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Abstract: Course timetabling is a combinatorial optimization problem and has been 

confirmed to be an NP-complete problem. Course timetabling problems are different for 

different universities. The studied university course timetabling problem involves hard 

constraints such as classroom, class curriculum, and other variables. Concurrently, some 

soft constraints need also to be considered, including teacher’s preferred time, favorite 

class time etc. These preferences correspond to satisfaction values obtained via 

questionnaires. Particle swarm optimization (PSO) is a promising scheme for solving  

NP-complete problems due to its fast convergence, fewer parameter settings and ability to 

fit dynamic environmental characteristics. Therefore, PSO was applied towards solving 

course timetabling problems in this work. To reduce the computational complexity, a 

timeslot was designated in a particle’s encoding as the scheduling unit. Two types of PSO, 

the inertia weight version and constriction version, were evaluated. Moreover, an 

interchange heuristic was utilized to explore the neighboring solution space to improve 

solution quality. Additionally, schedule conflicts are handled after a solution has been 

generated. Experimental results demonstrate that the proposed scheme of constriction PSO 

with interchange heuristic is able to generate satisfactory course timetables that meet the 

requirements of teachers and classes according to the various applied constraints. 
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1. Introduction 

Course timetabling is a scheduling problem. However, it is far more complicated than general 

scheduling as it involves teachers, students, classrooms, and courses. From a broader perspective, 

course arrangement includes many interrelated issues, such as exams, meetings, administrative 

allocation, etc. [1]. The study by Even and Itai [2] proved that the course timetabling problem is an 

NP-complete problem. Conventionally, course timetabling has been conducted manually. Due to the 

large variety of constraints, resource limitations and complicated human factors involved, course 

timetabling often takes a lot of time and manpower. Using computers to perform course timetabling, 

however, can not only consolidate the preferences of the people concerned but can also enable 

achievement of high satisfaction in spite of the many constraints. Obviously, this results in saving a lot 

of time and thus manpower.  

Ever since the 1960s, scholars have been studying course timetabling problems. Hertz [3] proposed 

using tabu search as the study method to deal with course timetabling problems in two stages 

(TATI/TAG) and emphasized that the approach is suitable for handling problems in large-scale course 

timetabling and test scheduling. Mooney et al. [1] came up with a nonlinear integer programming 

model, setting preference values according to the status of each teacher, to establish the maximum 

classroom utilization rate and teachers’ priority in course timetabling. Masood [4] employed a  

two-stage multi-objective scheduling model for allocation of teachers, courses, and time. Werra [5] 

suggested a restricted coloring theory and used mathematical concepts to apply the theory in course 

timetabling. Ross et al. discussed the state of the art in applying evolutionary algorithms to tackle 

timetabling problems of various kinds [6]. Cambazard et al. [7] used local search and constraint 

programming techniques for solving post enrolment-based course timetabling problems. An initial 

solution generated by Largrangian relaxation and improved by simulated annealing for solving master 

course timetable was proposed by Gunawan et al. [8]. Genetic algorithm (GA) was applied to deal 

with university timetabling derived from various limitations and constraints [9]. Ant colony 

optimization (ACO) algorithm was used to solve the post enrollment course timetabling problem by 

Nothegger et al. [10]. Meanwhile, Shiau [11] solved course scheduling problems by applying hybrid 

particle optimization. Tassopoulos and Beligiannis [12] applied hybrid particle swarm optimization to 

create feasible different Greek high school timetables. A memetic computing scheme named hybrid 

harmony search (HHS) algorithm for solving a university course timetabling problem was proposed by 

Al-Betar et al. [13]. The HHS integrates particle swarm optimization and hill climbing to balance 

exploitation and exploration search. Moreover, a hybrid genetic algorithm and tabu search approach 

was suggested for solving post enrolment course timetabling problems by Jat and Yang [14].  

Considering the great impact of course timetabling results on teaching quality and learning interest, 

this study allows teachers and classes to express their expected course timeslots and preferences to 

help produce course timetabling results that can better meet the expectations of all involved as well as 
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prevent negative influence on teaching and learning as a result of inappropriate course timetabling. As 

stated above, many approximation, heuristics and metaheuristics based algorithms such as nonlinear 

programming, coloring theory, evolutionary algorithm, local search, GA, PSO, and tabu search were 

developed for solving a variety of course timetabling problems. Those algorithms focused on how to 

efficiently seek the best solution in solution space. Among the many algorithms developed for solving 

scheduling problems, particle swarm optimization (PSO) has been proven to be capable of achieving 

remarkable performance. The advantages of less parameter settings required and fast convergence 

make it a popular algorithm applied to a variety of optimization problems. For this reason, PSO has 

been adopted in this study combined with interexchange local search because of its powerful search 

capacity, to find the solutions needed for optimal scheduling. Most studies have applied conventional 

PSO, but herein, a new methodology named standard PSO is applied and investigated. Hence, two 

types of particle swarm optimization are applied; one with inertia weights and the other with 

constriction factors. To reduce the computational complexity, particle encoding is based on timeslots 

rather than the traditional study hour. Moreover, a local search is involved for further exploring the 

neighboring solution space to enhance the solution quality. 

2. Course Timetabling Problem  

The course timetabling problem investigated in this work involves resource allocation constraints; 

under limited resources the conditions with regard to teachers, courses, students, and teaching facilities 

have to be met. The constraints vary with the environment, system and other factors of each college. 

Usually, constraints are divided into hard and soft constraints. Hard constraints are the ones that have 

to be met and must not be violated while the soft ones should be met and not be violated. In most 

Taiwanese universities, a class consists of a large group of students who share a major and go to most 

classes together. The hard constraints taken into consideration in this study include:  

(1) Each teacher can only teach one class in the same timeslot (teaching two courses at the same 

time is prohibited).  

(2) Each classroom can only be used for one course in the same timeslot (having two courses 

taught in the same classroom at the same time is not permitted).  

(3) Each class can only attend one course in any given timeslot.  

(4) A three-credit course must be arranged in consecutive hours, not on two separate days or with 

an interrupting lunch break.  

(5) No courses are to be conducted in the third and fourth hours each Thursday as that is the time 

for the weekly school (class) assembly and for the class tutor.  

(6) According to regulations, teachers holding first-level supervisory positions are to teach two 

classes each week. 

(7) Teachers concurrently holding first-level and second-level administrative positions or 

supervisory positions of academic units are not to teach any classes on Thursday afternoon.  

Concurrently, the soft constraints taken into consideration are as follows: 

(1) Class time conflicts between the required courses of each year should be avoided to facilitate 

students’ course retake and credit makeup.  
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(2) Course timetabling should be conducted according to the timeslot preferences of teachers and 

students as well as the levels of preference. 

(3) Each teacher may not teach more hours than the limit stipulated by the undergraduate 

department or graduate institute.  

(4) Each full-time teacher must teach classes for at least three days a week. 

3. Particle Swarm Optimization Algorithm 

Particle Swarm Optimization (PSO) was developed by Kennedy and Eberhart [15] in 1995. In PSO, 

a bird of a flock is represented as a particle, and the swarm is composed of a group of particles. The 

position of each particle can be regarded as the Candidate Solution to an optimization problem. Every 

particle is given a Fitness Function designed in correspondence with the corresponding problem. When 

each particle moves to a new position in the search space, it will remember its personal best (Pbest). In 

addition to remembering its own information, each particle will also exchange information with the 

other particles and remember the global best (Gbest). Then, each particle will revise its velocity and 

direction in accordance with its Pbest and the Gbest to move toward the optimal value and find the 

optimal solution. With the advantages of simple and easy application, less parameter setting required, 

and decent performance, PSO has been adopted in many fields, such as TSP [16], flowshop [17],  

VRP [18], task-resource assignment in grid [19], special scheduling [20,21], etc. Hence, it has also 

been applied in this study to establish the optimal timetabling for university courses.  

To begin a PSO algorithm, the initial velocity and position of each particle in a group of particles 

are randomly determined. Then, the evolving process is as follows: 

(1) The initial position and velocity of each particle in the Nth dimension are determined randomly. 

(2) The fitness value of each particle is assessed according to the defined objective function. 

(3) If the fitness value of each particle’s current location is better than its Pbest, the Pbest is set to 

the current position.  

(4) The fitness value of the particle is compared with that of the Gbest. If it is better, the Gbest  

is updated. 

(5) Equation (1) as shown below is applied to update the velocity and position of each particle.  

(6) The process is repeated from Step 2 until the termination criterion is met or the optimal 

solution in the universe is obtained. 
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(1)  

In the equation,  

Vid is the velocity component of the ith particle in the dth dimension. 

Xid is the position component of the ith particle in the dth dimension. 

c1 is the cognitive learning factor. 

c2 is the social learning factor. 

Pid is the position component of the Pbest of the ith particle in the dth dimension. 

Pgd is the position component of the Gbest in the dth dimension. 

Rand() is a random number between [0, 1]. 
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3.1. The Inertia Weights  

Since PSO was founded, many derivative algorithms have been developed. In Equation (1), the 

particle advancement guided by cognitive and social learning factors belongs to the local search 

ability, whereas Term 1 on the right hand side of Equation (1) is the advancement along the velocity 

direction of the particle itself and belongs to the global search ability. Therefore, Shi and Eberhart 

(1998) proposed the inertial weight value concept [22] and added an inertial weight value (w) to the 

original PSO algorithm, Equation (1), to balance the global search ability and the local search ability, 

as shown in Equation (2) and thereby boost the capability to locate the optimal solution and 

convergence rate. 
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 

        

 
 (2)  

This version of PSO is the most commonly used and is referred to as the conventional PSO in  

this study.  

3.2. Constriction Factors  

Clerc [23] (1999) proposed the constriction factor method; a constriction factor is added into the 

PSO prototype to ensure stable convergence. Eberhart and Shi [24] conducted a comparative analysis 

on inertia weights and constriction factors and discovered that the best convergence effect can be 

achieved by defining Vmax = Xmax (the maximum velocity is confined to the maximum position range) 

when a constriction factor is applied. Bratton and Kennedy later defined this as the Standard PSO 

(SPSO) [25]. The particle velocity update equation modified according to the constriction factor based 

PSO is as shown below: 
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 (3)  

In the equation, K is the constriction factor and constant φ is the sum of learning factors c1 and c2. 

Kennedy and Clerc [26] discovered in their study that when constant φ is smaller than four, 

convergence of the entire swarm cannot be guaranteed. On the other hand, when it is larger than four, 

not only do the particles move quickly and achieve convergence, but the convergence can also take 

place at an appropriate velocity. Normally, the settings are K = 0.72984, and c1 = c2 = 2.05. In this study, 

experiments were conducted with the conventional PSO and the SPSO and the results  

comparatively analyzed. 

3.3. Particle Encoding 

The four main factors in course timetabling are teachers, courses, students (classes), and classrooms 

together with other teaching facilities. The combination of these four factors is defined as the particle 

position and each particle represents a solution group. The objective is to obtain the optimal particle 

position, (the optimal course timetabling solution). Due to teachers’ preference, the 3 h of 3-credit 
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courses must be consecutive, without a lunch break within. Hence, the first, second and third hours are 

considered a timeslot, the second, third, and fourth hours another timeslot, and so forth. Basically, 

there are 40 course hours in a week’s timetable for Taiwanese universities, i.e., 8 h a day, 5 days a 

week. To reduce the complexity of timetabling and particle encoding and decrease computational 

complexity, 20 timeslots are designated in the course timetabling instead of using a 40-period weekly 

class schedule. Restated, the 8 class hours in each day are separated into 4 timeslots and there are  

20 timeslots each week (4 timeslots a day, 5 days a week as shown in Figure 1). As a result, the  

40-hour weekly class schedule is reduced to a 20-timeslot class schedule and the encoding of the 

particles can thus be simplified while the complexity in calculation also decreases. Subsequently, the 

20-timeslot class schedule of each teacher is designated as a particle with a one-dimensional vector 

(Figure 2). Similarly, each class schedule and each classroom schedule are also designated as particles 

with one-dimensional vectors. In the end, each particle has three dimensions and each dimension 

represents a one-dimensional vector corresponding to the schedule of the teacher, class, and  

classroom respectively. 

Figure 1. Representation of timeslots for course timetabling. 
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Figure 2. Particle encoding scheme. 

 

If there are 10 teachers, the particle position vector then has the value of 20 × 10 = 200 elements. 

The elements in the particle are between 1 and 200. There are 5 days a week and 4 timeslots per day. 

Elements 1–20 stand for the class schedule of the first teacher, 21–40 for the second teacher, 41 to 60 

for the third teacher, and so on as shown in Figure 2. First, each particle is initialized and the range of 

the initial position is set between 0 and 9 as shown in Figure 3. The range of the initial velocity is set 

between −0.5 and 0.5. The position vector Xh = [Xhi], i = 1–200 is established to represent the particle 

position; h is the particle and i is the element. Next, the element value of Xhi is rounded to the nearest 

integer [0, 9] and temporarily stored in Shi. Then, sequencing is conducted according to the initial value 

of Shi as shown in Figure 4 to extract numbers of maximum values of the Shi, the quantity to be 

extracted depending on the number of hours each teacher teaches. Suppose the first and the second 

teachers teach three courses each and three maximum values are then extracted as shown in Figure 5. 

The timeslot arrangement for these two teachers is made according to the position numbers of these 

three maximum Shi values to find out whether there is any conflict between the teacher, class, and 

classroom schedules. If there is no conflict, the course code is put in the teaching schedule of the first 

teacher, the class schedule, and the schedule of the classroom. If there is any conflict, the time slot 

arrangement is then exchanged with the timeslot in the fourth arrangement as shown in Figure 6. If any 

conflict appears again, the exchange is made with the timeslots in the fifth arrangement, and so on. The 

teacher’s preference values corresponding to the teacher schedule and the class’s preference values 

corresponding to the class schedule are then added up to calculate the fitness value. Next, the fitness 

value of each particle is assessed, the personal best (Pbest) and global best (Gbest) are updated, and 

finally the velocity and position of each particle are updated.  
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Figure 3. Particle initialization. 

 

Figure 4. Shi after sorting. 
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Figure 5. Three maximum values extracted. 

 

Figure 6. Example of a conflict process of a teacher’s schedule. 

No. 1 20 18 2 4 5 8 10 17 3 19 7 11 12 6 9 13 15 16 14 

Xh 8 8 8 8 7 7 7 7 7 6 5 4 4 4 3 3 3 2 1 0 

                     

No. 1 20 4 2 18 5 8 10 17 3 19 7 11 12 6 9 13 15 16 14 

Xh 8 8 7 8 8 7 7 7 7 6 5 4 4 4 3 3 3 2 1 0 

Extract 1, 20, 4. 

Since each week is divided into 20 timeslots, when, for example, a 3-hour course is arranged in the 

first timeslot (the first, second and third hours) on Monday, it will be impossible for that teacher to 

have another 3-hour course in the second timeslot (the second, third and fourth hours) and the fourth 

hour in the morning will be left idle. If Tuesday afternoon is open, it means two 2-hour courses, one  

4-hour course, or one 3-hour course can be arranged. In other words, the system has to be able to 

assess whether a 2-hour, 3-hour, or 4-hour course is suitable. If a 2-hour course is arranged, another  

2-hour course can be scheduled. If it is a 3-hour or 4-hour course, only one course can be scheduled. 

3.4. Fitness Function 

In this study, the overall satisfaction is affected by the satisfactions of the class and teacher. The 

preferred timeslot and level of preference filled in by each class and teacher are assessed to understand 

the priorities in course timetabling. Five represents the most favorite timeslot, 4 the second favorite,  

3 an acceptable timeslot, 2 a mediocre timeslot, and 1 the least favorite timeslot. A value of −10 

represents a timeslot where no classes should be scheduled. In the evolving process of the PSO 

scheme, 10 timeslots are avoided to prevent situations where a teacher is not available. Table 1 shows 

an example of preferred timeslots, based on the results of a questionnaire administered.  
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Table 1. Preference timeslot example. 

Timeslot Mon Tue Wed Thu Fir 

1 1 5 3 5 4 

2 1 4 2 5 3 

Lunch Break 

3 2 4 2 −10 2 

4 2 4 −10 −10 2 

The principal objective of this study was to find the optimal satisfaction of teachers and classes with 

the results of course timetabling. Since soft constraints can increase such satisfaction, the fitness 

function (satisfaction value) is defined as the result of subtracting the soft constraint penalty function 

from the total value of teacher and class satisfactions of the course timetable. Hence, the definition of 

the fitness function in this work is as shown in Equation (4). 

_ _t c it c i
fitness preference level preference level Penalty      (4) 

In the equation, preference_levelt represents t teacher’s preference level, and preference_levelc the c 

class’s preference level. Penaltyi is the penalty function for violation of the ith soft constraint. The 

fitness function is applied in the iteration to measure the fitness value. The larger it is, the better the 

solution the particle represents and the fewer are the soft constraints violated.  

3.5. PSO with Local Search 

As the search by PSO in the solution space evolves, movement is made according to the personal 

best of each particle and the global best. Therefore, after generation evolution, the search area 

decreases and there is a high probability that each particle will be trapped on the local optimal solution 

and become unable to escape from the local optima. Although the particles have good searching 

capability in local areas, they are unable to find better solutions outside these areas and thus lose the 

opportunity to locate the optimal solution in the universe. Hence, in this study, local search 

mechanisms are consolidated and a disturb mechanism [27] is added in the movement of the particles 

to increase the probability of particles escaping from the local optimal solution and to find the optimal 

solution in the universe quickly. Local search is performed after the movement and position change of 

particles in PSO. The areas around the position of each particle obtained using PSO are examined in 

the hope of finding a better solution to update the pbest and the gbest. The interchange heuristic, which 

swaps two randomly selected elements, is applied to the local search to explore the adjacent solution 

space, thereby improving the quality of the solution by helping to avoid convergence to the locally  

optimal solution. Such complementation boosts the performance of PSO through optimization of the 

solution search. 

4. Experimental Results and Discussion 

This study was conducted by analyzing a situation involving 16 teachers, 10 classes, and  

10 classrooms. The goal was to produce the most satisfactory class schedule to meet the various 

constraints as well as the expectations of the teachers and the classes. The influence of the different 
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parameters in the algorithm on the level of satisfaction with the course timetabling results was also 

examined and the experimental results proved the adopted framework was effective.  

The course timetabling process was further analyzed as follows: 

(1) Prioritization of teachers 

The prioritization of teachers in course timetabling will have a significant effect on the results 

of course timetabling, therefore, no specific teacher’s timetable should be assigned first and 

they are thus assigned randomly.  

(2) Course data  

The data regarding the courses a teacher will teach needs to be established before the semester 

begins. Such data includes the teacher code, course code, class code of the class to take the 

course in question, teacher’s status, number of class hours, classroom, etc.  

(3) Classroom data 

Classrooms involve certain particular factors. A teacher is assigned to maintain and manage 

each one of the classrooms of the Computer Science and Information Engineering 

Department where this study was performed and all the classes to be taught by a teacher are 

normally arranged to be conducted in the classroom that the teacher is assigned to maintain 

and manage. Restated, if classroom A is placed under the management of teacher A, the 

courses that teacher A teaches will be preferably conducted in classroom A. Since the number 

of teachers in the department is larger than the number of classrooms, some classrooms are 

placed under the management of two or more teachers.  

(4) Handling of teacher, class and classroom schedules conflicts 

A class time conflict may happen when two teacher timeslots, classroom timeslots and course 

timeslots overlap and it becomes an infeasible solution. To avoid an endless search for 

solutions to class time conflicts in all timeslots, such conflicts are singled out from timeslots 

as being infeasible solutions and assessed whether they should be discarded according to the 

satisfaction level. 

4.1. Particle Quantity Analysis 

Figure 7 shows the results of analysis of the evolution of 5, 10, 15, 20, 25, 30 and 35 particles to 

observe the influence of different numbers of particles on the overall fitness value of course 

timetabling. The response of standard PSO (denoted by SPSO) and conventional PSO (denoted by 

PSO) to the quantity of particles is tested. Apparently, larger numbers of particles do not result in 

better fitness values. When the evolution of each quantity of particles is conducted for  

6000 generations, the best fitness value comes from when the number of particles is 30. 
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Figure 7. Swarm sizes verse average fitness (SPSO: X = 0.72984, c1 = 2, c2 = 2, Vmax = 3; 

PSO: w = 0.7, c1 = 2, c2 = 2, Vmax = 3). 

 

4.2. Inertia Weight Analysis 

The w, inertia weight value setting will have an effect on the velocity of particle position update and 

also indirectly on the next position the particle will move to. If the w value setting is inappropriate, it is 

impossible to explore unknown areas and the search for the personal best and global best  

will also be affected. Figure 8 shows the satisfaction (fitness) value obtained from tests conducted 

(6000 iterations) with PSO using different w and Vmax values. Apparently, there is higher satisfaction 

obtained when w = 0.8 and Vmax = 3. 

Figure 8. Particle swarm optimization (PSO), c1 = 2, c2 = 2. 

 

4.3. Learning Factor Analysis 

Using the better average satisfaction value obtained when w = 0.8 to analyze learning factors c1 and 

c2, testing results with PSO are shown in Figure 9. The average fitness (380.5714) for c1 = 2, c2 = 2 is 

higher than the average fitness (373.1429) for c1 = 2.05, c2 = 2.05. Figure 10, testing with SPSO, 

indicates that the results are also better when c1 = 2.0, c2 = 2.0 (average fitness is 378.7143 for c1 = 2.0, 

c2 = 2.0 and 373.1429 for c1 = 2.05, c2 = 2.0.5), the same as the outcome of using PSO.  
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Figure 9. PSO comparison between c1 = c2 = 2 and c1 = c2 = 2.05 (w = 0.8). 

 

Figure 10. SPSO comparison between c1 = c2 = 2 and c1 = c2 = 2.05 (χ = 0.72984). 

 

4.4. Performance Comparison between PSO and SPSO with/without Local Search 

In this Section, PSO, SPSO, PSOLS (PSO with local search) and SPSOLS (SPSO with local 

search), associated with corresponding learning factors and Vmax 
are applied to analyze the differences 

in search performance. The results are as shown in Tables 2–5. They indicate that after local search  

is added, regardless of the differences of learning factors and other parameters, the outcomes are 

significantly better than those obtained by using PSO or SPSO alone. For PSOLS, when c1 = 2, c2 = 2, 

w = 0.8 and Vmax = 4, the average satisfaction level (406.8) is higher than when c1 = 2, c2 = 2, w = 0.8 

and Vmax = 3. Additionally, for SPSOLS, c1 = 2, c2 = 2, χ = 0.72984 and Vmax = 3 yields higher average 

satisfaction level (411.6) than applying c1 = 2, c2 = 2, χ = 0.72984 and Vmax = 4. Moreover, the 

performance by utilizing SPSOLS is better than that of applying PSOLS. This confirms that SPSOLS 

can improve the quality of the solutions as proposed in this study. 
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Table 2. Performance comparison among PSO and PSOLS (PSO with local search)  

(c1 = 2.05, c2 = 2.05, w = 0.8). 

Iteration 
PSO  

V = −3~3 

PSOLS  

V = −3~3 

PSO  

V = −4~4 

PSOLS  

V = −4~4 

2000 384 398 368 402 

3000 370 402 385 414 

4000 380 402 400 396 

5000 396 416 396 410 

6000 375 404 380 402 

Average 381 404.4 385.8 404.8 

Table 3. Performance comparison among PSO and PSOLS (c1 = 2, c2 = 2, w = 0.8). 

Iteration 
PSO  

V = −3~3 

PSOLS  

V = −3~3 

PSO  

V = −4~4 

PSOLS  

V = −4~4 

2000 362 386 386 400 

3000 370 403 382 412 

4000 396 404 390 412 

5000 390 404 374 390 

6000 368 402 361 420 

Average 377.2 399.8 378.6 406.8 

Table 4. Performance comparison among SPSO and SPSOLS (SPSO with local search)  

(c1 = 2.05, c2 = 2.05, w = 0.72984). 

Iteration 
SPSO  

V = −3~3 

SPSOLS  

V = −3~3 

SPSO  

V = −4~4 

SPSOLS  

V = −4~4 

2000 381 398 376 378 

3000 371 384 392 410 

4000 396 418 394 410 

5000 380 384 374 419 

6000 392 415 392 418 

Average 384 399.8 385.6 407 

Table 5. Performance comparison among SPSO and SPSOLS (c1 = 2, c2 = 2, χ = 0.72984). 

Iteration 
SPSO  

V = −3~3 

SPSOLS  

V = −3~3 

SPSO  

V = −4~4 

SPSOLS  

V = −4~4 

2000 400 412 375 401 

3000 408 416 394 412 

4000 402 416 410 424 

5000 398 390 380 412 

6000 406 424 398 408 

Average 402.8 411.6 391.4 411.4 
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Finally, course timetabling that achieves the optimal satisfaction for the 16 teachers, 10 classes and 

10 classrooms is simulated using PSOLS and SPSOLS. The number of particles was set at 30, the 

number of evolutions 6000, c1 = 2, c2 = 2, and V = −4~4 (for PSOLS)/V = −3~3 (for SPSOLS) to run 

the experiment. The changes in the fitness are as shown in Figures 11 and 12. 

Figure 11. Fitness evolution of SPSOLS (c1 = 2, c2 = 2, χ = 0.72984, V = −3~3). 

 

Figure 12. Fitness evolution PSOLS (c1 = 2, c2 = 2, w = 0.8, V = −4~4). 

 

5. Conclusions  

PSO is a promoting scheme for solving complex problems such as course timetabling. A new PSO 

named standard PSO (SPSO) has been applied and investigated. Thus, this work discusses the 

application of different types of PSO (PSO and SPSO) to find solutions to solve optimization problems 

in university course timetabling. Concurrently, to reduce the computational complexity, particle 

encoding is designated on the basis of timeslot rather than study hour. Moreover, an interchange 

heuristic is included to explore the neighboring solution space and enhance solution quality. The 

solutions found in accordance with the characteristics of the problem have been able to improve the 

satisfaction of the teachers and classes toward the schedule. Any conflicts between the teacher 

schedules, the class schedules, or the classroom schedules were also handled in this work. 
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Additionally, premature convergence was prevented by adding an interchange local search mechanism. 

The following conclusions have been established:  

(1) With local search added in PSO and SPSO, the satisfaction (fitness value) of the teachers and 

classes is better than the fitness value obtained without adding local search. This confirms that 

the quality of solutions can be improved by applying the proposed scheme in this paper.  

(2) The results from application of different parameters show that use of SPSOLS obtains the 

best solution (the best fitness of 424 and maximum average fitness of 411.6). Restated, 

SPSOLS outperforms PSOLS.  

The above conclusions indicate that application of the concept of combining SPSO with local 

search proposed in this study in finding solutions to optimization problems in course timetabling is 

sound and results in better solutions. 
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