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Abstract: In this contribution, a generic two-phase stochastic variable neighborhood 

approach is applied to nurse rostering problems. The proposed algorithm is used for 

creating feasible and efficient nurse rosters for many different nurse rostering cases. In 

order to demonstrate the efficiency and generic applicability of the proposed approach, 

experiments with real-world input data coming from many different nurse rostering cases 

have been conducted. The nurse rostering instances used have significant differences in 

nature, structure, philosophy and the type of hard and soft constraints. Computational 

results show that the proposed algorithm performs better than six different existing 

approaches applied to the same nurse rostering input instances using the same evaluation 

criteria. In addition, in all cases, it manages to reach the best-known fitness achieved in the 

literature, and in one case, it manages to beat the best-known fitness achieved till now. 

Keywords: nurse rostering; hospital personnel scheduling; stochastic variable neighborhood; 

two-phase algorithm; mutation element; swap selective mutation; reduce rosters’ cost 
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1. Introduction and Related Work 

1.1. Introduction 

In this paper, the problem of nurse rostering is faced, which refers to the schedule of the personnel’s 

shift in a hospital. This problem belongs to the wide category of timetabling problems. These problems 

deal with the allocation of resources to specific timeslots so that some specific constraints are satisfied 

and the created timetables/rosters are valid and effective. According to each case, the constraints, the 

sources and the elements defining the effectiveness of each timetable/roster are determined.  

These timetabling/rostering problems are non-deterministic polynomial time (NP)-complete in their 

general form [1], as far as their computational complexity is concerned, meaning that the difficulty to 

find a solution rises exponentially to their size and a deterministic algorithm, giving an acceptable 

solution in polynomial time, cannot be found [2,3]. Therefore, alternative optimization methods, 

namely metaheuristics, have been developed in order to reach a (near) optimal solution for various 

kinds of the nurse rostering problem [4,5]. Metaheuristics comprise a major class of approaches to 

solve the nurse rostering problem. They have been designed in order to cope with complex 

optimization problems in cases where other optimization methods have failed to be either effective or 

efficient. The main advantages of metaheuristic methods are their effectiveness and general 

applicability. In the literature, a lot of heuristic methods have been developed for dealing with the 

nurse rostering problem: genetic algorithms [6–8], tabu search [9,10], simulated annealing [11,12], 

variable neighborhood search [13–15], scatter search [16,17], iterated local search [18,19], particle 

swarm optimization [20], memetic algorithms [21], ant colony optimization [22], etc.  

The algorithm presented in this contribution comprises a heuristic method to solve the nurse rostering 

problem. More precisely, it is a stochastic variable neighborhood approach, which uses three different 

swap mechanisms, which are different from other swap mechanisms presented in the literature [13]. 

The use of these three swap operators by the proposed algorithm enables it to search in three different 

neighborhoods of the problem’s search space. The reason why we decided to use a variable 

neighborhood search algorithm in order to solve this specific problem is that variable neighborhood 

search algorithms have been widely applied in many multi-objective optimization problems having 

very satisfactory results [23–25]. The innovation of the proposed algorithm is two-fold. First, although 

there are plenty of variable neighborhood algorithms applied to scheduling and timetabling problems 

in the literature [13,26–29], there is no two-phase stochastic variable neighborhood approach, to the 

best of our knowledge, applied to the nurse rostering problem. This was our main motivation in order 

to design and apply a two-phase stochastic variable neighborhood algorithm, so as to solve effectively 

and efficiently the nurse rostering problem. The second novelty of the proposed algorithm is the 

application of a ―stochastic moving segment grouping swap‖ (see Subsection 3.2), which is innovative, 

to our knowledge, and different from other types of swaps presented in the literature [13,26]. 

Therefore, in this contribution, a new two-phase stochastic algorithm based on variable 

neighborhood search [30,31] has been designed, developed and applied to the nurse rostering problem. 

The generic two-phase stochastic variable neighborhood algorithm proposed has been used in order to 

create feasible and efficient schedules of the personnel’s shifts in many different hospitals having 

different types of constraints. In order to demonstrate the effectiveness, efficiency and generic 
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applicability of the proposed algorithm, its performance is compared with six other very effective 

algorithms published in the literature that have been applied to the same problem instances [32–37].  

1.2. Related Work 

Valouxis and Housos presented in [32] a hybrid methodology that utilizes the strengths of 

operations research and artificial intelligence. In particular, an approximate integer linear programming 

model is firstly solved, and its solution is further improved using local search techniques. Furthermore, 

a tabu search strategy is applied in order to construct effective and efficient solutions. Li et al., present 

a hybrid artificial intelligence approach for a class of over-constrained nurse rostering problems, [33] 

which comes in two phases. The first phase solves a relaxed version of the problem, which only 

includes hard rules and part of the nurses’ requirements for shifts. In the second phase, adjustments 

with descend local search and tabu search are applied to improve the solution. The algorithm presented 

in [34] is a shift sequence-based approach that consists also of two stages: (a) Constructing high 

quality sequences for nurses by only considering the sequence constraints and (b) Iteratively 

constructing schedules for nurses and the overall rosters, based on the sequences built and considering 

the schedule and roster constraints. Greedy local search carried out during and after the roster 

construction manages to improve the (partial) rosters built. Puente et al., present a genetic algorithm 

approach to solve the medical doctor rostering problem in a hospital emergency department in [35]. 

More specifically, they intend to automate the creation of timetables by applying genetic algorithms in 

an actual hospital emergency department. Firstly, a heuristic-schedule builder, designed ad hoc to 

satisfy the hard constraints, produces an initial population of feasible solutions. Afterwards, iteratively, a 

genetic algorithm obtains new generations of feasible individuals, thanks to the use of a specific 

crossover operator, based on the exchange of whole workweeks that operates together with a repair 

function. Musa and Saxena describe in [36] a single-phase goal-programming algorithm for scheduling 

nurses in one unit of a hospital. The goals represent the scheduling policies of the hospital and nurses’ 

preferences for weekends on and off. Experiments on one unit with 11 nurses resulted in satisfactory 

results. Finally, in [37], Weil et al., present the efficiency of constraint programming for solving the 

nurse rostering problem. Experimental results obtained are very satisfactory regarding response time 

and flexibility of the approach. 

The proposed variable neighborhood search algorithm uses the same formalism for modeling the 

nurse rostering problem, tries to minimize the same fitness function and uses the same performance 

criteria in order to evaluate the quality of resulted rosters, as the ones used in [32–37]. Therefore, a 

straightforward comparison of their experimental results is fair. Moreover, in order to have a fair 

comparison with these algorithms, we decided to use the exact same input instances used by these six 

approaches. Computational results showed that the proposed two-phase variable neighborhood search 

algorithm achieves better results compared to these six very effective algorithms. The comparison was 

carried out on the basis of seven instances taken from real world situations that were also used as input 

by the six published effective approaches mentioned above. In one case, the proposed algorithm 

manages to beat the best-known fitness achieved till now. In addition, in the rest of the six cases, the 

proposed algorithm manages to reach, for each different instance, the best-known fitness achieved in 
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the literature and demonstrates, experimentally, that in these instances, there is more than one roster 

that achieves the best-known fitness.  

This paper is organized as follows. Section 2 defines the nurse rostering problem and the constraints 

used, in most cases, in order to evaluate the resulting shift schedules. Section 3 describes the proposed 

two-phase variable neighborhood algorithm, while Section 4 describes the input data used. Section 5 

assesses and compares the performance of the proposed algorithm to that of existing approaches. 

Finally, Section 6 provides a summary and future extensions. 

2. Problem Definition  

The nurse rostering problem has to satisfy a large number of constraints and is affected by many 

parameters. The entities that are involved in the construction of a feasible and effective solution of the 

nurse rostering problem are the nurses, the shifts and the time periods. More precisely, nurses have to 

make some specific shifts in specific time periods. Therefore, in order to create a feasible timetable, for 

the nurse-shift couple, the time periods that these shifts will take place must be assigned. Constraints 

regarding the construction of a nurse roster can be divided into two categories: ―hard‖ constraints and 

―soft‖ constraints. When all hard constraints are satisfied, then a feasible nurse roster is constructed, 

which is a roster that can actually be used by the hospital it was made for. However, the number of soft 

constraints satisfied is the main factor that affects the quality of a nurse roster. The final aim, of course, 

is to create a feasible nurse roster while maximizing its quality, i.e., to create a roster that satisfies all 

hard constraints and, at the same time, satisfies the maximum possible number of soft constraints.  

Constraints 

There are many different types of nurse rostering problems found in the literature, each having their 

own constraints. However, in most cases, the hard constraints that must be satisfied in order to keep 

the nurse roster valid are the following: 

 All shift type demands during the planning period must be met 

 The shift coverage requirements must be fulfilled 

 Each nurse should work at most one shift per day 

Also, the soft constraints that should be satisfied, in most types of the nurse rostering problem, in 

order the nurse roster to be considered of high quality are the following: 

 Maximum number of shifts that should be assigned to a nurse 

 Minimum number of shifts that should be assigned to a nurse 

 Maximum number of consecutive working days 

 Minimum number of consecutive working days 

 Maximum number of consecutive free days 

 Minimum number of consecutive free days 

 Maximum number of hours worked 

 Minimum number of hours worked 

 Maximum number of consecutive working weekends 

 Maximum number of working weekends in four weeks 
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 Number of days off after a series of night shifts 

 Complete weekends (i.e., if a nurse has to work only on some days of the weekend, then a 

penalty occurs) 

 Identical shift types during the weekend (i.e., assignments of different shift types to the same 

nurse during a weekend are penalized) 

 Unwanted patterns (i.e., an unwanted pattern is a sequence of assignments that is not in the 

preferences of a nurse, based on her contract) 

 Unwanted patterns not involving specific shift types 

 Unwanted patterns involving specific shift types 

 Alternative skill (i.e., if assignments of a nurse to a shift type requiring a skill that she does not 

have occurs, then the solution is penalized accordingly) 

 Day on/off request (i.e., requests by nurses to work or not to work on specific days of the week 

should be respected, otherwise solution quality is compromised) 

 Shift on/off request (i.e., similar to the previous, but now for specific shifts on certain days) 

As stated in the Introduction Section, in this contribution, the proposed generic variable 

neighborhood search algorithm is applied to seven different nurse rostering instances each of which 

belongs to a different type of the nurse rostering problem. For a more detailed description of each type 

of the nurse rostering problem faced by the proposed algorithm, the reader can refer to the respective 

references [32–37]. A detailed description of the input instances used in the experimental results is 

presented in Section 4. 

3. Solution Approach  

3.1. General Overview of the Stochastic Variable Neighborhood Algorithm 

The flowchart describing the general overview of the proposed algorithm is presented in Figure 1. 

As shown there, the proposed algorithm is a hybrid one consisting of two phases: 

(a) The first phase deals with the assignment of nurses to working days 

(b) The second phase deals with the assignment of nurses to shift types 

At first, the values of the algorithm’s parameters are set, namely, the population size, the maximum 

number of repetition cycles of first phase, the maximum number of generations of second phase and, 

finally, the swapping probability (see Subsection 3.2). Due to the differences in nature, structure, 

philosophy and type of hard and soft constraints among input instances, there is a small difference in 

the swapping probability value used for each instance. Note that the value of swapping probability 

determines the searching behavior of the algorithm. A high value will cause an exhausting cell swap, 

while a low value will cause skipping of cell swaps (see Subsection 3.2). Exhaustive experiments 

showed that for some instances, a lower value of the swapping probability is beneficial to the 

algorithm, while the opposite holds for others. Except for swapping probability, the values used for the 

other algorithm’s parameters are the same. Table 1 lists the parameters’ values for each instance, as 

well as the time consumed in order to find the optimal parameters of the algorithm. The effect of 

parameter setting to algorithm performance is investigated in Section 5.1. 
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Figure 1. The structure of the proposed stochastic variable neighborhood search algorithm. 

Set algorithm parameters’ 

values

Main Algorithm

Initialize d individuals with 

working days

Proceed to and conclude 

First Phase

Copy best individual to 

other individuals

Assign shift types randomly to any 

individual, driven by working days

Proceed to and conclude

Second Phase

Near optimal solution produced 

End of Algorithm
 

Table 1. The parameters’ values used for each input instance. 

No 
Input 

instance 

Swapping 

probability 

(pswap) 

Number 

of cycles 

in first 

phase 

Maximum 

number of 

generations 

in second 

phase 

Population 

size 

Number of 

experiments needed 

to find the optimal 

parameters of the 

algorithm 

Average 

time per 

experiment 

Average 

time 

consumed 

1 Valouxis-1 0.99995 1 100 2 22 2 min 44 min 

2 BCV3-46.2 0.97 1 100 2 22 11 min 242 min 

3 MUSA 0.97 1 100 2 22 0.06 s 1.32 s 

4 LLR 0.5 1 100 2 17 0.56 s 9.52 s 

5 BCV4-13.1 0.97 1 100 2 22 3 s 66 s 

6 WHPP 0.45 1 100 2 17 7.7 s 130.9 s 

7 HED01 0.85 1 100 2 27 29 s 13.05 min 

The experimentation procedure in order to find the optimal parameters of the algorithm is described 

as follows. At first, the number of cycles in the first phase was determined. For each input instance, we 

ran five experiments setting the number of cycles equal to 1, 2, 3, 4 and 5, respectively. For all 

instances, experimental results showed that a number of cycles equal to 1 suffices in order to achieve 

the best possible results. Next, the population size was determined. For each input instance, we ran five 

experiments, setting the population size equal to 1 to 5, respectively. For all instances, experimental 

results showed that a population size equal to 2 achieves the best possible results. The maximum number 
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of generations in the second phase was set arbitrarily equal to 100, which is a very big value, since our 

main purpose was to reach or even beat the best ever reported roster for each input instance. However, 

as mentioned in Section 3.3, the user is able to choose the termination criterion he/she likes to apply 

between the maximum number of generations and the number of generations for which the fitness 

remains the same; that is, no improvement is reported. 

Finally, we determined the value of the swapping probability (pswap) that leads the algorithm to the 

best possible results. At first, for each input instance, we ran seven experiments, setting pswap equal to 

0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0. For the sixth instance, since pswap = 0.4 was the value giving the best 

results, we further experimented, setting pswap equal to 0.35, 0.36, 0.37, 0.38, 0.39, 0.41, 0.42, 0.43, 

0.44 and 0.45. Since pswap = 0.45 was the value giving the best results, we further experimented, setting 

pswap equal to 0.445, 0.446, 0.447, 0.448, 0.449, 0.451, 0.452, 0.453, 0.454 and 0.455. Since again  

pswap = 0.45 was the value giving the best results, we decided to use this value. For the fourth instance, 

since pswap = 0.5 was the value giving the best results, we further experimented, setting pswap equal to 

0.45, 0.46, 0.47, 0.48, 0.49, 0.51, 0.52, 0.53, 0.54 and 0.55. Since again pswap = 0.5 was the value 

giving the best results, we decided to use this value. For the seventh instance, since pswap = 0.8 was the 

value giving the best results, we further experimented, setting pswap equal to 0.75, 0.76, 0.77, 0.78, 

0.79, 0.81, 0.82, 0.83, 0.84 and 0.85. Since pswap = 0.85 was the value giving the best results, we 

further experimented, setting pswap equal to 0.845, 0.846, 0.847, 0.848, 0.849, 0.851, 0.852, 0.853, 

0.854 and 0.855. Since again pswap = 0.85 was the value giving the best results, we decided to use this 

value. For the second, the third and the fifth instances, since pswap = 1.0 was the value giving the best 

results, we further experimented, setting pswap equal to 0.95, 0.96, 0.97, 0.98 and 0.99. Since  

pswap = 0.97 was the value giving the best results, we further experimented, setting pswap equal to 0.965, 

0.966, 0.967, 0.968, 0.969, 0.971, 0.972, 0.973, 0.974 and 0.975. Since again pswap = 0.97 was the 

value giving the best results, we decided to use this value for these two instances. For the rest 

instances, namely, the first instance, since initially pswap = 1.0 was the value giving the best results, we 

further experimented, setting pswap equal to 0.95, 0.96, 0.97, 0.98 and 0.99. Since again pswap = 1.0 was 

the value giving the best results, we further experimented, setting pswap equal to 0.995, 0.996, 0.997, 

0.998 and 0.999. Since again pswap = 1.0 was the value giving the best results, we further experimented, 

setting pswap equal to 0.9995, 0.9996, 0.9997, 0.9998 and 0.9999. Although, once again pswap = 1.0 was 

the value giving the best results, we decided to use pswap = 0.99995, since a value of pswap = 1.0 would 

make the execution of swaps deterministic and not stochastic. Using pswap = 1.0 would lead the 

algorithm to poor diversification and big intensification. To conclude, we noticed that for all instances, 

setting pswap to a big value causes big intensification, while setting pswap to a small value causes  

big diversification. 

After setting the parameters’ values, the initialization of each individual of the proposed algorithm’s 

population takes place. This is done at random with respect to the working requirements of each day. 

Next, the first phase of the algorithm, which deals with the assignment of nurses to working days, is 

executed. After the first phase is completed, the best individual found is copied to all individuals of the 

population, and shift types are randomly assigned to them. Therefore, the input to the second phase of 

the algorithm is a population of individuals, all of them being equivalent, by means of workings, to the 

best individual found by the first phase, with shift types randomly assigned to them. Finally, the 
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second phase of the algorithm, which deals with the assignment of nurses to shift types, is executed, 

leading to the near optimal solution found by the proposed algorithm.  

Since the seven nurse rostering input instances, to which the proposed algorithm is applied, are 

totally different cases of nurse rostering problems, there are significant differences, between them, in 

nature, structure, philosophy and type of hard and soft constraints. As a result, a different evaluation 

function is used for each different input instance taking into account different constraints and having 

different weight values. The specific constraints and the weight values used for each different 

constraint for each different input instance are the ones presented in [38]. However, a general form of 

the evaluation function applied to all instances can be presented as follows: 

Weight_function(Weight_of_1st_Constraint) × Times_1st_Constraint_is_violated + … + 

Weight_function(Weight_of_nth_Constraint) × Times_ nth_Constraint_is_violated 
(1) 

where the ith Constraint is different for each different input instance, Weight_of_ith_Constraint is the 

weight of the ith Constraint (which is different for each different input instance) and 

Times_ith_Constraint_is_violated is the number of times the ith Constraint is violated. In addition, 

Weight_function(Weight_of_ith_Constraint) equals Weight_of_ith_Constraint, if the ith Constraint is 

assumed linear, while Weight_function(Weight_of_ith_Constraint) equals Weight_of_ith_Constraint × 

Weight_of_ith_Constraint if the ith Constraint is assumed quadratic. Whether a constraint is assumed 

linear or quadratic depends, once again, on the input instance, and it is explicitly stated. At this point, 

we have to mention that for all input instances, the evaluation function takes into account only 

constraints concerning working days and day offs in the first phase of the algorithm, while it takes into 

account all kinds of constraints in the second phase of the algorithm.  

3.2. The First Phase of the Stochastic Variable Neighborhood Algorithm 

The first phase of the proposed algorithm, which deals with the assignment of nurses to working 

days, is presented in Figure 2. As shown, this phase consists of the execution of procedure 

Successive_Segment_Swap_Mutation(). This procedure is applied to each individual sequentially and 

is repeated for a specified number of cycles. A detailed description of this procedure along with 

procedure Selective_Partial_Swap(), which is used by Successive_Segment_Swap_Mutation() in the 

first phase of the algorithm, is given in the following paragraphs. 
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Figure 2. The structure of the first phase of the proposed stochastic variable neighborhood 

search algorithm. 

Execute
Successive_Segment_Swap_Mutation()

For each individual

Repeat

Until C cycles 

are completed

Start 

second 

phase

Comment: 

best individual and

best fitness are potentially

updated

 

The procedure, Successive_Segment_Swap_Mutation(), is applied as follows. At first, a list of all 

nurses L1 is created at random. Next, for each nurse n1 in L1 and for each nurse, n2, next to n1 (i.e., after 

n1 in L1), procedure Selective_Partial_Swap() is applied. This procedure, which is described in the next 

paragraph, is applied between nurse n1 and other nurses, until no other nurse n2 exists in list L1 and is 

repeated from the beginning for each nurse, n1, in list, L1. The structure of Successive_Segment 

_Swap_Mutation() is presented in Figure 3. 

Figure 3. The structure of the procedure, Successive_Segment_Swap_Mutation(). 

Create a random list L1, 

of all nurses

For each nurse n1 

of  list L1

Apply procedure 

Selective_Partial_Swap() on nurses n1, n2

Chose next nurse n2 until no more 

next nurses are left in list L1

End

For each nurse n2 of 

list L1, next to n1

Chose next nurse n1 until no 

more  nurses are left in list L1
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Procedure Selective_Partial_Swap(), which in fact implements a ―stochastic moving segment 

grouping swap‖, is applied for each day, d1, of the scheduling period as follows. At first, the left 

extreme (this is always equal to d1) and the right extreme (this is equal to d2) of the cell segment, in 

which swaps will be performed, are defined. Next, swaps are performed between cells included in a 

cell segment defined previously for rosters belonging to nurse n1 and nurse n2 under a certain 

probability. After all swaps in the selected cell segment have been performed, the fitness of the roster 

is computed. If the fitness of the created roster (i.e., after the swaps) is improved, then the swaps are 

accepted; otherwise, the swaps are discarded, and the roster sustains the structure it had before the 

swaps. After that, d2 is increased by one, and swapping cells between d1 and d2 for rosters belonging to 

nurses n1 and n2 is repeated as long as d2 is less or equal to the last day of the scheduling period. The 

structure of this procedure is presented in Figure 4. At this point, we have to mention that the application 

of a ―stochastic moving segment grouping swap‖ to the nurse rostering problem is innovative, to  

our knowledge. 

Figure 4. The structure of the procedure, Selective_Partial_Swap(). 

For each day d1 of the 

planning horizon

Right extreme of 

cell segment = d2

Left extreme of 

cell segment = d1

Perform cell swaps, between cells included in cell segment, 

for nurse n1 and nurse n2 under a certain probability 

Compute new fitness f2 of whole individual

Is f2 worse than the one 

before swapping

Cancel swaps

d2 = d2 + 1 

repeat

d2 = d1

Until d2 > last day of the planning horizon

Until no more days are left

Yes

No

New 

structure of 

individual 

produced

Comment:

Define the extremes

of cell segment in 

which swaps will 

be performed
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3.3. The Second Phase of the Algorithm 

The second phase of the proposed algorithm, which deals with the assignment of nurses to shift 

types, is presented in Figure 5. As shown, this phase consists of the sequential execution of the 

following procedures: 

(a) Selective_Day_Swap_Mutation() 

(b) Successive_Segment_Swap_Mutation() 

(c) Random_Segment_Swap_Mutation() 

Procedure Successive_Segment_Swap_Mutation() is the same with the one executed in the first 

phase of the algorithm; however, this time, it is executed in order to assign nurses to shift types and not 

to working days as performed in the first phase. This is the goal of the other two procedures, too. The 

execution of these three procedures is repeated for each individual of the population for a number of 

times, i.e., generations. The execution of the second phase of the algorithm is performed, until a specified 

termination criterion is met. We have implemented two termination criteria, which are the following: 

 The total number of generations 

 The number of generations for which the fitness remains the same, that is, no improvement  

is reported 

Figure 5. The structure of the second phase of the proposed stochastic variable neighborhood 

search algorithm. 

Execute

“Random_Segment_Swap_Mutation”

Execute

“Selective_Day_Swap_Mutation” 

Execute

―Successive_Segment_Swap_Mutation‖ 

Have all individuals been processed?

Is termination criterion is met?

For each individual

Repeat

(Near) optimal 

solution produced-

End of Algorithm

YES

NO

NO

YES

 



Algorithms 2013, 6 289 

 

 

More precisely, at the beginning of the algorithm, the user is asked to select the termination 

criterion he/she prefers to use: 

1. If he/she chooses ―the total number of generations‖, next, he/she has to insert this number. 

2. If he/she chooses ―the total number of generations for which the fitness remains the same‖, next, 

he/she has to insert this number. 

In the next sections, we present a detailed description of procedures, 

Selective_Day_Swap_Mutation() and Random_Segment_Swap_Mutation(). 

3.3.1. Procedure Selective_Day_Swap_Mutation() 

This procedure is applied as follows. At first, a nurse, n1, is selected at random. Next, the order of 

all combinations between nurse n1 and all other nurses is created randomly. Then, for each day of the 

scheduling period and for each pair of nurses created at random, a swap is performed between the cells 

of the current day of each pair of nurses. If the fitness of the created roster (i.e., after the swap) is 

improved, then the swap is accepted; otherwise, the swap is discarded, and the roster sustains the 

structure it had before the swap. This procedure is performed for each nurse of the roster. The structure 

of this procedure is presented in Figure 6. 

Figure 6. The structure of the procedure, Selective_Day_Swap_Mutation(). 

Create all combinations 

between nurse n1 and all other 

nurses chosen at random

Pick a nurse n1, 

at random

For each combination of 

different  paired nurses

For each day of the 

planning horizon

Swap cells of current day 

belonging to paired nurses

Does fitness get smaller than or 

equal to fitness before swap?

Apply swap to 

individual

Cancel swap

Chose next combination until 

no more combinations are left

Pick next nurse until no 

more nurses are left

Chose next day until 

no more days are left

Yes

No

End
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3.3.2. Procedure Random_Segment_Swap_Mutation() 

This procedure is applied as follows. At first, a list of all nurses in random order, L1, and a list of all 

nurses in a random order, too, L2, are created. Next, for each nurse, n1, in list L1 and for each nurse, n2, 

in list L2, procedure Selective_Partial_Swap() is applied. This procedure, which is described in the 

previous section, is applied between nurse n1 and each nurse, n2, belonging to list, L2, until no other 

nurse n2 exists in list L2 and is repeated from the beginning for each nurse n1 in list L1. The structure of 

this procedure is presented in Figure 7.  

Figure 7. The structure of the procedure, Random_Segment_Swap_Mutation(). 

Create a random list L1 of all nurses

Create a random list L2 of all nurses

For each nurse n1 of list L1

For each nurse n2 of list L2

Apply procedure 

Selective_Partial_Swap() on nurses n1, n2  

Chose next nurse from 

list L2 until L2 is empty

Chose next nurse from 

list L1 until L1 is empty

End

 

4. Input Data  

As stated in the Introduction Section, the proposed two-phase variable neighborhood algorithm is 

applied to seven different nurse rostering input instances. These instances, which have significant 

differences with each other, are presented in the following sections. They comprise a set of benchmark 

data that represents a wide variety of nurse rostering problems with non-trivial properties, which are 

derived from complete real world complex instances. 

4.1. Input Instance, Valouxis-1 

In this input instance, there are 16 nurses working three daily work shift types, and the planning 

horizon is 28 days long. The demand is assumed to be the same every week, and the daily requirement 

for personnel from Monday to Friday is 4-4-2 for the Day, Evening and Night work shifts, respectively, 

and the demand for Saturday and Sunday is 3-3-2, respectively. The legal work stretches are 2–4 days 

long, while the least time break between two work stretches is two calendar days long. In the planning 

horizon, all individuals must have at least one Sunday rest, while the total Day, Evening and Night 
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work shifts must be 5–8, 5–8 and 2–5, respectively. The total work shifts of all types must be  

15–18 work shifts. A specific description of the precise definition of the evaluation function used, the 

hard and soft constraints and their respective weight values is given in [39]. For a more detailed 

description of this input instance, the reader can refer to [32].  

4.2. Input Instance, BCV3-46.2  

This input instance was collected from a rather small department of a real hospital, using the nurse 

rostering model and algorithms developed at KaHo Sint-Lieven [40]. It comprises a non-cyclic 

problem. The number of nurses equals 46, the number of shift types equals 3 (Day, Early, Late and 

Night), the scheduling period is 26 days long and there is only one skill level (Nurse). A specific 

description of the precise definition of the evaluation function used, the hard and soft constraints and 

their respective weight values is given in [41]. For a more detailed description of this input instance, 

the reader can refer to [34]. 

4.3. Input Instance, MUSA  

In this input instance, there are 11 nurses, there is only one shift type (Day), the scheduling period is 

14 days long and there is only one skill level (Nurse). A specific description of the precise definition of 

the evaluation function used, the hard and soft constraints and their respective weight values is given  

in [42]. For a more detailed description of this input instance, the reader can refer to [36].  

4.4. Input Instance, LLR 

This input instance belongs to a class of over-constrained nurse rostering problems. The number of 

nurses equals 27, the number of shift types equals 3 (Morning, Afternoon and Night), the scheduling 

period is seven days long and there is only one skill level (Nurse). A specific description of the precise 

definition of the evaluation function used, the hard and soft constraints and their respective weight 

values is given in [43]. For a more detailed description of this input instance, the reader can refer  

to [33]. 

4.5. Input Instance, BCV4-13.1  

This input instance was also collected from a rather small department at a real hospital, using the 

nurse rostering model and algorithms developed at KaHo Sint-Lieven [40]. It comprises a non-cyclic 

problem. The number of nurses equals 13, the number of shift types equals 4 (Day, Early, Late and 

Night), the scheduling period is 29 days long and there are two skill levels (Nurse and Head nurse).  

A specific description of the precise definition of the evaluation function used, the hard and soft 

constraints and their respective weight values is given in [44]. For a more detailed description of this 

input instance, the reader can refer to [34]. 

4.6. Input Instance, WHPP 

In this instance, the number of nurses equals 30, the number of shift types equals 3 (Day, Early and 

Night), the scheduling period is 14 days long and there is only one skill level (Nurse). A specific 
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description of the precise definition of the evaluation function used, the hard and soft constraints and 

their respective weight values is given in [45]. For a more detailed description of this input instance, 

the reader can refer to [37]. 

4.7. Input Instance, HED01  

This input instance stems form the needs of an actual hospital emergency department (HED) in 

Spain. An actual situation set up by the HED’s management is described. HED’s permanent staff 

consists of 16 workers, while there are also four temporary workers. The number of shift types equals 

5 (Weekday morning—M; Weekday afternoon—A; Weekday night—N; Weekday stand-by duty—D; and 

Holiday stand-by duty—H), the scheduling period is 31 days long and there are two skill levels 

(Permanent staff and Temporary staff). Moreover, a minimum number of doctors must be assigned to 

each working shift. As a general rule for working days, different members of staff will be assigned to 

the different existing shifts: Four members will be assigned to the morning (M) and afternoon (A) 

shifts; two will be assigned to the night (N) shift; and one person will be on 24 h weekday stand-by 

duty (D). On Saturdays, Sundays and holidays, the HED’s medical staff will work on duty, whereby 

four members of staff will generally work for an uninterrupted 24 h holiday stand-by duty (H). A 

specific description of the precise definition of the evaluation function used, the hard and soft 

constraints and their respective weight values is given in [46]. For a more detailed description of this 

input instance, the reader can refer to [35]. 

5. Computational Results 

The proposed two-phase stochastic variable neighborhood search algorithm approach is coded in 

C++ and is run on Intel
®

 Core™ 2 Duo CPU E7500 2.93 GHz under the Windows 7 OS. The 

algorithm parameters’ values used are the ones presented in Table 1, Section 3.1. In order to 

demonstrate its efficiency and very good performance, the proposed algorithm is compared with six 

very effective algorithms for solving the nurse rostering problem issued in the literature [32–37] in 

solving the same seven input instances.  

In Table 2, the performance and efficiency of the proposed two-phase stochastic variable 

neighborhood search algorithm is shown by comparing the best timetables constructed by it with the 

best timetables created by the other six algorithms for each different input instance. Since in [32–37] 

the best rosters created are presented, we also decided in the current contribution to present and 

compare the best rosters constructed by the proposed approach in order to have a fair comparison 

between the algorithms. Note that, for each different input instance, in order to compare the roster 

constructed by the proposed variable neighborhood search algorithm and the roster constructed by the 

respective published nurse rostering algorithm, we used the same fitness function, the same hard and 

soft constraints and the same constraint weights as the ones used by the respective algorithms. 
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Table 2. Comparing the best timetables constructed by the proposed algorithm with the 

best timetables created in [32–37]. 

Input 

instance 

Published algorithm Proposed algorithm 

Description of algorithm 
Fitness 

value 

Execution 

time 

Fitness 

value 

Execution 

time 

Valouxis-1 Integer linear programming approach [32] 160 15 min 20 17.64 s 

BCV3-46.2 
A shift sequence based approach with greedy 

local search and adaptive ordering [34] 
3601 3 min, 4 s 894 16 min 

MUSA Single phase goal programming model [36] 199 28.3 s 175 0.12 s 

LLR Two-phase hybrid approach [33] 510 1 min, 36 s 301 0.3 s 

BCV4-13.1 
A shift sequence based approach with greedy 

local search without adaptive ordering [34] 
18 10 s 10 3 s 

WHPP 
Linear programming formulation using 

column generation approach [37] 
5 Not mentioned 5 9.1 s 

HED01 Genetic algorithm [35] 517 Not mentioned 129 29.1 s 

Table 2 demonstrates that the proposed algorithm outperforms other published approaches in  

6/7 cases (85.7%), considering the best roster per instance, while it achieves the same result in  

1/7 cases (14.3%). From experimental results presented in Table 2, one can easily come to the 

conclusion that the proposed algorithm is very efficient and achieves better results compared to the 

other six techniques issued in the literature that have been applied to the same instances of the nurse  

rostering problem.  

Moreover, in order to demonstrate the efficiency and very satisfactory performance of the proposed 

two-phase variable neighborhood search algorithm, the best rosters found by it are compared with the 

best-known timetables ever reported for the same seven different input nurse rostering instances [38]. 

Table 3 demonstrates that the proposed two-phase algorithm manages to reach the best known 

fitness ever reported in the literature in 6/7 cases (85.7%), while it manages to beat the best known 

fitness ever reported in the literature in 1/7 cases (14.3%). From experimental results presented in 

Table 3, one can easily come to the conclusion that the proposed algorithm is very efficient and 

achieves results equal to the best known ever reported for the majority of these quite different nurse 

rostering instances, while it manages to beat the best known ever reported result in one case. Except 

for that, the proposed algorithm has demonstrated experimentally that the best result ever reported for 

these six instances is not unique, since the best nurse rosters that the proposed algorithm created are in 

all six cases different from the best ones ever reported [38]. This means that in these six cases, there 

are at least two different best ever reported rosters and that maybe the global optimum is yet to be 

found. The executables implementing the proposed stochastic variable neighborhood search algorithm, 

as well as the best rosters achieved for each input instance, can be accessed in [47].  
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Table 3. Comparing the best timetables constructed by the proposed algorithm with the 

best timetables ever reported for these specific instances. 

Input 

Instance 

Best roster reported ever [38] Best roster found by the proposed algorithm 

Found by Fitness value Execution Time Fitness value Execution Time 

Valouxis-1 Tim Curtois, 3/9/2008 20 Not mentioned 20 17.64 s 

BCV3-46.2 

F. Xue, C. Y. Chan and  

W. H. Ip, using a Hybrid 

VDS, 2/8/2008 

894 4 h, 57 min 894 16 min 

MUSA Not mentioned 175 Not mentioned 175 0.12 s 

LLR 
Tim Curtois, using a variable 

depth search, 5/9/2008 
301 10 s 301 0.3 s 

BCV4-13.1 Not mentioned 10 Not mentioned 10 3 s 

WHPP Weil et al., 5/4/2009 5 Not mentioned 5 9.1 s 

HED01 
Tec on BEECHBONE (CS), 

11/2/2010 
136 Not mentioned 129 29.1 s 

The superiority of the proposed algorithm compared to other approaches comes mainly from the 

fact that the algorithm succeeds in searching the search space using a new variable neighborhood 

search approach. In the literature, there are three commonly used swaps, that is, simple move, simple 

swap and Kempe swap, each one of them leading to a search algorithm to investigate a different 

neighborhood [23]. The proposed algorithm uses only simple swaps, that is, swaps between cells 

without considering what these cells contain in order to perform the swap (i.e., whether they are empty 

or not). However, each one of the three swap procedures used by the proposed algorithm  

(see Sections 3.2, 3.3.1, 3.3.2) applies a different swap mechanism, which leads the algorithm to search 

in a different neighborhood of the search space. The application of the proposed mutation operators 

that implement the algorithm’s swapping mechanisms, applied in this specific way and order, is 

innovative to our knowledge and different from the swapping mechanisms already investigated in [13]. 

The strongest point of this variable neighborhood search approach is the combination of a classic 

neighborhood search with a ―stochastic moving segment grouping swap‖ (see Subsection 3.2). The 

―stochastic moving segment grouping swap‖ achieves exhaustive local search, since the segment is not 

stable, and as a result, it ensures intensification. On the other hand, since this swap is a stochastic one, 

it ensures diversification. To conclude, combining and applying these three swap procedures  

(see Sections 3.2, 3.3.1, 3.3.2) enriches the variable neighborhood search approach, since it enhances 

the classic neighborhood search with a ―stochastic moving segment grouping swap‖. This combination 

ensures both intensification and diversification of the search space. 

Since the nature of the proposed two-phase algorithm is stochastic, different computational results 

may be obtained in different runs. So, in order to demonstrate its efficiency, in Table 4, we present not 

only the best, but also the worst and the average results (and the respective standard deviations—STDs), 

considering the fitness function value achieved and the execution time of the algorithm. Additionally, 

we present the respective coefficient of variation (CV) and the success rate for each input instance. All 

results presented in Table 4 concern the execution of the proposed algorithm to the seven 

aforementioned nurse rostering input instances for 100 Monte Carlo runs. 
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Table 4. Computational experiments demonstrating the efficiency, stability and homogeneity 

of the proposed algorithm. STD, standard deviation; CV, coefficient of variation. 

Input 

instance 

Fitness value Execution Time Success 

Rate Best Worst Average STD CV (%) Best Worst Average STD 

Valouxis-1 20 120 73.33 30.55 41.7 17.64 s 222.88 s 90.19 s 75.6 20% 

BCV3-46.2 894 894 894 0 0 16 min 31 min 25 min 4.37 100% 

MUSA 175 175 175 0 0 0.12 s 0.52 s 0.22 s 0.13 100% 

LLR 301 305 301.48 0.93 0.3 0.3 s 5.5 s 1.85 s 1.4 67% 

BCV4-13.1 10 10 10 0 0 3 s 14.2 s 7.1 s 0.7 100% 

WHPP 5 5 5 0 0 9.1 s 27.2 s 16.2 s 5.9 100% 

HED01 129 156 143.28 7.88 5.5 29.1 s 5 min, 40 s 2 min, 47 s 2.13 6% 

Experimental results presented in Table 4 show that the average fitness reached by the proposed 

two-phase variable neighborhood search approach is, in most cases, very close to the best one achieved 

for each input instance. This demonstrates that the proposed algorithm is stable and efficient. We also 

notice that CV of fitness function value ranges from 0% to 41.7%, with the great majority of CV 

values being below 10%. More specifically, in four out of seven cases, CV equals 0, which means that 

the algorithm is totally homogenous. This observation leads to the conclusion that the behavior of the 

algorithm concerning the resulted fitness function value for 100 Monte Carlo runs per input instance is 

quite homogenous. Note that we have intentionally avoided calculating CV values for the execution 

time. This is done because STD and average values are close to each other, so the CV value for the 

execution time would be misleading. Moreover, in Table 4, we present the success rate, i.e., the 

percentage of cases that the proposed algorithm achieves the best fitness function value among  

100 Monte Carlo runs. The fact that, in most cases, the success rate achieved is bigger than 60%, 

demonstrates the efficiency of the proposed algorithm. In addition, in four cases, the success rate is 100%. 

Finally, we present convergence results (maximum, average and minimum evaluation function 

value versus number of function evaluations) in order to illustrate the evolutionary behavior of the 

proposed algorithm. Figure 8 illustrates the convergence behavior of the proposed algorithm for four 

input instances, namely, MUSA, LLR, BCV4-13.1 and HED01. In all cases, the algorithm’s 

convergence behavior is very satisfactory, since it avoids falling into local optima very quickly and 

shows significant improvement during the evolutionary process. In these experiments, because our 

main concern was to reach or even beat the best ever reported result for each different input instance, 

we used as the determination criterion ―the total number of generations‖. 
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Figure 8. Convergence behavior of the proposed algorithm for four input instances:  

(a) Input instance, MUSA; (b) Input instance, LLR; (c) Input instance, BCV4-13.1;  

(d) Input instance HED01. 
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Figure 8. Cont. 
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Investigating the Effect of Parameter Setting to Algorithms’ Performance 

In this section, the effect of parameter setting to algorithms’ performance is investigated and the 

results of different specific parameter values are demonstrated. Except for that, an indication of the 

contribution of each component of the algorithm is presented. More specifically, the contribution of 

the two-phase approach compared to a single-phase approach is investigated. As stated in Section 3.1, 

the first phase of the algorithm deals with the assignment of nurses to working days, while the second 

phase of the algorithm deals with the assignment of nurses to shift types. Therefore, the first phase of 

the algorithm cannot solve the nurse rostering problem alone, while the second phase can be applied to 

solve the nurse rostering problem as a single-phase approach. Experimental results presented below, 

show that using together the first and the second phase of the algorithm, as a two-phase approach, 

achieves better results to using only the second phase of the algorithm as a single-phase approach. 

Due to the fact that there are no obvious criteria for defining specific parameter values of the 

proposed algorithm for all instances of the problem, we have selected these values by trial and error. 

More precisely, we have conducted exhaustive experiments and selected the values that achieved the 

best simulation results and the best algorithm’s behavior. Tables 5–25, presented in the next 

paragraphs, show the effect of the value of first phase’s number of cycles, the effect of the value of the 

population size and the effect of the value of swapping probability to algorithms’ performance  

and behavior. 

In Tables 5–7, experimental results that investigate the effect of parameter setting to algorithms’ 

performance and behavior regarding input instance Valouxis-1 are presented.  

As shown in Table 5, setting the first phase’s number of cycles equal to 1 assists the algorithm in 

achieving the lowest best and average fitness values in the lowest best and average execution times, 

respectively. Except for that, if we do not use the first phase at all (first phase cycles = 0), experimental 

results are rather worse.  

Table 5. Investigating the effect of first phase’s number of cycles for input  

instance, Valouxis-1. 

Input instance  

Valouxis-1 

Fitness value Execution time (s) 
Success 

rate Best Worst Average STD 
CV 

(%) 
Best Worst Average STD 

First phase cycles = 0 40 160 88 34.25 38.92 80 170 110 24.6 10% 

First phase cycles = 1 20 120 73.33 30.55 41.7 17.64 222.88 90.19 75.6 20% 

First phase cycles = 2 40 140 83 35.92 43.27 85 180 100 31.8 20% 

First phase cycles = 3 40 160 86 34.06 39.6 90 180 150 27.6 10% 

First phase cycles = 4 40 140 68 28.6 42.05 110 210 180 43.8 20% 

First phase cycles = 5 40 120 68 21.5 31.62 78 290 232 34.08 10% 

As shown in Table 6, setting the value of population size equal to 2 assists the algorithm in 

achieving the lowest best and average fitness values in the lowest best and average execution  

times, respectively. 
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Table 6. Investigating the effect of population size for input instance, Valouxis-1. 

Input instance  

Valouxis-1 

Fitness value Execution time (s) Success 

rate Best Worst Average STD CV (%) Best Worst Average STD 

POPSIZE = 1 60 140 88 30.11 34.21 61 180 130 36 30% 

POPSIZE = 2 20 120 73.33 30.55 41.7 17.64 222.88 90.19 75.6 20% 

POPSIZE = 3 60 160 83 34.01 40.97 62 246 135 57.3 30% 

POPSIZE = 4 60 140 100 28.28 28.28 72 222.9 140 55 10% 

POPSIZE = 5 60 100 84 20.66 24.59 80 200 150 62 30% 

As shown in Table 7, setting the value of swapping probability equal to 0.99995 assists the 

algorithm in achieving both the lowest best fitness value and the highest success rate. 

Table 7. Investigating the effect of swapping probability for input instance, Valouxis-1. 

Input instance  

Valouxis-1 

Fitness value Execution time (s) Success 

rate Best Worst Average STD CV (%) Best Worst Average STD 

Swapping probability 

= 0.85 
40 120 82 25.73 31.37 100 190 150 33 10% 

Swapping probability 

= 0.9 
20 160 76 40.88 53.78 80 200 112 38.4 10% 

Swapping probability 

= 0.95 
40 100 68 19.32 28.41 66 253 129 60.9 20% 

Swapping probability 

= 0.97 
20 100 60 24.94 41.56 18 93.6 71 39.24 10% 

Swapping probability 

= 0.99995 
20 120 73.33 30.55 41.7 17.64 222.88 90.19 75.6 20% 

In Tables 8–10, experimental results that investigate the effect of parameter setting to algorithms’ 

performance and behavior regarding input instance BCV3-46.2 are presented.  

As shown in Table 8, setting the first phase’s number of cycles equal to 1 assists the algorithm in 

achieving the lowest best and average fitness values in the lowest best and average execution times, 

respectively. Except for that, if we do not use the first phase at all (first phase cycles = 0), execution 

times are rather worse.  

Table 8. Investigating the effect of first phase’s number of cycles for input  

instance, BCV3-46.2. 

Input instance  

BCV3-46.2 

Fitness value Execution time (min) Success 

rate Best Worst Average STD CV (%) Best Worst Average STD 

First phase cycles = 0 894 894 894 0 0 25 42 31 5.55 100% 

First phase cycles = 1 894 894 894 0 0 16 31 25 4.37 100% 

First phase cycles = 2 894 894 894 0 0 21 45 39 11.52 100% 

First phase cycles = 3 894 894 894 0 0 19 57 35 11.94 100% 

First phase cycles = 4 894 894 894 0 0 26 49 38 6.13 100% 

First phase cycles = 5 894 894 894 0 0 30 49 40 5.6 100% 
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As shown in Table 9, setting the value of population size equal to 2 assists the algorithm in 

achieving the lowest best and average fitness values in the lowest best and average execution  

times, respectively. 

Table 9. Investigating the effect of population size for input instance, BCV3-46.2. 

Input instance  

BCV3-46.2 

Fitness value Execution time (min) Success 

rate Best Worst Average STD CV (%) Best Worst Average STD 

POPSIZE = 1 894 894 894 0 0 16 48 28 8.71 100% 

POPSIZE = 2 894 894 894 0 0 16 31 25 4.37 100% 

POPSIZE = 3 894 894 894 0 0 16 38 28 7.64 100% 

POPSIZE = 4 894 894 894 0 0 17 43 34 8 100% 

POPSIZE = 5 894 894 894 0 0 25 42 33 5.55 100% 

As shown in Table 10, setting the value of swapping probability equal to 0.97 assists the algorithm 

in achieving the lowest best fitness value in the lowest execution time. 

Table 10. Investigating the effect of swapping probability for input instance, BCV3-46.2. 

Input instance  

BCV3-46.2 

Fitness value Execution time (min) Success 

rate Best Worst Average STD CV (%) Best Worst Average STD 

Swapping probability = 0.85 894 894 894 0 0 16 57 36 11.67 100% 

Swapping probability = 0.9 894 894 894 0 0 23 49 35 9.04 100% 

Swapping probability = 0.95 894 894 894 0 0 27 51 39 8.46 100% 

Swapping probability = 0.97 894 894 894 0 0 16 31 25 4.37 100% 

Swapping probability = 0.99995 894 894 894 0 0 11 61 30 12.84 100% 

In Tables 11–13, experimental results that investigate the effect of parameter setting to the 

algorithms’ performance and behavior regarding input instance, MUSA, are presented. 

As shown in Table 11, setting the first phase’s number of cycles equal to 1 assists the algorithm in 

achieving the lowest best and average fitness values in the lowest best and average execution times, 

respectively. Except for that, if we do not use the first phase at all (first phase cycles = 0), execution 

times and success rate are rather worse.  

Table 11. Investigating the effect of first phase’s number of cycles for input  

instance, MUSA. 

Input instance  

Musa 

Fitness value Execution time (s) Success 

rate Best Worst Average STD CV (%) Best Worst Average STD 

First phase cycles = 0 175 185 177.8 4.25 2.4 0.13 0.52 0.3 0.12 75% 

First phase cycles = 1 175 175 175 0 0 0.12 0.52 0.22 0.13 100% 

First phase cycles = 2 175 180 175.7 3.9 2.2 0.33 0.58 0.43 0.12 80% 

First phase cycles = 3 175 180 175.5 3.5 2 0.4 0.57 0.48 0.07 85% 

First phase cycles = 4 175 180 177.6 4.2 2.4 0.39 0.62 0.54 0.11 90% 

First phase cycles = 5 175 180 177.5 3.4 1.9 0.54 0.87 0.7 0.14 90% 
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As shown in Table 12, setting the value of population size equal to 2 assists the algorithm in 

achieving the lowest best and average fitness values in the lowest best and average execution  

times, respectively. 

Table 12. Investigating the effect of population size for input instance, MUSA. 

Input instance  

MUSA 

Fitness value Execution time (s) Success 

rate Best Worst Average STD CV (%) Best Worst Average STD 

POPSIZE = 1 175 180 175.65 1.1 0.62 0.31 0.54 0.4 0.07 95% 

POPSIZE = 2 175 175 175 0 0 0.12 0.52 0.22 0.13 100% 

POPSIZE = 3 175 175 175 0 0 0.51 0.74 0.6 0.12 100% 

POPSIZE = 4 175 175 175 0 0 0.19 0.82 0.5 0.24 100% 

POPSIZE = 5 175 175 175 0 0 0.43 0.75 0.58 0.11 100% 

As shown in Table 13, setting the value of swapping probability equal to 0.97 assists the algorithm 

in achieving the lowest best and average fitness value and the highest success rate. 

Table 13. Investigating the effect of swapping probability for input instance, MUSA. 

Input instance  

MUSA 

Fitness value Execution time (s) Success 

rate Best Worst Average STD CV (%) Best Worst Average STD 

Swapping probability  

= 0.85 
175 185 176.5 3.38 1.9 0.14 0.42 0.32 0.14 80% 

Swapping probability  

= 0.9 
175 185 176.5 3.38 1.9 0.12 0.38 0.2 0.1 80% 

Swapping probability  

= 0.95 
175 185 176 3.16 1.79 0.11 0.29 0.18 0.07 90% 

Swapping probability  

= 0.97 
175 175 175 0 0 0.12 0.52 0.22 0.13 100% 

Swapping probability  

= 0.99995 
175 185 177.62 3.75 2 0.06 0.56 0.23 0.14 62% 

In Tables 14–16, experimental results that investigate the effect of parameter setting to algorithms’ 

performance and behavior regarding input instance, LLR, are presented.  

As shown in Table 14, setting the first phase’s number of cycles equal to 1 assists the algorithm in 

achieving the lowest best and average fitness values and the highest success rate. Except for that, if we 

do not use the first phase at all (first
 
phase cycles = 0), execution times and success rate are rather worse.  

Table 14. Investigating the effect of first phase’s number of cycles for input instance, LLR. 

Input instance  

LLR 

Fitness value Execution time (s) Success 

rate Best Worst Average STD CV (%) Best Worst Average STD 

1ST Phase cycles = 0 301 303 301.7 0.82 0.27 0.8 2.5 2 1.1 50% 

1ST Phase cycles = 1 301 305 301.48 0.93 0.3 0.3 5.5 1.85 1.4 67% 

1ST Phase cycles = 2 301 303 301.8 0.8 0.3 1 2.9 1.6 0.6 45% 

1ST Phase cycles = 3 301 303 301.6 0.8 0.26 1.3 3.8 2.4 0.8 58% 

1ST Phase cycles = 4 301 303 301.4 0.7 0.23 1.3 3.4 2.8 0.7 62% 

1ST Phase cycles = 5 301 303 301.5 0.7 0.23 1.4 4.6 2.9 1.1 47% 
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As shown in Table 15, setting the value of population size equal to 2 assists the algorithm to 

achieve the lowest best and average fitness values and the highest success rate. 

Table 15. Investigating the effect of population size for input instance, LLR. 

Input instance  

LLR 

Fitness value Execution time (s) Success 

rate Best Worst Average STD CV (%) Best Worst Average STD 

POPSIZE = 1 301 305 302.2 1.6 0.53 0.74 2.38 1.5 0.6 50% 

POPSIZE = 2 301 305 301.48 0.93 0.3 0.3 5.5 1.85 1.4 67% 

POPSIZE = 3 301 303 301.7 1.06 0.35 0.98 7.08 2.9 2.2 60% 

POPSIZE = 4 301 303 301.8 0.8 0.27 0.23 3.21 1.32 0.9 45% 

POPSIZE = 5 301 303 301.6 0.7 0.23 0.38 4.03 1.72 1.2 55% 

As shown in Table 16, setting the value of swapping probability equal to 0.5 assists the algorithm in 

achieving the lowest best and average fitness values in the lowest best and average execution times, 

respectively, as well as the highest success rate. 

Table 16. Investigating the effect of swapping probability for input instance, LLR. 

Input instance  

LLR 

Fitness value Execution time (s) Success 

rate Best Worst Average STD CV (%) Best Worst Average STD 

Swapping probability = 0.4 301 303 301.6 0.9 0.29 0.85 5.23 2.1 0.33 55% 

Swapping probability = 0.45 301 303 301.5 0.55 0.18 1.27 5.66 2.2 1.36 63% 

Swapping probability = 0.5 301 305 301.48 0.93 0.3 0.3 5.5 1.85 1.4 67% 

Swapping probability = 0.55 301 303 301.5 0.4 0.13 1.2 2.6 2.4 1.6 65% 

Swapping probability = 0.6 301 303 301.5 0.7 0.23 1.1 4.9 2.2 1.1 64% 

In Tables 17–19, experimental results that investigate the effect of parameter setting to algorithms’ 

performance and behavior regarding input instance, BCV4-13.1, are presented.  

As shown in Table 17, setting the first phase’s number of cycles equal to 1 assists the algorithm in 

achieving the lowest best and average fitness values in the lowest best and average execution times. 

For this specific input instance, if we do not use the first phase at all (first phase cycles = 0), 

experimental results are much less the same.  

Table 17. Investigating the effect of first phase’s number of cycles for input  

instance, BCV4-13.1. 

Input instance  

BCV4-13.1 

Fitness value Execution time (s) Success 

rate Best Worst Average STD CV (%) Best Worst Average STD 

First phase cycles = 0 10 10 10 0 0 5.84 7.23 6.21 0.52 100% 

First phase cycles = 1 10 10 10 0 0 3 14.2 7.1 2.65 100% 

First phase cycles = 2 10 10 10 0 0 6.95 12.3 8.43 1.66 100% 

First phase cycles = 3 10 10 10 0 0 7.46 14.4 10.36 1.99 100% 

First phase cycles = 4 10 10 10 0 0 9.42 14.3 10.99 1.45 100% 

First phase cycles = 5 10 10 10 0 0 9.35 15 13.15 1.77 100% 
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As shown in Table 18, setting the value of population size equal to 2 assists the algorithm in 

achieving the lowest best and average fitness values in the lowest best and average execution  

times, respectively. 

Table 18. Investigating the effect of population size for input instance, BCV4-13.1. 

Input instance  

BCV4-13.1 

Fitness value Execution time (s) Success 

rate Best Worst Average STD CV (%) Best Worst Average STD 

POPSIZE = 1 10 10 10 0 0 5.3 8.5 6.98 2.1 100% 

POPSIZE = 2 10 10 10 0 0 3 14.2 7.1 2.65 100% 

POPSIZE = 3 10 10 10 0 0 6.2 8 7.23 0.64 100% 

POPSIZE = 4 10 10 10 0 0 6 8.3 6.95 0.9 100% 

POPSIZE = 5 10 10 10 0 0 6.4 9.8 7.8 1.31 100% 

As shown in Table 19, setting the value of swapping probability equal to 0.97 assists the algorithm 

to achieve the lowest best and average fitness values in the lowest best and average execution  

times, respectively. 

Table 19. Investigating the effect of swapping probability for input instance, BCV4-13.1. 

Input instance  

BCV4-13.1 

Fitness value Execution time (s) Success 

rate Best Worst Average STD CV (%) Best Worst Average STD 

Swapping probability  

= 0.85 
10 10 10 0 0 5.72 7.8 7.3 0.51 100% 

Swapping probability  

= 0.9 
10 10 10 0 0 5.23 7.55 7.3 0.61 100% 

Swapping probability  

= 0.95 
10 10 10 0 0 5.14 7.45 7.2 0.69 100% 

Swapping probability  

= 0.97 
10 10 10 0 0 3 14.2 7.1 0.7 100% 

Swapping probability  

= 0.99995 
10 10 10 0 0 3.87 22.1 12.45 6.61 100% 

In Tables 20–22, experimental results that investigate the effect of parameter setting to algorithms’ 

performance and behavior regarding input instance, WHPP, are presented.  

As shown in Table 20, setting the first phase’s number of cycles equal to 1 assists the algorithm in 

achieving the lowest best and average fitness values in the lowest best and average execution times. 

Except for that, if we do not use the first phase at all (first phase cycles = 0), execution times and 

success rate are rather worse. 
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Table 20. Investigating the effect of first phase’s number of cycles for input  

instance, WHPP. 

Input instance  

WHPP 

Fitness value Execution time (s) Success 

Rate Best Worst Average STD CV (%) Best Worst Average STD 

First phase cycles = 0 5 7 5.2 0.63 12.1 16.45 97.43 43.3 21.8 90% 

First phase cycles = 1 5 5 5 0 0 9.1 27.2 16.2 5.9 100% 

First phase cycles = 2 5 8 5.3 0.95 17.9 25.74 42.4 37 5.4 90% 

First phase cycles = 3 5 5 5 0 0 23.43 51.6 33.8 9.35 100% 

First phase cycles = 4 5 5 5 0 0 25.19 39.9 34.3 5.6 100% 

First phase cycles = 5 5 5 5 0 0 21 54.3 38 9.7 100% 

As shown in Table 21, setting the value of population size equal to 2 assists the algorithm in 

achieving the lowest best and average fitness values in the lowest best and average execution  

times, respectively. 

Table 21. Investigating the effect of population size for input instance, WHPP. 

Input instance  

WHPP 

Fitness value Execution time (s) Success 

rate Best Worst Average STD CV (%) Best Worst Average STD 

POPSIZE = 1 5 8 5.3 0.95 17.9 9.9 78.2 34.5 20.84 90% 

POPSIZE = 2 5 5 5 0 0 9.1 27.2 16.2 5.9 100% 

POPSIZE = 3 5 7 5.2 0.63 12.12 12.4 58.1 31 16.8 90% 

POPSIZE = 4 5 8 5.3 0.95 17.9 19.2 51.3 33.6 10.71 90% 

POPSIZE = 5 5 5 5 0 0 18.5 89.8 37.6 21.9 100% 

As shown in Table 22, setting the value of swapping probability equal to 0.45 assists the algorithm 

in achieving the lowest best and average fitness values in the lowest best and average execution  

times, respectively. 

Table 22. Investigating the effect of swapping probability for input instance, WHPP. 

Input instance  

WHPP 

Fitness value Execution time (s) Success 

rate Best Worst Average STD CV (%) Best Worst Average STD 

Swapping probability = 0.4 5 8 5.3 0.95  38.4 87.3 55 14.76 90% 

Swapping probability = 0.45 5 5 5 0 0 9.1 27.2 16.2 5.9 100% 

Swapping probability = 0.5 5 5 5 0 0 7.72 50.25 20 10.97 100% 

Swapping probability = 0.55 5 5 5 0 0 19.23 98.2 37.3 22.7 100% 

Swapping probability = 0.6 5 5 5 0 0 24.3 54.4 40.3 10.53 100% 

In Tables 23–25, experimental results that investigate the effect of parameter setting to algorithms’ 

performance and behavior regarding input instance, HED01, are presented.  
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As shown in Table 23, setting the first phase’s number of cycles equal to 1 assists the algorithm in 

achieving the lowest best fitness value = which is the lowest fitness value ever reported in the 

literature, in the lowest execution time. Except for that, if we do not use the first phase at all  

(first phase cycles = 0), the lowest best fitness value achieved is rather worse. 

Table 23. Investigating the effect of first phase’s number of cycles for input  

instance, HED01. 

Input instance  

HED01 

Fitness value Execution time  Success 

rate Best Worst Average STD CV (%) Best Worst Average STD 

First phase cycles = 0 131 144 136 4.24  1 min, 30 s 4 min, 28 s 3 min, 6 s 0.97 8% 

First phase cycles = 1 129 156 143.28 7.88 5.5 29.1 s 5 min, 40 s 2 min, 47 s 2.13 6% 

First phase cycles = 2 131 146 135.9 5.82  1 min, 28 s 5 min, 15 s 3 min, 40 s 1.37 8% 

First phase cycles = 3 130 142 134.7 4.34  1 min, 31 s 6 min, 33 s 4 min 1.23 7% 

First phase cycles = 4 130 138 132.8 2.53  2 min, 6 s 5 min, 36 s 4 min 1.13 9% 

First phase cycles = 5 132 150 140.7 5.17  2 min, 12 s 5 min, 29 s 4 min 1.22 7% 

As shown in Table 24, setting the value of population size equal to 2 assists the algorithm in 

achieving the lowest best fitness value, which is the lowest fitness value ever reported in the literature. 

Table 24. Investigating the effect of population size for input instance, HED01. 

Input instance  

HED01 

Fitness value Execution time  Success 

rate Best Worst Average STD CV (%) Best Worst Average STD 

POPSIZE = 1 133 151 142 7.69 5.4 2 min, 57 s 6 min 4 min, 18 s 1.1 12% 

POPSIZE = 2 129 156 143.28 7.88 5.5 29.1 s 5 min, 40 s 2 min, 47 s 2.13 6% 

POPSIZE = 3 132 151 139.6 6.63 4.76 2 min, 20 s 4 min, 50 s 3 min, 30 s 0.78 10% 

POPSIZE = 4 131 146 139.5 5.15 3.77 1 min, 30 s 5 min, 30 s 3 min, 40 s 1.04 9% 

POPSIZE = 5 131 147 136.7 5.68 4.15 2 min, 45 s 12 min, 25 s 5 min 2.79 11% 

As shown in Table 25, setting the value of swapping probability equal to 0.85 assists the algorithm 

in achieving the lowest best fitness value, which is the lowest fitness value ever reported in the 

literature, in the lowest execution time. 

Table 25. Investigating the effect of swapping probability for input instance, HED01. 

Input instance  

HED01 

Fitness value Execution time Success 

rate Best Worst Average STD CV (%) Best Worst Average STD 

Swapping probability = 0.8 131 151 137.9 7.31  1 min, 20 s 4 min, 28 s 2 min, 55 s 0.93 5% 

Swapping probability = 0.82 132 148 138.5 5.28  2 min, 6 s 6 min, 26 s 3 min, 50 s 1.34 6% 

Swapping probability = 0.85 129 156 143.28 7.88 5.5 29.1 s 5 min, 40 s 2 min, 47 s 2.13 6% 

Swapping probability = 0.88 131 135 133.4 1.84  1 min, 35 s 2 min, 30 s 2 min, 30 s 1.01 7% 

Swapping probability = 0.9 130 153 134 7.05  1 min, 50 s 3 min, 7 s 2 min, 5 s 1.62 5% 

6. Conclusions and Future Work 

In this contribution, a generic two-phase stochastic variable neighborhood search algorithm has 

been designed, implemented and applied to the nurse rostering problem in order to create feasible and 
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efficient rosters. The algorithm has been tested with seven different real-world nurse rostering 

instances in order to demonstrate its quality and efficiency. Computational results showed that the 

proposed algorithm achieves better results compared to six other very effective algorithms published in 

the literature that have been applied to the same nurse rostering input instances using the same 

evaluation criteria. Moreover, the proposed algorithm manages in one case to beat the best-known 

fitness achieved in the literature till now. In addition, in the other six cases, it manages to reach the 

best-known fitness achieved in the literature and prove experimentally that there are at least two 

different best ever reported rosters for these instances. Finally, the application of the proposed 

algorithm and its verifications to other newly published nurse rostering instances and to problems 

belonging to other timetabling or scheduling domains will be one of the main issues of our  

future work. 
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