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Abstract: Lung cancer has been the largest cause of cancer deaths worldwide with an 

overall 5-year survival rate of only 15%. Its symptoms can be found exclusively in 

advanced stages where the chances for patients to survive are very low, thus making the 

mortality rate the highest among all other types of cancer. The present work deals with the 

attempt to design computer-aided detection or diagnosis (CAD) systems for early detection 

of lung cancer based on the analysis of sputum color images. The aim is to reduce the false 

negative rate and to increase the true positive rate as much as possible. The early detection 

of lung cancer from sputum images is a challenging problem, due to both the structure of 

the cancer cells and the stained method which are employed in the formulation of the 

sputum cells. We present here a framework for the extraction and segmentation of sputum 

cells in sputum images using, respectively, a threshold classifier, a Bayesian classification 

and mean shift segmentation. Our methods are validated and compared with other 

competitive techniques via a series of experimentation conducted with a data set of 100 

images. The extraction and segmentation results will be used as a base for a CAD system 

for early detection of lung cancer which will improve the chances of survival for  

the patient. 

Keywords: lung cancer detection; image segmentation; sputum cells; threshold algorithm; 

bayesian classification; mean shift algorithm 
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1. Introduction  

Lung cancer is considered the leading cause of cancer death throughout the world. More people die 

because of lung cancer than any other type of cancer such as breast, colon, and prostate cancers. 

Optimistically, there is significant evidence indicating that the early detection of lung cancer will 

decrease the mortality rate, by using asymptomatic screening methods, followed by effective treatment. 

Lung cancer symptoms consist of shortness of breath, wheezing, chest pain that does not get better, 

coughing accompanied with blood, difficulty in swallowing, and loss of weight and appetite [1]. The 

most recent estimate statistics according to the American Cancer Society indicate that 226,160 new 

cases will be diagnosed (116,470 in men and 109,690 in women) in US, and there will be estimated 

160,340 mortalities from lung cancer (87,750 in men and 72,590 among women) [2]. Furthermore, 

based on statistics from the World Health Organization (WHO), deaths caused by cancer will reach 

about 12 million people in 2030. 

Lung cancer is projected to continue killing more people than any other type, unless the efforts to 

control the main cause of cancer death are largely intensified. There are many techniques to diagnose 

lung cancer, such as Chest Radiograph (x-ray), Computed Tomography (CT) [3], Magnetic Resonance 

Imaging (MRI scans) and Sputum Cytology [4]. However, most of these techniques are expensive and 

time consuming. In most cases, these techniques detect lung cancer in its advanced stages, where the 

patient’s chance of survival is very low. Thus, there is a substantial demand for a new technology to 

diagnose lung cancer in its early stages. Image processing techniques provide a superior quality tool for 

improving the manual analysis. Among all the previous techniques, only the manual sputum cytological 

examination has been utilized for the diagnosis of early lung cancer detection since 1930s [5]. 

The goal of this research is to design a Computer Aided Diagnosis (CAD) system for early 

detection of malignant lung cancer cells using digital images of stained sputum smears. Such an 

automated system would allow objective and unbiased assessment, as compared to human evaluation 

which might be corrupted by errors originating from inter-and intra-observer variability that 

characterizes human observation. Eventually, this system will be useful for handling large sputum 

image databases and relieving the pathologist from tedious and routine task. 

In this paper, we focus on the extraction and segmentation of sputum cells from background 

regions. The sputum images are stained according to the Papanicolaou standard staining method [6] 

provided by the Tokyo Center for lung cancer in Japan. These images are stained with two types. 

Type1, blue dye images resulting in the dark-blue nucleus of all the cells present in the image and 

clear-blue cytoplasm. Type 2, red dye images resulting in the dark-blue nucleus of the small debris 

cells with their corresponding small clear-blue cytoplasm regions, and red sputum cell with dark-red 

nucleus and clear-red cytoplasm. Some of the sputum nuclei cells overlap due to the dispersion of the 

cytoplasm in the staining process.  

The automatic assessment of the sputum cell state, using the sputum image, is based on the analysis 

of both the chromatic and geometric attribute of its nucleus and cytoplasm, therefore this process 

involves the extraction of their related regions in the image. This problem is viewed as a segmentation 

problem whereby we want to partition the image into sputum cell regions including the nuclei and 

cytoplasm, plus the background that includes all the rest. Nevertheless, the sputum images are 
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characterized by noisy and cluttered background patterns that cause the segmentation and automatic 

detection of the cancerous cells highly problematic.  

There have already been attempts to solve this problem using heuristic rules [7]. In this paper, we 

propose two methods for addressing this problem the first employed a threshold-based technique. The 

second method uses a Bayesian classification framework. 

The problem of extracting the nucleus and the cytoplasm is approached using a combination of 

robust mean shift segmentation and rule-based techniques. 

The organization of this paper is as follows: related works are described in Section 2. The methods 

for the sputum cell extraction and the related results are described in Section 3. Section 4 is dedicated 

to the cell segmentation process whereby we compare the performance or our method with other 

approaches. Finally, the conclusion and future work are given in Section 5. 

2. Related Works 

Computer vision methods are employed to elicit information from medical images, such as the 

detection of cancerous cells. Many diagnostic ambiguities are removed when transforming these 

images from its continuous to its digital form. Today, very large amounts of data are produced from 

medical imaging techniques, such as Computer Tomography (CT) [8], Magnetic Resonance Imaging 

(MRI) and Breast Thermograph [9].  

In Cell-based diagnosis, pathologists always make a decision based on their observation on the 

cellular distribution and their geometrical parameters. Most of the time the cells are exceedingly 

complex and there is an overlap between the cell boundaries and the background, or inside the cell 

itself between the nuclei and cytoplasm, due to the different stains that have been used in the 

preparation process. The techniques employed in their diagnosis involve intense human interference, 

which is hugely time consuming and subject to bias. These factors compromise the accuracy of the 

decision and highlight the need for computer technology application which can be used to assist 

pathologists in their diagnosis [10]. A number of medical researchers have applied the analysis of 

sputum cells for early detection of lung cancer [11], most recently research relay of quantitative 

information, such as the size, shape and the ratio of the affected cells [12].  

In the literature, some authors have applied the analysis techniques and feature extraction from the 

image processing perspective, such as in [13], where the sputum color image is used to detect the 

tuberculosis bacilli. The detection is done through two phases; in the first phase they used analysis 

techniques and feature extraction for the enhancement of the images, such as edge detection, heuristic 

knowledge, region labeling and removing. In the second phase, they used object recognition 

techniques for the automatic identification of tubercle bacilli in the images, such as k-mean clustering 

algorithm, multi-threshold fuzzy segmentation, and simple color filtering technique for detecting 

tuberculosis bacilli based on the extracted features from the first phase. After that a neural network and 

Gaussian distribution was used to classify the bacilli into negative and positive classes based on the 

following features: roundness, perimeter, elongation, area, major and minor axis length and angles, 

minimum and maximum gray level and gray level density [14]. 

The detection of lung cancer by using sputum color images which are the subject of this research 

was introduced in [7] where the authors presented unsupervised classification technique based on 
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Hopfield Neural Network (HNN) to segment the sputum cells into cancer and non cancer cells, to be 

used in the diagnosis process. They considered each image as a multidimensional data, and each pixel 

is represented by its three components in the RGB image plane. They used energy function with cost 

term to increase the accuracy in the segmented regions, a technique which resulted in correct 

segmentation of sputum color image cells into nuclei, cytoplasm and clear background classes. 

However, the method has limitations due to the problem of early local minimum of the HNN. The 

HNN can make a crisp classification of the cells after removing all debris cells. The disadvantage was 

in the overlapping cells which are counted as one cluster.  

The authors in [15] completed the works which have been done in [7] where a simple geometric 

feature for detecting the nuclei was used by connecting component labeling technique to determine 

each region in the cell. The nuclei detection was done by using region growing techniques. After that, 

some features are extracted such as the area of nucleus region, area of the cytoplasm region, the 

maximum drawable circle and the mean intensity value of the nucleus region.  

Following up the work of [15], the authors in [16] came up with an automatic computer aided 

diagnosis (CAD) system for early detection of lung cancer based on the analysis of pathological 

sputum color images. The RGB color space was used to represent the color images. Two segmentation 

processes have been used, the first one was Fuzzy C-Mean Clustering algorithm (FCM), and the 

second one was the improved version of the Hopfield Neural Network for the classification of the 

sputum images into background, nuclei and cytoplasm. These two latter regions were used as a main 

feature to diagnose each extracted cell. It was found that the HNN segmentation results are more 

accurate and reliable than FCM clustering of all cases. The HNN succeeded in extracting the nuclei 

and cytoplasm regions. However, FCM failed in detecting the full nuclei. Partial detection occurred in 

most of the trials. In addition to that, the FCM is not sensitive to intensity variations as the 

segmentation error at convergence is larger with FCM compared to HNN. The proposed CAD system 

was tested by comparing its 100 case diagnosis to the diagnosis of an experimented pathologist of the 

same data, and the results showed that the CAD system and the pathologist agreed on 92% of the cases 

and 8% disagree, with a sensitivity of 92.5%, specificity of 69% and accuracy of 85%. While this CAD 

system was successful in detecting lung cancer cells, it has a number of limitations. For instance, the 

CAD system was associated with the high number of false positive rates, which make the chance of the 

patient’s survival very low. Also, the constraint of fixing the numbers of clusters by the operators 

might compromise in some cases the quality of the segmentation.  

In [17] the authors described a method of sputum color image classification for detecting normal 

and abnormal cells by using computational intelligent techniques such as Tetrakis Carboxy Pheyl 

Porphine (TCPP). In this method the cancer cells have been labeled based on the increased number of 

low density. This algorithm takes into consideration the spatial information by using a region 

adjacency graph processing algorithm. Furthermore, they used 3D clustering and relaxation labeling 

approaches, where the segmentation results depend on the preprocessing step which determines the 

quality of the images.  

CT screening modalities have been also used for the detection and diagnosis of lung cancer. In [18] 

the authors presented a survey using computer analysis CT scan of the chest which can constantly 

detect the lung cancer in its early stages, however, it has a number of limitations with high  
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false-positive rates, because it detects a lot of non-cancerous nodules and misses many small cancers 

nodules in addition to its low sensitivity for central lesions, plus it is invasiveness. 

In the literature, all the previous techniques have been used on medical images to detect diseases 

varying from tuberculosis to cancers. Methods based on sputum image analysis still suffer from a high 

number of false negatives, resulting in exposing a patient to unnecessary radiation and surgeries. In 

addition to that, most methods fail to consider the outlier pixels, which may sometimes represent a 

class in themselves, is resulting in cancer cells.  

Moreover, the preprocessing techniques need further enhancement to discard the debris cells in the 

background of the images and to remove all noise from the images, in addition to the overlapping 

between the sputum cells which are not considered by the previous techniques. Thus, segmentation 

results are not accurate enough to be used in the diagnosis part. In the HNN-based method, the cluster 

number has to be provided in advance. This affects the feature extraction part, especially in the 

presence of outliers. These problems have to be overcome, and more features have to be computed to 

develop a successful CAD system. 

3. Cell Extraction 

3.1. Sputum Cell Detection 

The cell detection aims at the extraction of the cell region from the sputum image. This is done by 

determining whether or not a pixel in the sputum image belongs to the sputum cell using its color 

information. The staining method, applied in the sputum sample solution, allows, to some level, the 

sputum cell to have a distinctive chromatic appearance vis-à-vis the background. However, the nature 

of the sputum color images, which contains many debris cells and the relative contrast among the 

cytoplasm and nuclei cells, means that the extraction process for the nuclei and cytoplasm cells is not a 

straightforward procedure. 

The chromatic disparity between the cell and the background has been exploited in driving 

segmentation techniques that divide the sputum image into these two regions. Sammouda et al. [7] 

proposed the following heuristic rule for discriminating cell pixels from background pixels.  

For the image stained with blue dye: 

If (B(x, y) < G(x, y)) then B(x, y) is sputum else B(x, y) is non sputum (1) 

For the images stained with red dye: 

If (R(x, y) < G(x, y) +Θ) then R(x, y) is sputum else R(x, y) is non sputum (2) 

If ((G(x, y) + Θ) < (R(x, y) + B(x, y))) then G(x, y) is sputum else G(x, y) is non sputum (3) 

In our contributions, we approached the cell detection problem using two methods. The first is  

a threshold based technique, which can be seen as an improvement of the method in [7]. The  

second method is based on a Bayesian classification. These two methods will be described in the next 

two sections. 
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3.1.1. Threshold Technique 

The threshold technique depends on the staining methods by which the image is organized and 

derived from the difference in the brightness level in RGB components of the sputum color images. 

For the image stained with blue dye, the following rule is used to extract sputum pixels: 

If (B(x, y) < G(x, y) + Θ) then B(x, y) is a sputum else B(x, y) is non sputum (4) 

Figure 1, shows the results of applying Equation (4). The results obtained with two different 

threshold values. From left to right the figure depicts: the raw images, ground-truth detection which 

was manually segmented, results with the faulty threshold value, and results with a correct threshold. 

Figure 1. Examples of threshold segmentation results for blue dye images, from left: raw 

images, ground-truth data, results obtained with the faulty threshold, results obtained with 

a correct threshold. 

  

 

For the image stained with red dye, where the red color is the most dominant color between the 

sputum cells and the background, we use the following sequence of rules: 

If (B(x, y) < G(x, y) or (B(x, y) > R(x, y)) then B(x, y) is sputum else B(x, y) is non sputum (5) 

This rule allows us to remove the debris pixels from the Red and Green intensity images. 

Afterwards, we cascade the following two rules: 

If (R(x, y) < (G(x, y) + Θ)) then R(x, y) is sputum else R(x, y) is non sputum (6) 

If ((2*G(x, y) +Θ) < (R(x, y) + B(x, y))), then G(x, y) is sputum else G(x, y) is non sputum (7) 

where Θ is a threshold parameter. Figure 2, shows the results of applying Equations (5–7), respectively. 

The results obtained with two different threshold values. From left to right depicted: the raw images, 

ground-truth detection, results with the faulty threshold value, and results with a correct threshold. 

Figure 2. Examples of threshold segmentation results for red dye images, from the left: 

raw images, ground-truth data, detection obtained with a faulty threshold, detection 

obtained with a correct threshold. 
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The optimal value of the threshold was determined by analyzing the performance of the method 

across (values ranging from −35 to −15 as will be described in the Experiments section). 

3.1.2. Bayesian Classification 

In this approach we address the cell detection problem using a probabilistic method based on the 

Bayesian classification [19]. In these methods, a pixel x is considered part of the sputum region if  

p (bg|x) < p (sp|x) where sp and bg refer to the sputum and the background respectively. Applying the 

Bayesian Rule and the concept of classification cost, this inequality can be brought to: 

( )( )
=

( ) ( )

sp

bg

p x spp bg

p sp p x bg





  

(8) 

where sp  is the loss weight incurred if the sputum class has been selected instead of the background 

and bg  is the loss weight incurred if the background class has been selected instead of the sputum, 

p(bg) and p(sp) are the probabilities of the background and the sputum classes respectively, and they 

are estimated from the total number of sputum and background pixels in the training set of images 

according to the following equations: 
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where Tsp and Tbg are the numbers of sputum and background color respectively. 

The setting of the ratio 
sp

bg




 is based on the following reasoning. In the context of cancer cell 

detection, false positives are usually prevailed over false negatives. Bearing in mind that cancerous 

cells are characterized by oversized nucleus-relatively to the cytoplasm, mistakenly selecting a 

background pixel as a sputum pixel, does somewhat increase the detected cytoplasm region, thus 

disproportioning the nucleus, and thus increasing the likelihood of assessing the cell as being a  

non-cancerous cell. From this prospect, the loss incurred of a false sputum cell classification should be 

allotted a larger weight than its counterpart in the opposite case (e.g., loss incurred if the background 

class has been chosen instead of the sputum). Thus, the ratio λ = 
sp

bg




 should be set larger than 1. 

The class-conditional pdfs p(x|sp) and p(x|bg) were estimated using the histogram technique [20]. 

This approach is motivated by several reasons. First, with the histogram technique, there is no need to 

make any assumption about the shape of the sputum and background probability density functions. In 

the opposite case, when a specific form of the class-conditional pdf is assumed, as in the case with the 

Gaussian density models, some color spaces may prevail over others. Second, with the histogram 

technique, the Bayesian classifier can be designed very quickly even with a large training set, as 

compared to other classifiers such as the Artificial Neural Network. Finally, in this application, the 

feature space has low dimensionality. 
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The histograms were computed for different color spaces (RGB, YCbCr, HSV, L*a*b). Each 

channel, in each color space is divided into bins (16, 32, 64, 128 or 256). Following this, the 

histograms are converted to discrete probability distributions by normalization. Figure 3 shows a 

visualization of the RGB histogram with 256 resolutions. 

Figure 3. 256- RGB color space Histogram visualization for the sputum and non-sputum pixels. 

 

Figure 4 shows some examples of sputum cell extraction obtained with two different values of the 

ratio λ. We can observe that the size of the detected cell for λ = 7 is less than its counterpart for λ = 2. 

This observation confirms our reasoning regarding the appropriate range of this ratio. 

Figure 4. Samples of sputum cell extraction results. From left to right: raw images, ground 

truth data, cell detection with λ = 2, and cell detection with λ = 7. 

 

3.2. Experiments 

A database of 100 images, collected from the Tokyo Center for lung cancer, was utilized in this 

study. The size of each image is 768 × 512 pixels and they were provided in the RGB space. 

Furthermore, for each image a mask was manually made as a ground truth data, dividing the images 

into sputum and non-sputum segments. These images were obtained by manually selecting the regions 

of interest by masking the location of the corresponding pixels in binary images. Thus, a ground truth 

image is a binary image where one and zero corresponds to an ROI pixel and to a background pixel, 

respectively. The ground truth images are used in comparison with the output images from the 

detection algorithms. 

We conducted a comprehensive set of experiments to study the outcome of the threshold algorithm 

for the detection and extraction of the cells into sputum cells and background. Furthermore, we 

analyzed the essence of color representation and color quantization on the sputum cell detection. Then 
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we used the cell extraction techniques (threshold classifiers and Bayesian classification). In the case of 

the Bayesian classifier, 10-fold cross validation was used: the dataset was randomly divided into  

10 blocks; for every hold-out block, the system was trained on the remaining blocks and tested on the 

hold-out block; results averaged over all test blocks, thus reflect predictive performance. 

For performance measurement we first computed the true positives (i.e., pixels that were correctly 

classified as sputum pixels TP), false positives (i.e., pixels that were erroneously classified as sputum 

pixels FP), true negatives (i.e., pixels that were correctly classified as non sputum pixels TN), and false 

negatives (i.e., pixels that were erroneously classified as non sputum pixels FN). Further measurements 

were based on these criteria [21]. 

Sensitivity = 
TP

TP FN
 

Specificity = 
TN

TN FP
 

Accuracy = 
TP TN

TP TN FP FN



  
 

The sensitivity reflects the extent to which pixels classified as sputum pixels are actually sputum 

pixels. Specificity measures how well the background is classified, and the accuracy evaluates the 

overall correctly classified pixels. Table 1 contains the sensitivity results obtained by using 10-fold 

cross validation in Bayesian classification with histogram analysis. Every column contains a different 

color space (RGB, YCbCr, HSV and L*a*b*) and every row represents a different histogram 

resolution (16, 32, 64, 128 and 256). The comparative analysis focuses on the index v and the index 

dev, which corresponds to the average and standard deviation of the performance indicators respectively. 

Table 1. The average and standard deviation of the sensitivity for each color space using 

10-fold cross-validation. 

 RGB YCbCr HSV L*a*b 

Histogram 

Resolution 

V V  V V 

dev. dev. dev. dev. 

16 
0.86 0.85 0.88 0.81 

0.14 0.15 0.12 0.18 

32 
0.88 0.82 0.88 0.87 

0.12 0.17 0.12 0.13 

64 
0.88 0.88 0.89 0.87 

0.12 0.12 0.11 0.12 

128 
0.89 0.88 0.89 0.88 

0.11 0.12 0.12 0.11 

256 
0.89 0.89 0.89 0.88 

0.11 0.11 0.11 0.11 

Quantitatively, for Bayesian classifier the ROC curves have been computed for four color 

representations for five histogram resolutions. The ROC curve is the parametric curve which contains 

False Detection Rate (t), and Correct Detection Rate (t) where t is a classifier parameter. The curves 
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are depicted in Figure 5. As can be observed from Table 1 and Figure 5 that, the HSV has the best 

performance across all the resolutions, followed by the RGB. But overall, the different color spaces 

show a close performance for resolutions above 64. Figure 6 shows the ROC-curves of the different 

color spaces across the histogram resolutions. We clearly observe that the performance improves as the 

resolution increases. The RGB and the HSV maintain a strong performance across all the resolutions, 

whereas it degrades a bit under 64 for the YCbCr and L*a*b* spaces. 

Figure 5. The ROC curves in the four color spaces for histogram resolutions of (a) 16;  

(b) 32 bins; (c) 64 bins; (d) 128 bins and (e) 256 bins. 

 

(a) 

 

(b) 

 

(c) 
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Figure 5. Cont. 

 

(d) 

 

(e) 

Figure 6. The ROC curve of (a) RGB; (b) YCbCr; (c) HSV and (d) L*a*b* spaces for the 

different histogram resolutions. 

 

(a) 
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Figure 6. Cont. 

 

(b) 

 

(c) 

 

(d) 

Figure 7 shows the accuracy criterion variation of the color spaces in function of the ratio λ. We can 

ensure that the accuracy improves as λ increases and reaches its peak around within the range 15 to 17. 

For the threshold classifier the ROC-curve has been calculated for the RGB space. The curve is 

depicted in Figure 8(a). Figure 8(b) shows the accuracy measurements for the threshold method, as can 

be seen, the extraction performance varies for different thresholds. The dots in the lower left 

correspond to small Θ (starting from −35) and rising to −15 in the upper right. These findings suggest 

an optimal value for Θ equal to −25. 
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Figure 7. The accuracy performance of the color spaces for a histogram resolution of (a) 

64 bins; (b) 128 bins and (c) 256 bins. 

 

(a) 

 

(b) 

 

(c) 
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Figure 8. (a) ROC curve of RGB space for the threshold classifier; (b) Accuracy 

measurements of the threshold classifier. 

 
(a) 

 
(b) 

Table 2 summarizes the performances of the threshold methods and the Bayesian classification. We 

found that, the Bayesian classification achieved the best scores. It succeeded particularly in reducing 

the number of FN and improving the sensitivity. On the other hand, the specificity and accuracy are 

close to their counterparts in the threshold methods.  

The comparison between the ROC-curve obtained in the Bayesian classification, (Figure 7) and its 

counterpart the threshold method (Figure 8) reveals a clear superiority of the Bayesian method. 

Table 2. Performance of the extraction methods. 

Performance 

Measurements 

Previous  

Threshold Method 

Improved 

Threshold Method 

Bayesian 

Classification 

Sensitivity 49% 82% 89% 

Specificity 97% 99% 99% 

Accuracy 96% 98% 98% 

4. Cell Sgmentation  

Image segmentation is the process of dividing the image into disjoint and homogenous regions. Its 

purpose is to extract the regions of interest based on the problem being solved [22]. Image 

segmentation is considered essential in computer vision, and it is the first step in image classification 
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and clustering. It is the bottleneck of any pattern recognition process because the quality of the final 

results will be highly dependent on the segmentation results. 

Several algorithms for medical image segmentation can be found in the literature [23]. No specific 

segmentation solution can be generalized, and it is entirely dependent on the problem being solved. 

Moreover, the segmentation algorithms are based on the detection of discontinuity and the detection of 

similar techniques, respectively. In the detection of discontinuity technique, the image is partitioned 

into sub images based on sudden changes in gray level or colors by using one of many algorithms such 

as point algorithms, line algorithms, and edge detection algorithms [24]. On the other hand, in the 

detection of similarity, the image is partitioned into sub images by using region growing, threshold, 

splitting and merging techniques [25]. 

In our contribution, we approached the cell segmentation problem using the mean shift technique. 

The cell segmentation aims at the partition of the sputum cell into nucleus and the cytoplasm. These 

regions exhibit reddish colors with different level of intensity (dark for nucleus and clear for the 

cytoplasm, as shown in Figure 9(a). To reduce the computing complexity we converted the sputum cell 

pixels to gray level. Subsequently, we performed histogram equalization in order to improve the 

contrast between the nucleus and the cytoplasm as in Figure 9(b). This process makes the sputum cell 

pixels to the next stage, namely, the segmentation using the mean shift technique [26]. Basically, the 

mean shift is a non-parametric iterative technique that operates on a particular density function defined 

in the feature space. In our application, the feature space is determined by the pixel's gray level and, if 

we consider the spatial information, the pixel spatial coordinates.  

Figure 9. Samples of sputum cells through the different segmentation stages. (a) Sputum 

cells; (b) Conversion to gray level; (c) Mean shift segmentation; (d) Mode merging;  

(e) Region refinement. 

 
  



Algorithms 2013, 6 527 

 

 

The density function has the following form: 

1/2

1

1
( ) | | ( )

n

H i

i

f x H K x x
n





   (11) 

where n is the number of cell pixels, xi is the feature vector, corresponding to the ith pixel. KH is a 

kernel function, which should be bounded, symmetric, normalized and exponentially decreasing. The 

parameter H represents the bandwidth matrix which we set to the diagonal matrix having the diagonal 

terms (hc; hs; hs), where hc and hs represent the chromatic (gray level) and the spatial bandwidths.  

H is reduced to the scalar hc if only the chromatic level is considered. By choosing as kernel function 

the normal function (11) becomes: 
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Starting at an initial point, the mean shift algorithm searches for point of maximum density (also 

called modes) through successive shifting of the initial point in hill-climbing fashion. The sequence of 

the different locations of the mode across the convergence path is given by: 
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1 1
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 (13) 

where g is the derivative of the Kernel function. 

Practically the mean shift segmentation is composed of the following steps: 

1. Segment the feature space into a region. 

2. Choose the initial location of the mode in each region. 

3. Compute the new locations of the modes by updating them using the shift step. 

4. Repeat step 3 and 4 until convergence. 

5. Merge the neighboring modes and their associated pixels. 

The convergence is reached when the shift step approaches zero. 

Figure 9(c), shows the mean shift segmentation outcome for some cells considering both the gray 

level and spatial information. We observe that the segmentation produces several non-compact regions 

that do not fit the desired target (e.g., The nucleus and cytoplasm). Statistically, we found that the 

number of regions varies between 3 and 6. However, one case of the under-segmentation is depicted in 

Figure 10(a). This is because the gray level distribution does not exhibit distinctive peaks as in  

Figure 10(b), thus causing the pixels inside the cell area to converge into a single style.  
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Figure 10. (a) An under-segmentation result produced by the mean shift using only the 

gray level information; (b) In this case, the gray level distribution of the cell pixels does 

not show distinctive peaks. 

  

(a) (b) 

In the next phase we perform a rule-based region merging. First from each region, represented as a 

binary image, we extract the largest connected patches (excluding the isolated and tiny ones). 

Afterwards, we perform the region merging as in Figure 9(d) subject to the following constraints: 

a: The darkest region is part of the nucleus.  

b: The clearest region is part of the cytoplasm.  

c: Regions on the borders are part of the cytoplasm.  

d: The final number of regions must be equal to 2. 

In the final phase, we performed basic hole-filling morphological operations to get the fully 

compact regions corresponding to the nucleus and cytoplasm as in Figure 9(e). 

In the experiment we compared the performance of two variants of the mean shift method (with and 

without spatial component) with the Hopfield Neural Network (HNN) employed in [7,15]. We used 

the same assessment procedure as in the sputum extraction that is we compare the effect of the 

segmentation of the ground truth data composed of the manually segmented nucleus and cytoplasm in 

the set of test images. 

Table 3 summarizes the performances of the three methods. We can see that the mean shift clearly 

outperforms the HNN technique. In addition, we notice that the integration of the spatial data in the 

mean shift boosts further the performance. 

Table 3. Performance of the nucleus segmentation algorithms. 

Performance/Algorithm HNN Gray mean shift Gray-Space mean shift 

Sensitivity  73.77% 92.7% 93.40% 

Specificity 69.53% 85.32% 88.21% 

Accuracy 65.01% 85.43% 87.11% 

5. Conclusions 

In this paper we presented methods for extraction and segmentation of sputum cells for the purpose 

of lung cancer early detection. The sputum cell extraction has been addressed with threshold 

techniques and Bayesian classification. While our threshold method shows a great improvement 

compared to existing threshold method, the Bayesian classification exhibited the best performance. 



Algorithms 2013, 6 529 

 

 

Moreover, the Bayesian classification allows an elegant and methodological determination of the 

classification parameter. The comparability of the performance with regard to the color format reveals 

close scores for histogram resolution above 64. Nevertheless, a slight advantage of the HSV 

representation has been detected. Regarding the color quantization the results indicate that the higher 

the color space resolution the more accurate the classification. For the sputum cell segmentation, we 

found that the mean shift technique significantly outperforms the HNN technique. The integration of 

both spatial and chromatic information improves further the segmentation performance. At the current 

stage, the mean shift method produces a reasonable accuracy above 87%, yet this performance can be 

further improved via further basic morphological processing on the segmented image. The next phase 

of our study will be the elaboration and extraction of appropriate descriptors of the nucleus and the 

cytoplasm for a cell classification process to be used in the CAD systems. 
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