i = 3), the PrePos[G] value has been changed to its
previous appearing position; in this case, PrePos[G] = 0. Line 6 will set ES = 6 + 4− (3− (0)) = 7.
In Line 7, PrePos[G] is set to its current position, 3. In Line 9, the maximal expected shift distance is
set to seven.

Algorithms 2014, 7 263

Table 1. ES, next and shift arrays for an example pattern.

j 0 1 2 3© 4 5 6 7

P [j] G C A G T C A G

ESj 3 5 6 7 6 6 6 6

Σ A C G T

next 1 2 3 4

Σ A C G T

shift 2 3 1 4

The remaining characters in pattern P are processed in a similar manner. The final expected shift
distances for each position in pattern P [0, ...,m− 1] are 3, 5, 6, 7, 6, 6, 6, 6. The maximal expected shift
position is in P [3] = G, which has a value of seven. Hence, we have the maximal expected shift distance
in Position 3 of pattern P , that is, pos = 3 (see Table 1).

3.4.2. Computing the Shift Tables: next and shift

We calculate the shift table for pattern prefix P [0, ..., pos − 1] = P [0, ..., 2] = “GCA”, which is
denoted as next with a value of next(A, C, G, T) = [1, 2, 3, 4]. Additionally, the shift table for
pattern P [0, ...,m − 1] = P [0...7] is denoted as shift array, shift(A, C, G, T) = [2, 3, 1, 4]. Both
the next array and shift array are calculated using the classical QS algorithm; thus, we omit the detailed
computation steps. See Table 1 for the values in the next and shift arrays.

3.4.3. Searching Pattern P in T

After preprocessing steps, the search phase begins.
Attempt 1: The first attempt compares the pattern, P , to the text, T , from the beginning, as shown

in Figure 1. Because the maximum of expected shift (pos) is three (pos = 3), the comparison starts at
P [3] = G against the corresponding position in text T [j + pos] = T [0 + 3] = T [3]. This will be the
symbol, ′T ′, thus leading to a mismatch. The algorithm shifts the pattern, P , to the next position with
the shift distance determined by next[T [3]] = next[T] = 4. Additionally, the value of j is updated to
j = j + next[T [3]] = 4.

Figure 1. The first attempt.

Attempt 1 x next[A,C,G,T] = {1, 2, 3, 4}
G C A T C G C A G T C A G T A T A C A G T A C
G C A G T C A G

Attempt 2: The second attempt is shown in Figure 2. The algorithm still starts to compare P [3] = G

to the corresponding position in text T [j + pos] = T [4 + 3] = T [7] = A. It is still a mismatch. The shift
distance is next[T [7]] = next[A] = 1. The value of j is updated to j = j + next[T [7]] = 4 + 1 = 5.

Algorithms 2014, 7 264

Figure 2. The second attempt.

Attempt 2 x next[A,C,G,T] = {1, 2, 3, 4}
G C A T C G C A G T C A G T A T A C A G T A C

G C A G T C A G

Attempt 3: The third attempt is shown in Figure 3. The algorithm compares P [3] = G to text
T [j + pos] = T [5 + 3] = T [8] = G. The characters match. Then, the algorithm proceeds as the classic
QS algorithm. After a one by one comparison, the algorithm finds an exact match here. It reports the
occurrence position and determines the shift distance, j. This shift distance is determined by the classic
QS algorithm j = j + shift[T [j + m]] = 5 + shift[T [5 + 8]] = 5 + shift[T [13]] = 5 + shift[T] =

5 + 4 = 9.

Figure 3. The third attempt.

Attempt 3 → shift[A,C,G,T] = {2, 3, 1, 4}
G C A T C G C A G T C A G T A T A C A G T A C

G C A G T C A G

Attempt 4: The fourth attempt is shown in Figure 4. Algorithm FQS compares P [3] = G to text
T [j + pos] = T [9 + 3] = G. Since the symbols match, the algorithm follows the classic QS algorithm
steps by comparing from right to left. The pattern’s rightmost character is G, which does not match the
corresponding symbol, A in T . The algorithm determines the next shift distance shift[T [j + m]] =

shift[T [9 + 8]] = shift[C] = 3, and the value of j is updated to j = j + shift[T [j + m]] = 9 +

shift[T [9 + 8]] = 9 + shift[T [17]] = 9 + shift[C] = 9 + 3 = 12.

Figure 4. The forth attempt.

Attempt 4 shift[A,C,G,T] = {2, 3, 1, 4} x →
G C A T C G C A G T C A G T A T A C A G T A C

G C A G T C A G

Attempt 5: The fifth attempt is shown in Figure 5. The algorithm compares P [3] = G to the
corresponding position in text T [j + pos] = T [12 + 3] = T [15] = T . It is a mismatch. The
shift distance is determined by FQS shift value next[T [15]] = 4, and the value of j is updated to
j = j + next[T [15]] = 12 + 4 = 16. For n = 23,m = 8, when j = 16 > n − m = 15, text T
is exhausted. The search phase stops.

Figure 5. The fifth attempt.

Attempt 5 next[A,C,G,T] = {1, 2, 3, 4} x
G C A T C G C A G T C A G T A T A C A G T A C

G C A G T C A G

Algorithms 2014, 7 265

4. Experimental Results

We conducted a number of experiments to compare the FQS algorithm with other state-of-the-art
QS algorithms, which are known to be among the fastest in practice: FJS [13], Horspool [14] and
the QS itself [10]. The implementation of FJS is provided by their authors in the paper [13]. The
implementation of the other two competitive algorithms are downloaded from the website developed
by Christian Charras and Thierry Lecroq (http://www-igm.univ-mlv.fr/ lecroq/string/). Their website
provides the C code for a large number of exact string pattern matching algorithms, which they reviewed
in [1,9]. Our implementation of the FQS algorithm is also based on the codes for the QS algorithm
provided at the site.

The experiments were conducted on two sets of data: one is a set of randomized text files, the
other contains three practical text files. These three practical text files, E. coli, Bible and World192,
were downloaded from the Large Canterbury Corpus (http://corpus.canterbury.ac.nz/). The computing
environment was a personal computer with an Intel Core2 CPU with 1.66 GHz and 8 GB of RAM
working in the Ubuntu 12.04 operating system.

4.1. Randomized Text Files

We generated eight random text files with different alphabet sizes, namely, |Σ| = 2, 4, 8, 16, 32, 64,
128 and 256. The size of each random text file was fixed at 100 MB. Patterns were randomly chosen from
these files with 19 varying lengths: m = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600,
700, 800, 900 and 1,000, respectively. For a given pattern length, 50 different patterns were randomly
chosen to search in each text file. The average running times were then calculated from these 50 runs.

The experimental results are shown separately for two cases: (1) the pattern length is less than or
equal to 100 (m ≤ 100); and (2) the pattern length is greater or equal to 100 (m ≥ 100). The results
show the following:

• When m ≤ 100 and |Σ| = 2, 4, 8, 16, FQS is much faster than the others. Figure 6 shows the
performance of the algorithms in these cases. When |Σ| = 2, 4, 8, 16, the trends are similar: FQS
is the fastest algorithm among the four. The QS is the second best, which is slightly better than
Horspool (denoted as HOR in the figures);

• When m ≤ 100 and |Σ| = 32, 64, 128, 256, FQS and FJS demonstrate a competitive performance,
which is better than the QS and HOR. Figure 7 shows the performances of the four algorithms in
these situations. With the increasing of the alphabet size, the performance of the four algorithms
tends to be similar. Although FQS is still among the best, the performance advantage over the
others is less obvious. From Figure 7, we can observe that, when the pattern length is small (e.g.,
with m < 20), FJS provided the best performance among the four algorithms;

• When m ≥ 100 and |Σ| = 2, 4, 8, 16, 32, 64, FQS provides the best results among the four
algorithms. Figure 8 shows the comparative results. When the alphabet size is two, four and
eight, respectively, QS is the second best. When the alphabet size is 32, and 64, FJS is ranked as
the second best, only inferior to FQS;

Algorithms 2014, 7 266

• When m ≥ 100 and |Σ| = 128, 256, QS is the best algorithm; FQS is similar to FJS, ranked as
the second. Figure 9 shows the experimental results. When the length of the pattern is longer than
800, QS, FJS and FQS all have a very similar performance.

Figure 6. Execution time versus pattern length, m (10 ≤ m ≤ 100), using randomized text
files when |Σ| = 2, 4, 8, 16.

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05
1e

+
06

Alphabet Size:2

Length of pattern

T
im

e
(m

ic
ro

se
co

nd
)

0 20 40 60 80 100

FJS
FQS
HOR
QS

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05
5e

+
05

Alphabet Size:4

Length of pattern

T
im

e
(m

ic
ro

se
co

nd
)

0 20 40 60 80 100

FJS
FQS
HOR
QS

0
50

00
0

10
00

00
15

00
00

20
00

00

Alphabet Size:8

Length of pattern

T
im

e
(m

ic
ro

se
co

nd
)

0 20 40 60 80 100

FJS
FQS
HOR
QS

0
50

00
0

10
00

00
15

00
00

Alphabet Size:16

Length of pattern

T
im

e
(m

ic
ro

se
co

nd
)

0 20 40 60 80 100

FJS
FQS
HOR
QS

Algorithms 2014, 7 267

Figure 7. Execution time versus pattern length, m (10 ≤ m ≤ 100), using randomized text
files when |Σ| = 32, 64, 128, 256. FJS, Franek–Jennings–Smyth; FQS, faster quick search;
HOR, Horspool.

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00

Alphabet Size:32

Length of pattern

T
im

e
(m

ic
ro

se
co

nd
)

0 20 40 60 80 100

FJS
FQS
HOR
QS

0e
+

00
2e

+
04

4e
+

04
6e

+
04

8e
+

04
1e

+
05

Alphabet Size:64

Length of pattern

T
im

e
(m

ic
ro

se
co

nd
)

0 20 40 60 80 100

FJS
FQS
HOR
QS

0e
+

00
2e

+
04

4e
+

04
6e

+
04

8e
+

04
1e

+
05

Alphabet Size:128

Length of pattern

T
im

e
(m

ic
ro

se
co

nd
)

0 20 40 60 80 100

FJS
FQS
HOR
QS

0e
+

00
2e

+
04

4e
+

04
6e

+
04

8e
+

04
1e

+
05

Alphabet Size:256

Length of pattern

T
im

e
(m

ic
ro

se
co

nd
)

0 20 40 60 80 100

FJS
FQS
HOR
QS

Algorithms 2014, 7 268

Figure 8. Execution time versus pattern length, m (100 ≤ m ≤ 1, 000), using randomized
text files when |Σ| = 2, 4, 8, 16, 32, 64.

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05
1e

+
06

Alphabet Size:2

Length of pattern

T
im

e
(m

ic
ro

se
co

nd
)

100 200 300 400 500 600 700 800 900

FJS
FQS
HOR
QS

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05
5e

+
05

Alphabet Size:4

Length of pattern
T

im
e

(m
ic

ro
se

co
nd

)
100 200 300 400 500 600 700 800 900

FJS
FQS
HOR
QS

0
50

00
0

10
00

00
15

00
00

Alphabet Size:8

Length of pattern

T
im

e
(m

ic
ro

se
co

nd
)

100 200 300 400 500 600 700 800 900

FJS
FQS
HOR
QS

0
20

00
0

40
00

0
60

00
0

80
00

0
Alphabet Size:16

Length of pattern

T
im

e
(m

ic
ro

se
co

nd
)

100 200 300 400 500 600 700 800 900

FJS
FQS
HOR
QS

0
10

00
0

20
00

0
30

00
0

40
00

0

Alphabet Size:32

Length of pattern

T
im

e
(m

ic
ro

se
co

nd
)

100 200 300 400 500 600 700 800 900

FJS
FQS
HOR
QS

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

Alphabet Size:64

Length of pattern

T
im

e
(m

ic
ro

se
co

nd
)

100 200 300 400 500 600 700 800 900

FJS
FQS
HOR
QS

When the alphabet size is small or medium (|Σ| = 2, 4, 8, 16, 32 and 64, respectively), the performance
of FQS is significantly better than others. When the alphabet size is large (|Σ| = 128 or 256), FQS still
has a competitive running performance. FQS is suitable to be used with a small or medium alphabet size
(not more than 128). The longer the pattern is, the better FQS performs.

Algorithms 2014, 7 269

Figure 9. Execution time versus pattern length, m (100 ≤ m ≤ 1, 000), using randomized
text files when |Σ| = 128, 256.

0
50

00
10

00
0

15
00

0
20

00
0

Alphabet Size:128

Length of pattern

T
im

e
(m

ic
ro

se
co

nd
)

100 200 300 400 500 600 700 800 900

FJS
FQS
HOR
QS

0
50

00
10

00
0

15
00

0
20

00
0

Alphabet Size:256

Length of pattern
T

im
e

(m
ic

ro
se

co
nd

)

100 200 300 400 500 600 700 800 900

FJS
FQS
HOR
QS

We took a closer look at the impact of alphabet sizes on the performance. Figure 10 shows the average
execution time plotted against alphabet size when the pattern length is fixed, for the cases with m = 10,
m = 50, m = 100 and m = 800, respectively.

Figure 10. The variation of execution time with alphabet size Σ, (2 ≤ |Σ| ≤ 256) using
randomized text files, when m = 10, 50, 100 and 800.

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05
1e

+
06

Pattern length:10

Alphabet size

T
im

e
(m

ic
ro

se
co

nd
)

0 2 4 8 16 32 64 128 256

FJS
FQS
HOR
QS

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05
1e

+
06

Pattern length:50

Alphabet size

T
im

e
(m

ic
ro

se
co

nd
)

0 2 4 8 16 32 64 128 256

FJS
FQS
HOR
QS

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05
1e

+
06

Pattern length:100

Alphabet size

T
im

e
(m

ic
ro

se
co

nd
)

0 2 4 8 16 32 64 128 256

FJS
FQS
HOR
QS

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05
1e

+
06

Pattern length:800

Alphabet size

T
im

e
(m

ic
ro

se
co

nd
)

0 2 4 8 16 32 64 128 256

FJS
FQS
HOR
QS

Algorithms 2014, 7 270

From the figure, we can observe the overall trend for all of the algorithms: with increasing alphabet
size |Σ|, the execution time decreases. FQS has better performance when |Σ| is small, especially for
cases of long patterns (see m = 800 in Figure 10, for example). This suggests that FQS will have
important potential applications in the analysis of a genomic database, since the alphabet size is usually
very small, typically four (for DNA or RNA sequences) or 20 (for protein sequences).

We summarize our observations on random texts as follows.

• The longer a pattern is, the faster the FQS algorithm runs;

• When the alphabet size is small or medium (|Σ| = 2, 4, 8, 16, 32 and 64), FQS outperforms the
other QS variants: Horspool (abbreviated as HOR), FJS and the classic QS;

• When |Σ| ≥ 128, FQS is competitive with the other QS variants: HOR, FJS and classic QS.

4.2. Practical Text Files

The algorithms were also compared using the following three practical text files downloaded from the
Large Canterbury Corpus:

(1) E. coli: the sequence of the Escherichia coli genome consisting of 4,638,690 base pairs with
|Σ| = 4;

(2) The Bible: The King James version of the Bible consisting of 4,047,392 characters with |Σ| = 63;

(3) World192: A CIA World Fact Book consisting of 2,473,400 characters with |Σ| = 94.

The experiments were carried out the same way as in the case of randomized
text files. The same 19 varying pattern lengths are used, namely, m =
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1,000, respectively.
For a given pattern length, 50 different patterns are randomly chosen to search in each text file, and the
average running time is recorded.

Figure 11 shows the execution time versus pattern length from 10 to 100 in the three practical text
files. Figure 12 shows the results for pattern length from 100 to 1,000. In all of these cases, FQS
outperforms the others.

Figure 11. Execution time versus pattern length, m, for short to medium patterns
(10 ≤ m ≤ 100) using practical text files.

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

E.coli(Alphabet Size:4)

Length of pattern

T
im

e
(m

ic
ro

se
co

nd
)

0 20 40 60 80 100

FJS
FQS
HOR
QS

(a)

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

bible(Alphabet Size:63)

Length of pattern

T
im

e
(m

ic
ro

se
co

nd
)

0 20 40 60 80 100

FJS
FQS
HOR
QS

(b)

0
20

00
40

00
60

00
80

00

world192(Alphabet Size:94)

Length of pattern

T
im

e
(m

ic
ro

se
co

nd
)

0 20 40 60 80 100

FJS
FQS
HOR
QS

(c)

Algorithms 2014, 7 271

Figure 12. Execution time versus pattern length, m, for large patterns (100 ≤ m ≤ 1000)
using practical text files.

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

E.coli(Alphabet Size:4)

Length of pattern

T
im

e
(m

ic
ro

se
co

nd
)

100 200 300 400 500 600 700 800 900

FJS
FQS
HOR
QS

(a)

0
20

00
40

00
60

00
80

00

bible(Alphabet Size:63)

Length of pattern

T
im

e
(m

ic
ro

se
co

nd
)

100 200 300 400 500 600 700 800 900

FJS
FQS
HOR
QS

(b)

0
50

0
10

00
15

00
20

00
25

00

world192(Alphabet Size:94)

Length of pattern

T
im

e
(m

ic
ro

se
co

nd
)

100 200 300 400 500 600 700 800 900

FJS
FQS
HOR
QS

(c)

For E. coli, FQS is much better than the other algorithms. The QS and HOR are in the second group
rank (Figures 11a and 12a). For the Bible, the four algorithms have a similar performance. FQS is
slightly better than the others (Figures 11b and 12b). For World192, QS, FQS and HOR have a similar
performance, with FQS showing a slightly better performance (Figures 11c and 12c).

For these practical files, FQS is the overall best algorithm among the four. Each of the three practical
files has a symbol alphabet with size |σ| ≤ 128. This suggests that FQS might be the algorithm of choice
for practical use, especially for searching genomic databases with typically smaller alphabets.

4.3. Number of Symbol Comparisons

To put the practical running times presented above in context, we also investigated the number of
comparisons required by the algorithms and the number of pattern shifts performed during the match.
These two parameters are the basic determinants of the running time of the algorithms. Below, we report
on the performance of the two best algorithms, QS and FQS.

Table 2 shows the number of comparisons, their corresponding standard deviation (STD) and
statistical significance (p-value) from algorithms QS and FQS, for pattern lengths m = 10, 100, 500
and 1,000, respectively. From the table, we can observe that, in all cases, the number of comparisons
used by FQS is less than that of QS. The Student’s t-test compares whether there is a statistical difference
between these two algorithms by using p-value = 0.05 as the threshold. The p-value is shown in bold
where there is a significant difference. For Bible and E. coli, there are significant differences in all
cases. For World192, there is a statistically significant difference when pattern length m = 1,000; the
other three cases (m = 10, 100, 500) do not show any statistically significant difference. Table 3 shows
the corresponding results for the number of pattern shifts, the corresponding standard deviation (STD)
and statistical difference (p-value) from algorithm QS and FQS, for the pattern lengths m = 10, 100,
500, 1,000. Again, the results show that in all cases, the number of pattern shifts performed by FQS
is less than the number for QS. From a statistical point of view, in seven out of 12 cases, there are
statistically significant difference in the performance of FQS over QS. Taken together, these two tables
provide an explanation for the superior performance of FQS on the practical files when compared with

Algorithms 2014, 7 272

the other QS variants. More importantly, the results show the effectiveness of the innovative use of an
intelligent pre-testing stage before embarking on the more time-consuming pattern matching. In our
FQS algorithm, this pre-testing is performed using pos, the location with the maximal expected shift in
our FQS algorithm.

Table 2. The number of symbol comparisons used by QS and FQS.

Dataset m
QS FQS

p_value
Mean STD Mean STD

Bible 10 2,509,581 349,838 2,233,411 124,671 0.0029
Bible 100 762,316 75,952 646,298 54,656 <0.01
Bible 500 436,243 69,142 366,246 52,643 0.0010
Bible 1,000 371,849 47,702 311,520 45,886 0.0002
E. coli 10 1,595,760 345,988 1,197,866 265,086 0.0002
E. coli 100 1,634,972 548,912 657,987 128,279 <0.01
E. coli 500 1,563,532 435,567 541,158 75,234 <0.01
E. coli 1,000 1,777,232 505,260 538,972 87,332 <0.01

World192 10 314,182 44,298 307,453 30,050 0.5777
World192 100 75,189 11,321 70,636 11,953 0.2238
World192 500 33,607 6,834 30,483 6,272 0.1403
World192 1,000 26,898 4,649 23,800 3,675 0.0250

Table 3. The number of pattern shifts used by QS and FQS.

Dataset m
QS FQS

p_value
Mean STD Mean STD

Bible 10 2,091,864 88,154 1,981,448 170,460 0.0156
Bible 100 668,353 53,648 638,690 54,324 0.0904
Bible 500 395,943 45,934 361,286 52,932 0.0332
Bible 1,000 336,126 48,988 304,023 46,194 0.0395
E. coli 10 1,173,807 274,324 1,060,892 235,219 0.1706
E. coli 100 1,220,728 410,989 603,276 119,927 <0.01
E. coli 500 1,167,201 326,151 497,990 69,480 <0.01
E. coli 1,000 1,326,734 378,141 495,055 79,672 <0.01

World192 10 285,185 29,089 265,368 29,591 0.0392
World192 100 71,759 11,011 70,235 12,103 0.6794
World192 500 31,265 6,038 29,869 6,252 0.4768
World192 1,000 24,299 4,146 22,650 3,672 0.1910

4.4. Statistical Analysis

We applied the Student’s t-test to compare FQS vs. FJS, FQS vs. HOR and FQS vs. QS in 19
varied pattern lengths using randomized files and three practical files. The testing results are shown in

Algorithms 2014, 7 273

Figure 13. The x-axis represents the 19 varied pattern lengths (m); the y-axis is arranged accordingly
with the alphabet size |Σ| (11 total cases). From the figure, we can find that the statistical testing results
match with the previous performances well. In most cases, FQS performed better than FJS, HOR and QS.

Figure 13. The Student t-test for: (a) FQS vs. FJS (b) FQS vs. HOR and (c) FQS vs. QS
in the condition of execution time versus pattern length, m. “B” denotes cases when FQS
has a statistically significant better performance over the comparison algorithm; “S” denotes
cases where FQS and the comparison algorithm have statistically the same performance;
“W” denotes cases where FQS has a statistically significant worse performance than the
comparison algorithm.

FQS vs. FJS

Length of pattern

D
at

as
et

2
4

E
.c

ol
i

8
16

32
bi

bl
e

64
w

or
ld

12
8

25
6

10 30 50 70 90 200 400 600 800 1000

WWWW S S S S S S S S S S S S S S S

S B B B B B B B B B B B B B B B B B B

B B B B B B B B B B B B B B B B B B B

WWWWWW S S S S S S S S S S S S S

W S S B S B B B B B B B B B B B B B B

B B B B B B B B B B B B B B B B B B B

WW S S S S S S S S B B B B B B B B B

B B B B B B B B B B B B B B B B B B B

B B B B B B B B B B B B B B B B B B B

B B B B B B B B B B B B B B B B B B B

B B B B B B B B B B B B B B B B B B B

W
S
B

Worse
Same
Better

(a)

FQS vs. HOR

Length of pattern

D
at

as
et

2
4

E
.c

ol
i

8
16

32
bi

bl
e

64
w

or
ld

12
8

25
6

10 30 50 70 90 200 400 600 800 1000

B B B B B B B B B B B S S S S S S S S

B B B B B B B B B B B B B B B B B B B

B B B B B B B B B B B B B B B B B B B

B B B B B B B B B B B B S S S S S S S

B B B B B B B B B B B B B B B B B B B

B B B B B B B B B B B B B B B B B B B

B B B B B B B B B B B B B B B B B B B

B B B B B B B B B B B B B B B B B B B

B B B B B B B B B B B B B B B B B B B

B B B B B B B B B B B B B B B B B B B

B B B B B B B B B B B B B B B B B B B

W
S
B

Worse
Same
Better

(b)
FQS vs. QS

Length of pattern

D
at

as
et

2
4

E
.c

ol
i

8
16

32
bi

bl
e

64
w

or
ld

12
8

25
6

10 30 50 70 90 200 400 600 800 1000

S B B B B B B B B B WWW S S S S S S

S B B B B B B B B B B B B B B B B B B

B B B B B B B B B B B B B B B B B B B

W B B B B B B B B B WWWW S S S S S

B B B B B B B B B B B B B B B B B B B

S B B B B B B B B B B B B B B B B B B

S B B B B B B B B B B B B B B B B B B

S B B B B B B B B B B B B B B B B B B

S B B B B B B S B S B S S B B S B B B

S B B B B B B B B B B B B B B B B B B

S B B S B S S S S S S S S B S B B B B

W
S
B

Worse
Same
Better

(c)

Algorithms 2014, 7 274

Let us examine Figure 13a in the figure. There are 209 (19 × 11) total comparison cases: FQS
performed better than FJS in 156 cases with statistically significant differences; they had the same
performance in 40 cases; FJS had better performance in 13 cases. FJS performed better in cases when
|Σ| ≥ 32: (1) |Σ| = 32 andm ≤ 10; (2) |Σ| = 64 andm ≤ 20; (3) |Σ| = 128 andm ≤ 40; (4) |Σ| = 256

and m ≤ 60;
When comparing FQS vs. HOR (Figure 13b), in a total of 209 cases, both had statically the same

performance in 15 cases, and FQS outperformed HOR in the other 194 cases. Comparing FQS vs. QS
(Figure 13c), FQS was statistically worse than QS in eight cases; both had similar performance in 34
cases, and FQS showed a statistically better performance in the remaining 167 cases.

5. Conclusions

The FQS algorithm improves on the quick search (QS) algorithm, by applying the bad character rule,
aided with a statistically maximal expected shift value introduced in this work and a pre-testing stage
before full pattern matching. Unlike previous approaches that blindly tested the first and last symbols
in the pattern [20,21], our pre-testing stage is performed by computing the statistical maximal expected
shift position. We have compared FQS against three other competitive QS variants: the QS itself, FJS
and the Horspool algorithm. A range of text files were searched, including randomly generated text
files with different alphabet sizes (2 ≤ |Σ| ≤ 256), and practical benchmark text files, namely E. coli,
Bible and World192, from the Canterbury Corpus. The pattern lengths were varied from 10 to 1,000
with 19 varieties. We find that, statistically, FQS has the overall best performance (practical running
time, number of symbol comparisons and number of pattern shifts) over all of the other three algorithms,
mostly especially for text files with alphabet sizes less than 128. The results suggest that FQS could have
important applications in practice, especially for genomic data sets, such as DNA or RNA sequences with
four symbols or protein sequences with 20 symbols.

Acknowledgments

This work was supported in part by a grant from the U.S. National Science Foundation: IIS-1236983.

Author Contributions

JL conceived of and implemented the algorithm. DA and YJ helped to draft the manuscript. All
authors read and approved the final manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Charras, C.; Lecroq, T. Handbook of Exact String Matching Algorithms; College Publications:
London, UK, 2004.

2. Smyth, W. Computing Patterns in Strings; Addison-Wesley: Boston, MA, USA, 2003.

Algorithms 2014, 7 275

3. Knuth, D.; Morris, J.; Pratt, V. Fast pattern matching in strings. SIAM J. Comput. 1977, 6, 323–350.
4. Karp, R.M.; Rabin, M.O. Efficient Randomized Pattern-matching Algorithms. IBM J. Res. Dev.

1987, 31, 249–260.
5. Boyer, R.; Moore, J. A fast string searching algorithm. Commun. ACM 1977, 20, 62–72.
6. Baeza-Yates, R.; Gonnet, G. A new approach to text searching. Commun. ACM 1992, 35, 74–82.
7. Fredriksson, K.; Grabowski, S. Average-optimal string matching. J. Discret. Algorithms 2009,

7, 579–594.
8. Kuei-Hao Chen, G.S.H.; Lee, R.C.T. Bit-Parallel Algorithms for Exact Circular String Matching.

Comput. J. 2014, 57, 731–743.
9. Faro, S.; Lecroq, T. The Exact Online String Matching Problem: A Review of the Most Recent

Results. ACM Comput. Surv. 2013, 45, 13:1–13:42.
10. Sunday, D. A Very Fast Substring Search Algorithm. Commun. ACM 1990, 33, 132–142.
11. Apostolico, A.; Crochemore, M. Optimal Canonization of All Substrings of a String. Inf. Comput.

1991, 95, 76–95.
12. Crochemore, M.; Rytter, W. Text Algorithms; Oxford University Press: Oxford, UK, 1994.
13. Franek, F.; Jennings, C.G.; Smyth, W.F. A simple fast hybrid pattern-matching algorithm.

J. Discret. Algorithms 2007, 5, 682–695.
14. Horspool, R.N. Practical fast searching in strings. Softw. Pract. Exp. 1980, 10, 501–506.
15. Gusfield, D. Algorithms on Strings, Trees and Sequences: Computer Science and Computational

Biology; Cambridge University Press: Cambridge, UK, 1997.
16. Adjeroh, D.; Bell, T.; Mukherjee, A. The Burrows-Wheeler Transform: Data Compression, Suffix

Arrays and Pattern Matching; Springer: Berlin, Germany, 2008.
17. Adjeroh, D.A.; Bell, T.; Mukherjee, A. Pattern Matching in Compressed Texts and Images. Found.

Trends Signal Process. 2013, 6, 97–241.
18. Galil, Z. On improving the worst case running time of the Boyer-Moore string matching algorithm.

In Commun. ACM 1979, 22, 505–508.
19. Apostolico, A.; Giancarlo, R. The Boyer Moore Galil string searching strategies revisited.

SIAM J. Comput. 1986, 15, 98–105.
20. Sheik, S.; Aggarwal, S.; Poddar, A.; Balakrishnan, N.; Sekar, K. A fast pattern matching algorithm.

J. Chem. Inf. Comput. 2004, 44, 1251–1256.
21. Thathoo, R.; Virmani, A.; Lakshmi, S.S.; Balakrishnan, N.; Sekar, K. TVSBS: A fast exact pattern

matching algorithm for biological sequences. Curr. Sci. 2006, 91, 47–53.
22. Raita, T. Tuning the Boyer-Moore-Horspool String Searching Algorithm. Softw. Pract. Exp. 1992,

22, 879–884.

c© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

	Introduction
	Boyer–Moore Algorithm and Its Variants
	Quick Search Algorithm
	Variants of the QS Algorithm

	The FQS Algorithm
	Preprocessing Phase
	Computing the ES array
	Preprocessing algorithm

	Search Phase
	Correctness and Complexity Analysis
	Correctness Analysis
	Complexity Analysis

	An Example
	Computing the Maximal Expected Shift Position (pos) for Pattern P
	Computing the Shift Tables: next and shift
	Searching Pattern P in T

	Experimental Results
	Randomized Text Files
	Practical Text Files
	Number of Symbol Comparisons
	Statistical Analysis

	Conclusions

