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Abstract: We develop an efficient multicore algorithm, PMS6MC, for the (l, d)-motif
discovery problem in which we are to find all strings of length l that appear in every string
of a given set of strings with at most d mismatches. PMS6MC is based on PMS6, which
is currently the fastest single-core algorithm for motif discovery in large instances. The
speedup, relative to PMS6, attained by our multicore algorithm ranges from a high of 6.62
for the (17,6) challenging instances to a low of 2.75 for the (13,4) challenging instances on
an Intel 6-core system. We estimate that PMS6MC is 2 to 4 times faster than other parallel
algorithms for motif search on large instances.
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1. Introduction

Motifs are patterns found in biological sequences. These common patterns in different sequences
help in understanding gene functions, and lead to the design of better drugs to combat diseases. Several
versions of the motif search problem have been studied in the literature. In this paper, we consider the
version known as the Planted Motif Search (PMS), or (l, d) motif search problem. In PMS, given n input
strings and two integers l and d, we aim to find all the strings M of length l (also referred to as l-mers)
that are substrings of every input sequence (We use the terms sequence and string interchangeably in this
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paper) with at most d mismatches. The d-neighborhood of an l-mer s is defined to be the set of all the
strings that differ from s in at most d positions. So, for an l-mer M to be motif for n input strings, there
has to be a substring in each of those n input strings that is in the d-neighborhood of M .

The PMS problem is known to be NP-hard [2]. Consequently, PMS is often solved by approximation
algorithms that do not guarantee to produce every motif present in the input. Exact algorithms for PMS,
on the other hand, have exponential worst-case complexity but find every motif. MEME (Multiple EM
for Motif Elicitation) [3], which is one of the most popular approximation algorithms for PMS, is based
on the expectation minimization technique. MEME outputs the probability that each character is present
in each motif and one can take the characters with highest probability in each position to construct
the desired motif with an acceptable range of error. GibbsDNA [4] also calculates the same probability
matrix of each character in different motif positions using Gibbs sampling. CONSENSUS [5] first aligns
the input sequences using statistical measures and then tries to extract the motifs. Randomized algorithms
are also proposed for PMS. Buhler and Tompa [6] proposed an algorithm where they group the input
l-mers based on k randomly chosen positions out of the total l positions. With a high probability, many
instances of the desired motif belong to the group that has a large number of these k-mers. Local search
strategies such the one proposed by Price et al. [7], which searches d-neighborhood of some l-mers
from the input, also have been used to find motifs. MULTIPROFILER [8] and ProfileBranching [7]
are two algorithms that use local search. Some approximation algorithms for PMS first map the PMS
problem to a graph problem and then apply well-studied approximation techniques to solve that graph
problem. The WINNOWER algorithm [9], proposed by Pevzner and Sze, constructs a graph in which
each node represents an l-mer and two nodes are connected by an edge iff those two l-mers differ in at
most 2d positions. The problem of finding motifs then reduces to that of finding large cliques in this
graph. Although exact algorithms have worst-case exponential complexity, for many small instances of
interest they are able to find all motifs within a reasonable amount of time using a modern computer.
MITRA [10] is an exact algorithm for PMS that uses a modified trie called Mismatch trie to spell
out the motifs one character at a time. SPELLER [11], SMILE [12], RISO [13], and RISOTTO [14]
all use some form of suffix tree to direct motif discovery with RISOTTO being the fastest of these.
CENSUS [15] first creates a trie with all l-mers from the input. The trie is then traversed keeping
track of the number of mismatches with the currently generated motif in the nodes. Entire branches of
the trie can be pruned off if the number of mismatches becomes more than d. Voting algorithms such
as [16] use an indicator array of size equal to the number of all possible strings of length l. For each
l-mer in the d-neighborhood of every l-mer from the input, the corresponding entry in the array is set.
The entries that have been set by every input sequence or has “votes” from every input sequence are the
motifs. As the number of possible strings of length l grows exponentially with l, this approach becomes
infeasible even for small values of l. Kauska and Pavlovic [17] designed an algorithm to output motif
stems i.e., a superset of motifs using regular expression. However, the number of possible motifs that
can be generated from this superset might be very large. They also don’t provide a mechanism to select
the actual motifs. As a result, the stemming approach is difficult to assess. The PMS series of algorithms
(PMS1-PMS6, PMSP, and PMSPrune) solve PMS instances relatively fast using a reasonable amount of
storage for data structures. PMS1, PMS2 and PMS3 [18] first sorts the d-neighborhood of input l-mers
using radix sort and then intersects them to find the motifs. PMS4 [19] proposes a very general technique
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to reduce the run time of any exact algorithm by examining only k input sequences out of total n input
sequences. It relies on the fact that if there is a motif, it will be present in those k input sequences
as well. PMSP [20] extends this idea further by only examining the d-neighborhood of the l-mers
from the first input sequence. PMSPrune [20] improves upon PMSP by using dynamic programming
branch-and-bound algorithm while exploring the d-neighborhoods. Pampa [21] uses wildcards to first
determine the motif patterns and then does a exhaustive search within possible mappings of the pattern
to find the motifs. PMS5 [22] improves other algorithms from PMS series by efficiently computing the
intersection of the d-neighborhood of l-mers without generating the entire d-neighborhoods for all the
l-mers. PMS6 [23], which is the fastest algorithm in the series, is almost two times as fast as PMS5. This
algorithm gets its speedup over PMS5 by grouping l-mers whose d-neighborhood computation follows
a similar process.

Since exact algorithms for motif search are compute intensive, it is natural to attempt parallelization
that reduce the observed run time. Dasari, Desh and Zubair [24] have proposed a multi-core motif search
algorithm that is based on the voting approach. They followed this work with another parallel algorithm
for Graphics Processing Units (GPUs) [25]. Their GPU algorithm is based on examining the branches
of a suffix tree in parallel.

In this paper, we develop a multi-core version of PMS6 by generating and processing many
d-neighborhoods in parallel. In Section 2 we introduce some notations and definitions used throughout
the paper and also describe the PMS6 algorithm in detail. The techniques used to develop PMS6MC are
described in Section 3. The performance of PMS6MC is compared to that of other parallel motif search
algorithms and PMS6 in Section 5.

2. PMS6

2.1. Notations and Definitions

We use the same notations and definitions as in [22]. An l-mer is simply any string of length l. r is an
l-mer of s iff (a) r is an l-mer and (b) r is a substring of s. The notation r ∈l s denotes an l-mer r of s.
The Hamming distance, dH(s, t), between two equal length strings s and t is the number of places where
they differ and the d-neighborhood,Bd(s), of a string s, is {x|dH(x, s) ≤ d}. LetN(l, d) = |Bd(s)|. It is
easy to see that N(l, d) =

∑d
i=0

(
l
i

)
(|Σ| − 1)i, where Σ is the alphabet in use. We also define Bd(x, y, z)

to be Bd(x)∩Bd(y)∩Bd(z). For a set of triples C, we define Bd(C) as ∪(x,y,z)∈C(Bd(x, y, z)). We note
that x is an (l, d) motif of a set S of strings if and only if (a) |x| = l and (b) every s ∈ S has an l-mer
(called an instance of x) whose Hamming distance from x is at most d. The set of (l, d) motifs of S is
denoted Ml,d(S).

2.2. Overview

PMS6, which is presently the fastest exact algorithm to compute Ml.d(S) for large (l, d), was
proposed by Bandyopadhyay, Sahni and Rajasekaran [23]. This algorithm (Algorithm 1) first computes
a superset,Q′, of the motifs of S. This superset is then pruned toMl,d(S) by the function outputMotifs,
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which examines the l-mers in Q′ one by one determining which are valid motifs. This determination is
done in a brute force manner.

Algorithm 1: PMS6 [23].
PMS6(S, l, d)

// Determine a superset of motifs Q′

for each x ∈l s1

{
for k = 1 to k = bn−1

2 c
{

Q← ∅;
Classes← ∅;
for each y ∈l s2k and z ∈l s2k+1

{
Compute n1, · · · , n5 for (x, y, z);
if C(n1, · · · , n5) 6∈ Classes

{
Create the class C(n1, · · · , n5)
with (x, y, z);
Add C(n1, · · · , n5) to Classes;

}
else add (x, y, z) to class C(n1, · · · , n5);

}
for each class C(n1, · · · , n5) in Classes

Q← Q ∪Bd(C(n1, · · · , n5))
if k = 1 then Q′ = Q

else Q′ = Q′ ∩Q;

if |Q′| < threshold break;

}
// Prune Q′

outputMotifs(Q′, S, l, d);
}

To compute Q′, PMS6 examines triples (x, y, z), where x is an l-mer of s1 and y and z are l-mers of
s2k and s2k+1, respectively for some fixed k. These triples are first partitioned into equivalence classes
based on the number of positions in the l-mers of a triple that are of each of 5 different types (see below).
Next, we compute the Bd for all triples by classes. This two step process is elaborated below.

Step 1: Form Equivalence Classes. Classify each position i of the triple (x, y, z), into one of the
following five types [22]:

Type 1: x[i] = y[i] = z[i].

Type 2: x[i] = y[i] 6= z[i].

Type 3: x[i] = z[i] 6= y[i].

Type 4: x[i] 6= y[i] = z[i].

Type 5: x[i] 6= y[i], x[i] 6= z[i], y[i] 6= z[i].
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The triples (x, y, z) of l-mers such that x ∈l s1, y ∈l s2k and z ∈l s2k+1 are partitioned into classes
C(n1, · · · , n5) where nj denotes the type j positions in the triple (x, y, z) (for 1 ≤ j ≤ 5).

Step 2: Compute Bd for all triples by classes. For each class C(n1, · · · , n5), the union, Bd(C), of
Bd(x, y, z) for all triples in that class is computed. We note that the union of all Bd(C)s is the set
of all motifs of x, s2k, and s2k+1.

2.3. Computing Bd(C(n1, · · · , n5))

Let (x, y, z) be a triple in C(n1, · · · , n5) and let w be an l-mer in Bd(x, y, z). Then ni is the number
of positions of Type i, 1 ≤ i ≤ 5 for the triple (x, y, z). Each ni may be decomposed as below for all
w ∈ Bd(x, y, z) [22]:

1. N1,a = number of Type 1 positions i such that w[i] = x[i].

2. N2,a(N2,b) = number of Type 2 positions i such that w[i] = x[i](w[i] = z[i]).

3. N3,a(N3,b) = number of Type 3 positions i such that w[i] = x[i](w[i] = y[i]).

4. N4,a(N4,b) = number of Type 4 positions i such that w[i] = y[i](w[i] = x[i]).

5. N5,a(N5,b, N5,c) = number of Type 5 positions i such that w[i] = x[i])(w[i] = y[i],w[i] = z[i]).

As the distance of w has to be less than or equal to d from each of x, y and z, the following
equations result.

1. n1 −N1,a + n2 −N2,a + n3 −N3,a + n4 −N4,b + n5 −N5,a ≤ d

2. n1 −N1,a + n2 −N2,a + n3 −N3,b + n4 −N4,a + n5 −N5,b ≤ d

3. n1 −N1,a + n2 −N2,b + n3 −N3,a + n4 −N4,a + n5 −N5,c ≤ d

4. N1,a ≤ n1

5. N2,a +N2,b ≤ n2

6. N3,a +N3,b ≤ n3

7. N4,a +N4,b ≤ n4

8. N5,a +N5,b +N5,c ≤ n5

9. All variables are non-negative integers.

Given a 10-tuple solution to this ILP, we may generate all l-mers w in Bd(x, y, z) as follows:

1. Each of the l positions in w is classified as being of Type 1, 2, 3, 4, or 5 depending on the
classification of the corresponding position in the l-mers x, y, and z (see Section 2.2).
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2. Select N1,a of the n1 Type 1 positions of w. If i is a selected position, then, from the definition
of a Type 1 position, it follows that x[i] = y[i] = z[i]. Also from the definition of N1,a, these
many Type 1 positions have the same character in w as in x, y, and z. So, for each selected Type 1
position i, we set w[i] = x[i]. The remaining Type 1 positions of w must have a character different
from x[i] (and hence from y[i] and z[i]). So, for a 4-character alphabet there are 3 choices for each
of the non-selected Type 1 positions of w. As there are

(
n

N1,a

)
ways to select N1,a positions out

of n1 positions, we have 3q
(

n1

N1,a

)
different ways to populate the n1 Type 1 positions of w, where

q = n1 −N1,a.

3. Select N2,a positions I and N2,b different positions J from the n2 Type 2 positions of w. For each
i ∈ I , set w[i] = x[i] and for each j ∈ J , set w[j] = z[i]. Each of the remaining n2 −N1,a −N1,b

Type 2 positions of w is set to a character different from the characters in x, y, and z. So, if k is one
of these remaining Type 2 positions, x[k] = y[k] 6= z[k]. We set w[k] to one of the 2 characters of
our 4-letter alphabet that are different from x[k] and z[k]. Hence, we have 2r

(
n2

N2,a

)(
n2−N2,a

N2,b

)
ways

to populate the n2 Type 2 positions in w, where r = n2 −N2,a −N2,b.

4. Type 3 and Type 4 positions are populated using a strategy similar to that used for Type 2 positions.
The number of ways to populate Type 3 positions is 2s

(
n3

N3,a

)(
n3−N3,a

N3,b

)
, where s = n3−N3,a−N3,b

and that for Type 4 positions is 2u
(

n4

N4,a

)(
n4−N4,a

N4,b

)
, where u = n4 −N4,a −N4,b.

5. To populate the Type 5 Positions of w, we must select the N5,a Type 5 positions, k, that will be
set to x[k], the N5,b Type 5 positions, k, that will be set to y[k], and the N5,c Type 5 positions, k,
that will be set to z[k]. The remaining n5 −N5,a −N5,b −N5,c Type 5 positions, k, of w are set to
the single character of the 4-letter alphabet that differs from x[k], y[k], and z[k]. We see that the
number of ways to populate the n5 Type 5 positions is

(
n5

N5,a

)(
n5−N5,a

N5,b

)(
n5−N5,a−N5,b

N5,c

)
.

The preceding strategy to generateBd(x, y, z) generates 3q2r2s2u
(

n1

N1,a

)(
n2

N2,a

)(
n2−N2,a

N2,b

)(
n3

N3,a

)(
n3−N3,a

N3,b

)(
n4

N4,a

)(
n4−N4,a

N4,b

)(
n5

N5,a

)(
n5−N5,a

N5,b

)(
n5−N5,a−N5,b

N5,c

)
l-mers w for each 10-tuple (N1,a, · · · , N5,c). While every

generated l-mer is in Bd(x, y, z), some l-mers may be the same. Computational efficiency is obtained by
computing Bd(x, y, z) for all (x, y, z) in the same class C(n1, · · · , n5) concurrently by sharing the loop
overheads as the same loops are needed for all (x, y, z) in a class. Algorithm 2 gives the pseudocode to
compute Bd(x, y, z) by classes.

As an example, lets say we have 3 input strings s1 = ACTG, s2 = GCTA and s3 = AGTC

and we are asked to find (3, 1) motifs i.e., motifs of length 3 with at most 1 mismatch. Also,
the l-mer si[p]...si[p + l − 1] is denote by si(p). In this particular case, l = 3 and hence
s1(1) = CTG for example. For the triplet (s1(0), s2(0), s3(0), i.e., for the triplet (ACT,GCT,AGT )

we have n1 = 1, n2 = 1, n3 = 1, n4 = 0, n5 = 0. Hence it belongs to the class C(1, 1, 1, 0, 0).
For the triplet (s1(1), s2(0), s3(0) i.e., (CTG,GCT,AGT ) we have n1 = 0, n2 = 0, n3 = 0,

n4 = 1, n5 = 2 and it belongs to class C(0, 0, 0, 1, 2). After evaluating all 8 triplets, we
will end up having class C(0, 0, 0, 1, 2) = {(s1(1), s2(0), s3(0)), (s1(0), s2(1), s3(1))}. We then
need to find B1(s1(1), s2(0), s3(0)) and B1(s1(0), s2(1), s3(1)) to compute B1(C(0, 0, 0, 1, 2)). To
computer B1(s1(1), s2(0), s3(0)), we need to compute B1(CTG) ∩ B1(GCT ) ∩ B1(AGT ). We
can evaluate that B1(CTG) = {CTG,ATG,GTC, TTG,CAG,CGG,CCG,CTA,CTC,CTT},
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B1(GCT ) = {GCT,ACT,CCT, TCT,GAT,GGT,GTT,GCA,GCC,GCG} and B1(AGT ) =

{AGT,CGT,GGT, TGT,ACT,ACT,ATT,AAT,AGA,AGC,AGG} and subsequently we have
B1(CTG) ∩ B1(GCT ) ∩ B1(AGT ) = φ. Similarly, we can see that B1(s1(0), s2(1), s3(1)) =

B1(ACT )∩B1(CTA)∩B1(GTC) = φ and henceB1(C(0, 0, 0, 1, 2)) = φ. Run-time may be reduced by
pre-computing data that do not depend on the string set S. So, for a given pair (l, d), there areO((l+1)5)

5-tuples (n1, · · · , n5). For each of the 5-tuples, we can pre-compute all 10-tuples (N1,a, · · · , N5,c) that
are solutions to the ILP. For each 10-tuple, we can pre-compute all combinations (i.e., selections of
positions in w). The pre-computed 10-tuple solutions for each 5-tuple are stored in a table with (l + 1)5

entries and indexed by [n1, · · · , n5] and the pre-computed combinations for the 10-tuple solutions are
stored in a separate table. By storing the combinations in a separate table, we can ensure that each is
stored only once even though the same combination may be needed by many 10-tuple solutions.

Algorithm 2: Compute Bd(n1, · · · , n5) [23].
ClassBd(C(n1, n2, n3, n4, n5))
Bd ← ∅
Find all ILP solutions with parameters n1, n2, n3, n4, n5

for each solution (N1,a, · · · , N5,c)

{
curComb ← first combination for this solution;

for i = 0 to (# combinations)

{
for each triplet (x, y, z) in C(n1, · · · , n5)
{
Generate ws for curComb;

Add these ws to Bd;

}
CurComb ← next combination in Gray code order;

}
}

return Bd

We store pre-computed combinations as vectors. For example, a Type 1 combination for n1 = 3 and
N1,a = 1 could be stored as {010} indicating that the first and third Type 1 positions ofw have a character
different from what x, y, and z have in that position while the character in the second Type 1 position is
the same as in the corresponding position of x, y, and z. A Type 2 combination for n2 = 4, N2,a = 2 and
N2,b = 1 could be stored as {3011} indicating that the character in the first Type 2 position of w comes
from the third l-mer, z, of the triplet, the second Type 2 position of w has a character that is different
from any of the characters in the same position of x and z and the third and fourth Type 2 positions of w
have the same character as in the corresponding positions of x. Combinations for the remaining position
types are stored similarly. As indicated by our pseudocode of Algorithm 2, combinations are considered
in Gray code order so that only two positions in the l-mer being generated change from the previously
generated l-mer. Consequently, we need less space to store the combinations in the combination table and
less time to generate the new l-mer. An example of a sequence of combinations in Gray code order for
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Type 2 positions with n2 = 4, N2,a = 1, N2,b = 1 is {0012, 0021,0120,0102,0201,0210,1200,1002,1020,
2010, 2001, 2100}. Note that in going from one combination to the next only two positions are swapped.

2.4. The Data Structure Q

We now describe the data structure Q that is used by PMS6. This is a reasonably simple data
structure that has efficient mechanisms for storing and intersection. In the PMS6 implementation
of [23], there are three arrays in Q; a character array, strs[], for storing all l-mers, an array of pointers,
bucketPointers[],which points to locations in the character array and a bit array, markBuffer[], used
for intersection. There is also a parameter bucketIndex which determines how many characters of
l-mers are used for indexing into bucketPointers[] array. As there are 4 possibilities for a character,
for p characters bucketIndex can vary from 0 to (4p − 1). The number of characters, p, to be used
for indexing into bucketPointers[], is set when Q is initialized. During the first iteration of PMS6, for
k = 1, l-mers inBd(C) are stored in strs[]. After allBd(C)s are computed, strs[] is sorted in-place using
Most Significant Digit radix sort. After sorting, duplicate l-mers are adjacent to each other. Also, l-mers
that have the same first p characters and hence are in the same bucket are adjacent to each other as well
in strs[]. By a single scan through strs[], duplicates are removed and the pointers in bucketPointers[]
are set to point to different buckets in strs[]. During the remaining iterations, for k ≥ 2, all Bd(C)s
generated are to be intersected with Q. This is done by using the bit array markBuffer. First, while
computing Bd(C), each l-mer is searched for in Q. The search proceeds by first mapping the first p
characters of the l-mer to the corresponding bucket and then doing a binary search inside strs[] within
the region pointed to by the bucket pointer. If the l-mer is found, its position is set in markBuffer[].
Once all l-mers are marked in themarkBuffer[], strs[] is compacted by removing the unmarked l-mers
by a single scan through the array. The bucket pointers are also updated during this scan.

For larger instances, the size of Bd(C) is such that we don’t have sufficient memory to store Bd(C) in
Q. For these larger instances, in the k = 1 iteration, we initialize a Bloom filter using the l-mers inBd(C)

rather than storing these l-mers in Q. During the next iteration (k = 2), we store, in Q, only those l-mers
that pass the Bloom filter test (i.e., the Bloom filter’s response is “Maybe”). For the remaining iterations,
we do the intersection as for the case of small instances. Using a Bloom filter in this way reduces the
number of l-mers to be stored in Q at the expense of not doing intersection for the second iteration.
Hence at the end of the second iteration, we have a superset of Q′ (Algorithm 1) of the set we would
have had using the strategy for small instances. Experimentally, it was determined that the Bloom filter
strategy improves performance for challenging instances of size (19,7) and larger. As in [22], PMS6 uses
a partitioned Bloom filter of total size 1GB. From Bloom filter theory [26] we can determine the number
of hash functions to use to minimize the filter error. However, we need to minimize the run time rather
than the filter error. Experimentally, [23] determined that the best performance was achieved using two
hash functions with the first one being bytes 0–3 of the key and the second being the product of bytes 0–3
and the remaining bytes (byte 4 for (19,7) instances and bytes 4 and 5 for (21,8) and (23,9)instances).
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3. PMS6MC

3.1. Overview

PMS6MC exploits the parallelism present in the PMS6 algorithm. First, there is outer-level
parallelism where the motif search for many x’s from s1 can be carried out in parallel (i.e., several
iterations of the outer for loop of Algorithm 1 are run in parallel). Second, there is inner-level
parallelism where the individual steps of the inner for loop of Algorithm 1 are done in parallel using
multiple threads. Outer-level parallelism is limited by the amount of memory available. We have
designed PMS6MC to be flexible in terms of its memory and thread requirements. The total number
of threads can be set depending on the number of cores and available memory of the system. The
threads are grouped into thread blocks. Each thread block operates on a different x from s1. So, for
example, if we use a total of t threads and 4 thread blocks, then our code does 4 iterations of the outer
for loop in parallel with each iteration (or thread block) being assigned to t/4 threads. The threads
assigned to a thread block cooperate to find the motifs corresponding to a particular x. The threads use
the syncthreads() primitive function to synchronize. This function can be implemented using the thread
library synchronization mechanism available under different operating systems. We denote thread block
i as T [i] while the threads within thread block i are denoted by T [i][j]. Figure 1 shows a diagram of the
steps in PMS6MC.

Figure 1. PMS6MC flow diagram.
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3.2. Outer-Level Parallelism

In this, each thread block processes a different x from s1 and calls the function
findMotifAtThisX() (Algorithm 3). Once a thread block is done with its assigned x it moves on
to the next x from s1 which is not processed yet. Threads in a thread block execute the function
findMotifAtThisX() to find if there is any motif in the d-neighborhood of x.

Algorithm 3: PMS6MC outer level loop.
PMS6MC(S, l, d)

for each idle thread block T[i] in parallel do

{
select an x ∈l s1 that hasn’t yet been selected;

if there is no such x the thread block stops;

findMotifAtThisX(x, i);

}

3.3. Inner-Level Parallelization

Finding motifs in the d-neighborhood of a particular x from s1 is done by finding the motifs of x and
the strings s2k and s2k+1 for k = 1 · · · bn−1

2
c. As described in Algorithm 1, this is a 4 step process. These

steps are done cooperatively by all threads in a thread block. First, we find the equivalence classes for x
and l-mers from s2k and s2k+1. For any triple (x, y, z) from an equivalence class we know the number
of l-mers w which are at a distance d from x, y and z from pre-computed tables. Hence, by multiplying
the number of triples with the number of possible w’s we determine the total number of w’s for each
equivalence class. We denote this number by |Bd(C)|. Next, we compute Bd(C) for these equivalence
classes in decreasing order of |Bd(C)| in parallel by the threads in the thread block. This order helps in
load balancing between different threads as each will be computing |Bd(C)| in parallel. This is akin to
using the LPT scheduling rule to minimize finish time. store Bd(C)s in Q if k = 1; i.e., when finding
motifs between x, s2 and s3. This can be done during the previous step while computing Bd(C). For
k ≥ 2, we need to intersect the set of all Bd(C)s with Q. When the size of Q falls below a certain
threshold, we need to execute the function outputMotifs to find out which l-mers in Q are valid motifs.
The different steps for findMotifAtThisX() are given in Algorithm 4.

The data structure used in PMS6MC for Q is very similar to that used in PMS6. However, we use two
character arrays strs1[] and strs2[] instead of one. This helps us to perform many operations on Q in
parallel by multiple threads. We now describe the different steps used to finding motifs employing this
modified structure for Q.
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Algorithm 4: Finding motifs in parallel.
findMotifAtThisX(String x, Thread block i)

for k = 1 to bn−1
2 c

{
Classes[]← ∅
Q← ∅
findEquivalenceClasses(x, T[i], Classes[]);
Sort Classes[] in decreasing order of |Bd(C)|;
for each class C in order from Classes[] in parallel by threads T[i][j];

{
ComputeProcess Bd(C);

}
syncthreads(T[i]);

ProcessQ(Q, k, T[i]);

syncthreads(T[i]);

if |Q| < threshold break;

}
outputMotifs(Q) in parallel by threads T[i][j];

3.3.1. Finding Equivalence Classes in Parallel:

Each thread works on a segment of the string s2k in parallel. For all y that belong to the thread’s
assigned segment of s2k and for all z from s2k+1, the thread computes the number of type 1 through
type 5 positions for the triple (x, y, z). Based on the number of type 1 through type 5 positions
(n1, · · · , n5), the triple is put into the corresponding equivalence class. Once all the threads finish,
the equivalence classes formed by different threads need to be merged. As nis for i = 1 · · · 5 can
only vary from 0 to l, the whole l5 range of (n1, · · · , n5) is divided among the threads in the thread
block. Each thread then finds the equivalence classes present in its assigned range and gathers all the
triples of these equivalences classes in parallel. The pseudocode for this step is given in Algorithm 5.

Algorithm 5: Finding equivalence classes in parallel.
findEquivalenceClasses(x, i, Classes[])
for each y ∈l s2k and z ∈l s2k+1 in parallel by

threads T[i][j]

{
Compute n1, · · · , n5 for (x, y, z);
if C(n1, · · · , n5) 6∈ Classes[j];
{
Create the class C(n1, · · · , n5) with (x, y, z);
Add C(n1, · · · , n5) to Classes[j];

}
else add (x, y, z) to class C(n1, · · · , n5);

}
syncthreads(T[i]);

Merge equivalence classes in Classes[] by threads T[i][j] in parallel;

syncthreads(T[i]);
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3.3.2. Computing Bd(C) in Parallel:

Once equivalence classes are formed, we determine |Bd(C)| by multiplying the number of triples with
the number of solutions for equivalence classes using pre-computed tables. Once the number of l-mers
is known, the offset in strs1[] to store l-mers during the first iteration is also known. Hence, each thread
can store l-mers from the designated offset without conflict with other threads. To ensure that each thread
in a thread block is roughly doing the same amount of work, we first order the equivalence classes in
terms of decreasing |Bd(C)|. This sorting can be done by a single thread as the number of equivalence
classes is typically less than 1000 even for large instances. Thread j of the thread block selects the jth
equivalence class to work on; when a thread completes, it selects the next available equivalence class to
work on. This strategy is akin to the LPT scheduling strategy and is known to provide good load balance
in practice. Each thread computes Bd(C) for the class C it is working on using the same strategy as used
by PMS6 (see Section 2.3).

For k = 1, we store the l-mers in strs1[] from the designated offset. We also do some additional work
which facilitates sorting Q in parallel during the next step. For each thread, we keep track of the number
of l-mers having the same first character. This is done by maintaing a 2-D counter array counter[][]
indexed by thread number and the first character of the l-mer.

For k ≥ 2, the l-mer is searched for and marked in the markBuffer[] when found
(see Section 2.4). Although there might be a write conflict while setting the bit in the
markBuffer[], all threads can carry this step in parallel as threads that write to the same mark bit
write the same value. Algorithm 6 gives the steps used to compute and process Bd(C).

Algorithm 6: Compute and process Bd(C).
ProcessBd(Bd(C), Q, k, i, j)

if k = 1
{
for each l-mer w ∈ Bd(C) counter[j][w[0]] + +;
Copy l-mers in Bd(C) to strs1[] from the offset for this class;

}
if k ≥ 2
{
For all l-mer w ∈ Bd(C), set markBuffer[] if w is present in Q;

}

3.3.3. Processing Q in Parallel

The processing of Q depends on the iteration number. When k = 1, we sort strs1[], then remove
the duplicates and set the bucket pointers. For the remaining iterations, we need to remove all unmarked
l-mers from strs1[] and update the bucket pointers.

The k = 1 sort is done by first computing the prefix sum of counters[][] so that the counter for a
particular thread and a particular character equals the total number of l-mers processed that have either
smaller first character or equal first character but processed by threads with a smaller index. Since
the number of counters is small (256 different counters for 8-bit characters) we compute the prefix
sums using a single thread. The pseudocode is given in Algorithm 7. Next, each thread in the thread
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block scans through the l-mers in strs1[] that it had stored while generating Bd(C). Depending on the
first character of the l-mer, the l-mer is moved to strs2[] starting from the offset indicated by prefix
sum counter. This movement of l-mers is done by the threads in a thread block in parallel. Once the
movement is complete, strs2[] is divided into segments such that the first characters of all l-mers within
a segment are the same. Following this segmenting, the threads sort the segments of strs2[] in parallel
using radix sort. Each thread works on a different segment. Since the first character of the l-mers in a
segment are the same, the radix sort starts from the second character. Once the segments are sorted, we
proceed to eliminate duplicates and set the bucket pointers. First the threads count the number of unique
l-mers in each segment in parallel by checking adjacent l-mers. Again, each thread works on a different
segment. The determined counts of unique l-mers are prefixed summed by a single thread to get the
offsets required for moving the unique l-mers to their final positions. Using these offsets, the threads
move unique l-mers with each thread moving the unique l-mers of a different segment from strs2[] to
strs1[] in parallel. While moving an l-mer, the threads also check to see if first p characters of the current
l-mer are the same as those of the previous l-mer; if not, the appropriate pointer in bucketPointers[]
is set.

Algorithm 7: Prefix sum of counters.
PrefixCounters(counters[][])
sum = 0;

for i = 0 to 255 // There are 256 possibilities for the first character

{
counters[0][i] = counters[0][i] + sum;
for j = 1 to threads

{
counters[j][i] = counters[j][i] + counters[j][i− 1];

}
sum = counters[threads - 1][i];

}

When k ≥ 2, we need to remove from Q all the l-mers that are not marked in markBuffer. This is
done in two steps. First, the markBuffer is divided into segments and each thread does a prefix sum
on different segments in parallel. This gives the number of marked l-mers in each segment. Next, we
move the marked l-mers in each segment from strs1[] to strs2[]. For this, a prefix sum is performed
by a single thread on the counters having the number of marked l-mers in different segments to get the
offset in strs2[] for moving the l-mers. With these offsets, the threads then move the marked l-mers
from different segments in parallel. As before, when moving an l-mer, the thread checks to see if the
first p characters of the current l-mer differs from the previous one and update the appropriate pointer in
bucketPointers. There might be a problem in updating the bucket pointers in the boundary region of the
segments as one bucket can extend across the boundary of two segments and hence two threads might
update that bucket pointer. These boundary bucket pointers are fixed by a single thread after all l-mers
are moved. Note that there can only be as many boundary buckets as there are segments which are very
few in number. The pseudocode for the processing Q for different values of k is given in Algorithm 8.
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Algorithm 8: Processing Q.
ProcessQ((Q, k, T[i])

if k = 1
{
prefixCounters(counters);

Move l-mers from strs1[] to strs2[] by threads T[i][j] in parallel;

syncthreads(T[i]);

Sort segments in strs2[] in parallel by threads T[i][j];

syncthreads(T[i]);

Count unique l-mers in each segment in parallel by threads T[i][j];

syncthreads(T[i]);

Move unique l-mers to strs1[] and update bucket pointers in parallel by

T[i]j[j];

}
if k ≥ 2
{
Divide markBuffer into segments;

Prefix sum markBuffer by threads T[i][j] in parallel;

syncthreads(T[i]);

Move marked l-mers from segments in strs1[] to strs2[] in parallel by Threads

T[i][j];

Update the bucket pointers while moving l-mers;

syncthreads(T[i]);

Fix the boundary buckets if necessary;

}

3.3.4. outputMotifs

Once the size of Q drops below a certain threshold, we break out of the loop and call
outputMotifs(Q) to determine the set of valid motifs inQ. This step can be done in parallel as checking
the validity of l-mers to be motifs can be done independent of one another. So, each thread examines
a disjoint set of l-mers from Q exhaustively checking if it is a motif as is done in PMS6; the threads
operate in parallel.

4. Experimental Section

We evaluated the performance of PMS6MC on the challenging instances described in [22] as they are
representatives of harder to solve instances and provide a uniform way to compare results from previous
algorithms. For each (l, d) that characterizes a challenging instance, we generated 20 random strings of
length 600 each. Next, a random motif of length l was generated and planted at random positions in each
of the 20 strings. The planted motif was then randomly mutated in exactly d randomly chosen positions.
For each (l, d) value up to (19,7), we generated 20 instances and for larger (l, d) values, we generated
5 instances. The average run times for each (l, d) value are reported in this section. Since the variation
in run times across instances was rather small, we do not report the standard deviation. Even though we
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test our algorithm using only synthetic data sets, several authors (e.g., [22]) have shown that PMS codes
that work well on the kind of synthetic data used by us also work well on real data.

4.1. PMS6MC Implementation

PMS6MC is implemented using the pthreads (POSIX Threads) library under Linux on an Intel
6-core system with each core running at 3.3 GHz. We experimented with different degrees of outer-level
(number of thread blocks) and inner-level (number of threads in a thread block) parallelism for different
challenging instances. For smaller instances (e.g., (13,4) and (15,5)), the performance is limited by the
memory bandwidth of the system. Hence, increasing the degree of inner or outer level parallelism does
not have much effect on the run time as most of the threads stall for memory access. For larger instances,
the number of thread blocks is limited by the available memory of the system. Table 1 gives the number
of thread blocks and the number of threads in a thread block for different challenging instances which
produces the optimum performance.

Table 1. Degree of inner and outer level parallelism for PMS6MC.

Challenging instances Outer-level blocks Threads per block Total threads

(13,4) 2 6 12
(15,5) 2 6 12
(17,6) 8 6 48
(19,7) 4 12 48
(21,8) 2 12 24
(23,9) 2 12 24

5. Results and Discussion

5.1. PMS6 and PMS6MC

We compare the run times of PMS6 and PMS6MC on an Intel 6-core system with each core running
at 3.3 GHz. PMS6 takes 22 s on an average to solve (15,5) instances and 19 h on an average to solve
(23,9) instances. PMS6MC, on the other hand, takes 8 s on an average to solve (15,5) instances and 3.5
h on an average to solve (23,9) instances. The speedup achieved by PMS6MC over PMS6 varies from
a low of 2.75 for (13,4) instances to a high of 6.62 for (17,6) instances. For (17,6) instance we can use
many threads while staying within memory constraints and hence we get a larger speedup. For (19,7)
and larger instances PMS6MC achieves a speedup of over 5 as we can’t go beyond a certain number of
threads due to memory limitations. The run times for various challenging instances are given in Table 2.
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Table 2. Run times for PMS6 and PMS6MC.

Algorithm (13,4) (15,5) (17,6) (19,7) (21,8) (23,9)

PMS6 22 s 74 s 6.82 min 22.75 min 2.25 h 19.19 h
PMS6MC 8 s 21 s 1.03 min 4.45 min 25.5 min 3.57 h

PMS6/PMS6MC 2.75 3.52 6.62 5.11 5.29 5.38

5.2. PMS6MC and Other Parallel Algorithms

Dasari, Desh and Zubair proposed a voting based parallel algorithm for multi-core architectures using
bit arrays [24]. They followed up with an improved algorithm based on suffix trees for GPUs and
multi-core CPUs from intel [25]. We estimate the relative performance of PMS6MC and these parallel
algorithms using published run times and performance ratios. Table 3 and the first 4 rows of Table 4 give
the performance of PMS5 and PMSPrune as reported in [22] and that of PMS6 and PMS5 as reported
in [23], respectively.

Table 3. Run times for PMS5 and PMSPrune [22].

Algorithm (13,4) (15,5) (17,6) (19,7)

PMS5 117 s 4.8 min 21.7 min 1.7 h
PMSPrune 45 s 10.2 min 78.7 min 15.2 h

PMS5/PMSPrune 2.6 0.47 0.28 0.11

Table 4. Total run time of different PMS algorithms.

Algorithm (13,4) (15,5) (17,6) (19,7) (21,8) (23,9)

PMS5 39 s 130 s 11.35 min 40.38 min 4.96 h 40.99 h
PMS6 22 s 75 s 6.72 min 22.75 min 2.25 h 19.19 h

PMS5/PMS6 1.77 1.73 1.69 1.77 2.20 2.14
PMS6/PMSPrune 1.46 0.27 0.17 0.06 - -

PMSPrune/PMS6MC 1.88 13.04 38.94 85.17 - -

We divide the ratio PMS5/PMSPrune by PMS5/PMS6 to estimate the ratio
PMS6/PMSPrune (5th row of Table 4). Next, we divide the ratio PMS6/PMS6MC (row 4
of Table 2) by our etimate of PMS6/PMSPrune to get an estimate of PMSPrune/PMS6MC

(6th row of Table 4).
The first 4 rows of Table 5 give the run times of gSPELLER-x, mSPELLER-x, and PMSPrune as

reported in [25]. The ”x” indicates the number of CPU cores for mSPELLER and the number of GPU
devices in the case of gSPELLER. We report the times for mSPELLER-16 and gSPELLER-4 as these
were the fastest reported in [25]. From this data and that of Table 4 we can estimate the speedups shown
in rows 5 through 8 of Table 4. We estimate that the speed up of PMS6MC using 6 cores compared to
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mSPELLER-16 using 16 cores varies from a low of 0.07 for (13,4) instances to 3.58 for (19,7) instances
while the speed up for PMS6MC using only one CPU with respect to gSPELLER-4 using 4 GPUs varies
from a low of 0.03 for (13,4) instances to a high of 1.97 for (19, 7) instances.

Table 5. Comparing mSPELLER and gSPELLER with PMS6MC.

Algorithm (13,4) (15,5) (17,6) (19,7) (21,8)

PMSPrune 53 s 9 min 69 min 9.2 h -
mSPELLER-16 2 s 16.5 s 2.5 min 23.6 min 3.7 h
gSPELLER-4 0.8 s 7.2 s 1.2 min 13 min 2.2 h

PMSPrune/mSPELLER-16 26.5 32.73 27.6 23.38 -
PMSPrune/gSPELLER-4 66.25 75 57.5 42.46 -

mSPELLER-16/PMS6MC 0.07 0.40 1.41 3.64 -
gSPELLER-4/PMS6MC 0.03 0.17 0.68 2 -

6. Conclusions

We have developed a multicore version of PMS6 that achieves a speedup that ranges from a low of
2.75 for (13,4) challenging instances to a high of 6.62 for (17,6) challenging instances on a 6-core CPU.
Our multicore algorithm is able to solve (23,9) challenging instances in 3.5 h, while the single core PMS6
algorithm takes 19 h. We estimate that our multicore algorithm is faster than other parallel algorithms
for the motif search problem on large challenging instances. For example, we estimate that PMS6MC
can solve (19,7) instances 3.6 times faster than using our 6-core CPU mSPELLER-16 using the 16-core
CPU of [25] and about two times faster than gSPELLER-4 can using four GPU devices.
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