
Algorithms 2013, 6, 197-226; doi:10.3390/a6020197
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Enforcing Security Mechanisms in the IP-Based Internet of
Things: An Algorithmic Overview
Simone Cirani *, Gianluigi Ferrari and Luca Veltri

Department of Information Engineering, University of Parma, Parco Area delle Scienze 181/A, 43124,
Parma, Italy; E-Mails: gianluigi.ferrari@unipr.it (G.F.); luca.veltri@unipr.it (L.V.)

* Author to whom correspondence should be addressed; E-Mail: simone.cirani@unipr.it;
Tel.: +39-0521-905741; Fax: +39-0521-905758.

Received: 6 December 2012; in revised form: 8 February 2013 / Accepted: 7 March 2013 /
Published: 2 April 2013

Abstract: The Internet of Things (IoT) refers to the Internet-like structure of billions of
interconnected constrained devices, denoted as “smart objects”. Smart objects have limited
capabilities, in terms of computational power and memory, and might be battery-powered
devices, thus raising the need to adopt particularly energy efficient technologies. Among
the most notable challenges that building interconnected smart objects brings about, there
are standardization and interoperability. The use of IP has been foreseen as the standard
for interoperability for smart objects. As billions of smart objects are expected to come
to life and IPv4 addresses have eventually reached depletion, IPv6 has been identified as a
candidate for smart-object communication. The deployment of the IoT raises many security
issues coming from (i) the very nature of smart objects, e.g., the adoption of lightweight
cryptographic algorithms, in terms of processing and memory requirements; and (ii) the use
of standard protocols, e.g., the need to minimize the amount of data exchanged between
nodes. This paper provides a detailed overview of the security challenges related to the
deployment of smart objects. Security protocols at network, transport, and application
layers are discussed, together with lightweight cryptographic algorithms proposed to be used
instead of conventional and demanding ones, in terms of computational resources. Security
aspects, such as key distribution and security bootstrapping, and application scenarios, such
as secure data aggregation and service authorization, are also discussed.

Keywords: security; lightweight cryptography; Internet of Things (IoT); smart objects;
secure communication protocols; secure data aggregation



Algorithms 2013, 6 198

1. Introduction

The Internet of Things (IoT) is an emerging concept that refers to billions of interconnected
(non-human) information sources, also denoted as “smart objects”, typically equipped with sensors or
actuators, a tiny microprocessor, a communication interface, and a power source. Existing deployed
smart objects typically use proprietary technologies, tailored to one specific application, which results
in poor, if any, interoperability and thus limited diffusion on a large scale. Building interconnected and
interoperable smart objects requires the adoption of standard communication protocols. International
organizations, such as the Internet Engineering Task Force (IETF) and the IPSO Alliance, promote the
use of the Internet Protocol (IP) as the standard for interoperability for smart objects. As billions of smart
objects are expected to come to life and IPv4 addresses have eventually reached depletion, IPv6 [1] has
been identified as a candidate for smart-object communication. The protocol stack that smart objects will
implement will try to match classical Internet hosts in order to make it feasible to create the so-called
Extended Internet, that is, the aggregation of the Internet with the IoT.

Security in the IoT scenarios is a crucial aspect that applies at different levels, ranging from
technological issues to more philosophical ones, such as privacy and trust, especially in scenarios like
Smart Toys. The security challenges derive from the very nature of smart objects and the use of standard
protocols. In [2], the security challenges and requirements for an IP-based IoT are presented by analyzing
existing Internet protocols to be applied to IoT and the limitations and problems that such a solution
might introduce. In [3], the authors summarize security threats in IoT as follows:

1. cloning of smart things by untrusted manufacturers;
2. malicious substitution of smart things during installation;
3. firmware replacement attack;
4. extraction of security parameters since smart things may be physically unprotected;
5. eavesdropping attack if the communication channel is not adequately protected;
6. man-in-the-middle attack during key exchange;
7. routing attacks;
8. denial-of-service attacks;
9. privacy threats.

Threats 1, 2, 3, and 4 are related to the physical nature of smart objects, which are typically deployed
in public areas and cannot be constantly supervised, thus leading to potential damages or counterfeits.
Threats 5, 6, 7, and 8 are examples of security issues due to the fact that one has to deal with objects
that communicate with each other. Finally, Threat 9 is related to the fact that smart objects might deal
with personal or sensible data, which, if intercepted by unauthorized parties, may create ethical and
privacy problems.

While it is possible to cope with physical nature-related issues only by adopting safe supplying
and installation measures, such as avoiding untrusted manufacturers and installers, and by trying to
protect smart objects in safe places, all other security threats can be tackled by adopting means, such as
secure communication protocols and cryptographic algorithms, in order to enforce the following basic
security properties:

• Confidentiality: transmitted data can be read only by the communication endpoints;



Algorithms 2013, 6 199

• Availability: the communication endpoints can always be reached and cannot be
made inaccessible;
• Integrity: received data are not tampered with during transmission; if this does not happen, then

any change can be detected;
• Authenticity: data sender can always be verified and data receivers cannot be spoofed.

There is an additional property of security that should always be taken into account: authorization.
Authorization means that data can be accessed only by those allowed to do so and should be made
unavailable to others. This aspect, which requires to identify the communication endpoints, is
particularly relevant in those scenarios where it is necessary to ensure that private data cannot be accessed
by unknown or unauthorized parties.

It is a common opinion that in the near future IP will be the base common network protocol for the
IoT. This does not imply that all objects will be able to run IP. At the opposite, there will always be tiny
devices, such as tiny sensors or Radio-Frequency IDentification (RFID) tags, that will be organized in
closed networks implementing very simple and application-specific communication protocols and that
eventually will be connected to an external network through a proper gateway. However, it is foreseen
that all remaining small networked objects will exploit the benefits of IP and corresponding protocol
suite.

In [4], the author tries to define the following pair of classes for constrained devices, in terms of
memory capacity, in order to be used as a rough indication of device capabilities:

• class 1: RAM size = ∼10 KB, Flash size = ∼100 KB;
• class 2: RAM size = ∼50 KB, Flash size = ∼250 KB;

Some of these networked objects, with enough memory, computational power, and power capacity,
will simply run existing IP-based protocol suite implementations. Some others will still run standard
Internet protocols, but may benefit from specific implementations that try to achieve better performance
in terms of memory size, computational power, and power consumption. Instead, in other constrained
networked scenarios, smart objects may require additional protocols and some protocol adaptations in
order to optimize Internet communications and lower memory, computational, and power requirements.
There is currently a large effort within the IETF in the direction of extending existing protocols for
resource-constrained networked environments. Some of the current IETF working groups targeted
to these environments are: the Constrained RESTful Environments (CoRE) [5], IPv6 over Low
power WPAN (6LoWPAN) [6], Routing Over Low power and Lossy networks (ROLL) [7], and the
Light-Weight Implementation Guidance (LWIG) [8] working groups.

In Figure 1, a typical IP-based IoT protocol stack is depicted and compared with the classical Internet
protocol stack used by standard non-constrained nodes for accessing the World Wide Web. At application
layer, the HTTP [9] protocol is replaced by the Constrained Application Protocol (CoAP) [10], which is
an application layer protocol to be used by resource-constrained devices, offering a REpresentational
State Transfer (REST) service for Machine-to-Machine (M2M) communications, that can be easily
translated to/from HTTP.

Significant reasons for proper protocol optimizations and adaptations for resource-constrained objects
can be summarized as follows.



Algorithms 2013, 6 200

• Smart objects typically use, at physical and link layers, communication protocols (such as IEEE
802.15.4) that are characterized by small Maximum Transmission Units (MTUs), thus leading to
packet fragmentation. In this case, the use of compressed protocols can significantly reduce the
need for packet fragmentation and postponed transmissions.
• Processing larger packets likely leads to higher energy consumption, which can be a critical issue

in battery-powered devices.
• Minimized versions of protocols (at all layers) can reduce the number of exchanged messages.

Figure 1. Comparison between the IoT and the Internet protocol stack for OSI layers.

IP IPv6/6LowPAN 

TCP 

HTTP 

UDP 

CoAP 

Internet Internet of Things 

Network 

Transport 

Application 

Layers 

MAC 

PHY 

MAC 

PHY 

Link 

Physical 

Protocol compression is especially relevant when dealing with security protocols, which typically
introduce higher overhead and increase the size of transmitted data packets. Besides protocol
compression, cross-layer interaction between protocols plays a crucial role. This aspect is particularly
important in order to avoid useless duplication of security features, which might have a detrimental
impact on the computation and transmission performance. For instance, end-to-end security can be
guaranteed by adopting IPSec at the network layer or TLS/DTLS at the transport layer. Combining these
two security protocols results in a very expensive processing both at the secure channel setup phase and
during packet transmission/reception.

Another important issue regarding the introduction of security protocols is interoperability. Security
protocols typically allow the negotiation of some parameters to be used during operations. Such
negotiations might be related to cryptographic and digital signature algorithms. In order to guarantee
full interoperability among smart objects, it is necessary to define a set of mandatory options that all
objects must implement for minimal support. The algorithms supported by an object are declared in a
negotiation phase and a proper choice is then agreed upon by the two communicating parties. It is not
necessary that the mandatory algorithms are standard algorithms used in the Internet, but can be targeted
for constrained environments.

A final remark should be made about the heterogeneous nature of smart objects, whose characteristics
can vary significantly with relevant differences with respect to those of conventional hosts. This means
that the adoption of a suite of security protocols and cryptographic algorithms is a need and a challenge



Algorithms 2013, 6 201

at the same time. Standardization can lead to full interoperability, yet it is extremely difficult to agree on
a set of common protocols and algorithms supported by all devices.

This paper aims at providing an overview of the cryptographic algorithms and security protocols
suitable to deployment of smart objects. The rest of this paper is organized as follows. In Section 2,
an overview of security protocols is presented. Section 3 is dedicated to the description of several
lightweight cryptographic algorithms relevant for IoT scenarios. In Section 4, the focus is on key
distribution and management. In Section 5, secure data aggregation is discussed. Section 6 describes the
problem of authorization and protection of RESTful services in constrained environments. Finally, in
Section 7 some conclusions are drawn.

2. Security Protocols

As already mentioned in Section 1, one of the most important requirements and crucial aspects for
a correct deployment and diffusion of IoT is security. Several challenging security goals should be
achieved, including data confidentiality, data authentication, integrity, service availability, peer entity
authentication, authorization, anonymity, and/or pseudonymity. Since the protocol architecture of
smart objects should adhere to the standard IP architecture (for obvious integration reasons), many
of the security mechanisms already defined and currently used for the Internet can be reused in IoT
scenarios. Moreover, since many of the Internet security protocols have been defined taking into account
the possibility to select and properly configure the used security algorithms and other cryptographic
primitives, such Internet security protocols can still be reused, possibly with proper algorithmic or
configuration modifications.

In this section, the main protocols that can be used for securing IP-based end-to-end communications
between smart objects are recalled, and the main issues related to this type of communications are
discussed. Algorithms and other mechanisms actually used by these protocols are separately discussed
next in the Section 3. According to the protocol stacks depicted in Figure 1, a direct comparison between
possible layered architectures of security protocols in Internet and IoT scenarios is shown in Figure 2.

Figure 2. Comparison between the Internet and the IoT security protocols.

IP/IPSec/HIP IP/IPSec/HIP 

TLS 

HTTPs 

DTLS 

CoAPs 

Internet Internet of Things 

Network 

Transport 

Application 

Layers 

MAC 

PHY 

MAC 

PHY 

Link 

Physical 



Algorithms 2013, 6 202

It is important to observe that the IoT protocol suite depicted in Figure 2 represents just the possible
choices to enforce data protection (at different layers) by a smart object, rather than the actual set
of security mechanisms effectively implemented and simultaneously used at different layers. At the
opposite, in order to minimize the used resources, particular attention has to be devoted to avoid the
repetition of the same functionalities at different layers, if not strictly required.

Referring to the IoT protocol stack of Figure 2, at the application layer there is the CoAP application
protocol that can be used to interact in a request/response manner between smart objects or between
a smart object and a non-constrained (standard) Internet node (possibly by using some intermediate
relay/proxy node). CoAP itself does not provide primitives for authentication and data protection, so
these functions should be implemented directly at the application/service layer (by directly protecting
the data encapsulated and exchanged by CoAP) or at one of the underlying layers. Although data
authentication, integrity, and confidentiality can be provided at lower layers, such as PHY or MAC
(e.g., in IEEE 802.15.4 systems), no end-to-end security can be guaranteed without a high level
of trust on intermediate nodes. However, due to the highly dynamic nature of wireless multi-hop
communications expected to be used to form the routing path between remote end nodes, this kind
of security (hop-by-hop) is not, in general, sufficient. For such reason, security mechanisms at network,
transport, or application level should be considered instead of (or in addition to) PHY and MAC
level mechanisms.

2.1. Network-Layer Security

At network layer, an IoT node can secure data exchange in a standard way by using the Internet
Protocol Security (IPsec) [11]. IPSec was originally developed for IPv6, but found widespread
deployment, first, as an extension in IPv4, into which it was back-engineered. IPSec was an integral
part of the base IPv6 protocol suite, but has since then been made optional. IPSec can be used
in protecting data flows between a pair of hosts (host-to-host communication), between a pair of
security gateways (network-to-network communication), or between a security gateway and a host
(network-to-host communication).

IPSec can provide confidentiality, integrity, data-origin authentication and protection against replay
attacks, for each IP packet (it works at network layer). Such security services are implemented
by two IPSec security protocols: Authentication Header (AH) and Encapsulated Security Payload
(ESP). While the former (AH) provides integrity, data-origin authentication, and optionally anti-replay
capabilities, the latter (ESP) may provide confidentiality, data-origin authentication, integrity, and
anti-replay capabilities.

IPSec AH and ESP define only the way payload data (in clear or enciphered) and
IPSec control information are encapsulated, while the effective algorithms for data origin
authentication/integrity/confidentiality can be specified separately and selected amongst a set of available
cipher suites.

This modularity makes IPSec usable also in the presence of very resource-constrained devices, if
a proper algorithm that guarantees both usability and sufficient security level is selected. This means



Algorithms 2013, 6 203

that, from an algorithmic point of view, the problem moves from the IPSec protocol itself to the actual
cryptographic algorithms. Section 3 is fully dedicated to algorithm-related issues.

The keying material and the selected cryptographic algorithms used by IPSec for securing a
communication are called IPSec Security Association (SA). To establish a SA, IPSec can be
pre-configured (specifying a pre-shared key, hash function and encryption algorithm) or can be
dynamically negotiated by the IPSec Internet Key Exchange (IKE) protocol. Unfortunately, as the
IKE protocol was designed for standard Internet nodes, it uses asymmetric cryptography, which is
computationally heavy for very small devices. For this reason, proper IKE extensions should be
considered using lighter algorithms. These aspects are treated in Section 3.

Other problems related to the implementation of IPSec in constrained IoT nodes include data overhead
(with respect to IP), configuration, and practical implementation aspects. Data overhead is introduced by
the extra header encapsulation of IPSec AH and/or ESP. However, this can be limited by implementing
header compression techniques, similarly to what is done in 6LoWPAN for the IP header. In [12], a
possible compression mechanism for IPSec in 6LoWPAN is proposed and numerically evaluated.

Regarding practical aspects, it is worth to observe that IPSec is often designed for VPNs, thus
making it difficult for them to be dynamically configurable by an application. Moreover, existing
implementations are also hardly compatible with each other and often require manual configuration
to interoperate.

An alternative to using IKE+IPsec is the Host Identity Protocol (HIP) [13]. The main objective of HIP
is to decouple the two functions of host locators (for routing purposes) and host identifiers (for actual host
identification) currently performed by IP addresses. For this purpose, HIP introduces a new namespace
between IP and upper layers specific for host identification based on public cryptography. In HIP, the
host identity (HI) is directly associated with a pair of public/private keys, where the private key is owned
by the host and the public key is used as Host Identifier (HI). HIP defines also an Host Identity Tag (HIT),
a 128-bit representation of the HI based on the hash of HI plus other information, which can be used for
example as unique host identifier at the existing IPv6 API and by application protocols. HIP defines also
an HIP exchange that can be used between IP hosts to establish a HIP security association that in turn
can be used to start secure host-to-host communications based on the (IPSec) ESP protocol [14].

In addition to security, HIP provides methods for IP multihoming and host mobility that are important
features for an IP-based IoT network architecture. Some works are also being carried on to let the
HIP exchange run on very constrained devices, by using proper public-key cryptographic primitives, for
example the ones described in Section 3.

2.2. Transport-Layer Security

In the current IP architecture, data exchange between application nodes can be secured at transport
layer through the standard Transport Layer Security (TLS) and Datagram Transport Layer Security
(DTLS) protocols. TLS is the widest used secure protocol, running on top of the TCP providing to
the application layer the same connection and stream-oriented interface of TCP [15]. In addition,
TLS provides complete secure communication through: peer-entity authentication and key exchange
(using asymmetric cryptography); data authentication, integrity, and anti-replay (through message



Algorithms 2013, 6 204

authentication code); confidentiality (using symmetric encryption). Peer-entity authentication and key
exchange is provided by the TLS Handshake phase, performed at the beginning of the communication.

DTLS, instead, has been introduced more recently in order to provide a security service similar to TLS
on top of UDP [16]. Although it is still poorly supported in standard Internet nodes, it is currently the
reference security protocol for IoT systems since it uses UDP as transport and does not suffer from the
problems originated by the use of TCP in network-constrained scenarios (due to the extremely variable
transmission delay and lossy links).

Both IPSec and DTLS provide the same security features with their own mechanisms at different stack
layers. Moreover the IPSec IKE key agreement reflects almost the same DTLS Handshake function. The
main advantage of securing communications at transport layer with DTLS consists in allowing more
precise access control. In fact, operation at the transport layer allows applications to directly and easily
select which, if any, security service has to be set up. Another practical advantage is that the adoption of
DTLS can allow for the reuse of the large experience and implementations that came with TLS.

For these reasons DTLS has recently received significant attention for securing communication of
constrained node/network applications and it has been standardized as the security protocol for CoAP
associated to “coaps” URIs [10].

Unfortunately, there are still some few issues that should be faced in order to make DTLS more
friendly for constrained devices. The most relevant ones are related to limited packet size imposed by
underlying protocols such as IEEE 802.15.4. In fact, as for IPSec, DTLS introduces overhead during
both handshake and data transport phases. DTLS offers fragmentation at the Handshake layer, however,
this can add a significant overhead. Another solution could be to use the fragmentation offered at
IPv6 or 6LoWPAN layer. Moreover, in order to reduce DTLS overhead, some packet optimization
and compression mechanism can be introduced. For example, in [17] the authors propose to use the
6LoWPAN compression mechanisms for the DTLS protocol.

From the security point of view, one problem of using DTLS or IPSec is that end-to-end
communication is not guaranteed when intermediate nodes such as proxies or application level gateways
are introduced. In fact, both IPSec and DTLS provide secure communications at IP and transport layers
respectively, and, in presence of a multi-hop application-level communications, they can assure security
only within each hop. In addition, some complications in providing end-to-end security may arise also
when connectivity is realized directly at IP and transport layers. There are scenarios in which a part of
the network (internal) composed by constrained devices is interconnected at IP level to the rest of the
(external) network, for example the Internet. Although data protection can be guaranteed through IPSec
or DTLS protocols, other network attacks, like flooding or replay, may occur due to the asymmetry
of the resources available at the end systems; for example a full-powered host attached to the Internet
may attack a constrained device by trying to consume all power or processing resources of the limited
device. In order to guarantee a proper level of protection also against this kind of attacks, an intermediate
security gateway may be required at the border of the internal network. A security gateway may act as
access controller, granting access to the internal network only to trusted nodes. In [18,19], the authors
specifically face this issue and try to propose a solution. In particular, in case of end-to-end application
level communication based on CoAP, a solution may be to require the external node to encapsulate



Algorithms 2013, 6 205

CoAP/DTLS/IP traffic within a proper DTLS tunnel established between the external node and the
security gateway.

It is also important to note that, although DTLS provides a datagram-oriented communication
service (like UDP), it establishes a point-to-point secure association that is not compatible with
multicast communications (in contrast with UDP, which does support multicast). In order to make
DTLS applicable in multicast IP-communication scenarios, some protocol extensions for group-key
management should be introduced in the future.

2.3. Application-Layer Security

Providing security at IP layer (through IPSec) or transport layer (through TLS or DTLS) has several
advantages. The main ones are: first, the same standard mechanism and the same implementation can
be shared by all applications, resulting in code reuse and reduced code size; second, programmers do
not have to deal with the implementation of any security mechanism; this significantly simplifies the
development of applications, also in presence of secure communications. Unfortunately, as described in
the previous sections, both IPSec and (D)TLS have their own drawbacks. Probably the main issue that
is common to both IP and transport approaches is due to the impossibility to assure complete end-to-end
security when application communications are relayed by intermediate nodes that work at application
level (e.g., proxies). In this case end-to-end security can be still provided with transport or IP level
mechanisms, but only in the presence of very trusted intermediate systems. However, in this case, the
overall security is complicated by the handling of such hop-by-hop trust management.

A different approach aiming at providing complete end-to-end security is to enforce security directly
at application level. This of course simplifies the requirements for underlying layers, and probably
reduces the cost, in term of packet size and data processing, since only application data have to be secured
and per-data and not per-packet overhead is introduced. Moreover, multicast communications, and
in-network data aggregation in encrypted domains (for example through homomorphic cryptography)
is easier to be implemented at application level.

The main disadvantages of providing security at application level are the complications introduced
for application development and the overall code size due to poor reuse of software codes. This is mainly
due to the lack of well defined and adopted secure protocols at application level. Examples of standards
that can be used for this purpose are S/MIME and SRTP. S/MIME (Secure/Multipurpose Internet
Mail Extensions) [20] is a standard for providing authentication, message integrity, non-repudiation
of origin, and confidentiality for application data. Although S/MIME has been originally developed for
securing MIME data between mail user agents, it is not restricted to mail and can be used for securing
any application data and encapsulated within any application and transport protocols. SRTP (Secure
Real-time Transport Protocol) [21] is another secure communication protocol that provides
confidentiality, message authentication, and replay protection to application data. It is an extension of the
Real-time Transport Protocol (RTP) specifically developed for handling real-time data communications
(e.g., voice or video communication), but can be re-used also in other application scenarios. It works
in a per-packet fashion and is usually encapsulated in UDP. However, more investigation is required to



Algorithms 2013, 6 206

state which is the standard protocol most suitable for securing data at application level in network and
node constrained scenarios such as for IoT.

3. Lightweight Cryptography for Smart Objects

The development of the IoT will result in the extensive deployment of billions of smart objects that
will interact with the existing Internet. Smart objects are tiny computing devices, featuring constrained
resources, such as low computation capabilities, little memory, and limited battery. Communication
with smart objects in resource-constrained environments must necessarily take into account these hard
limitations, especially in scenarios where security is a crucial aspect and conventional cryptographic
primitives, such as the Advanced Encryption Standard (AES) [22], are inadequate.

Lightweight Cryptography (LWC) is a very interesting research area, aiming at the design of new
ciphers that might meet the requirements set by the use of smart objects [23]. The term “lightweight”
should not be mistaken with weak (in terms of cryptographic protection), but should instead be
interpreted as referring to a family of cryptographic algorithms with smaller footprint, low energy
consumption, and low computational power needs. These ciphers aim at providing sufficient security
in the environment of restricted resources as can be found in many ubiquitous devices [24]. LWC thus
represents a cryptography tailored to constrained devices, which must cope with the trade-offs between
security level, cost, and performance.

In this section, an overview of the most prominent cryptographic algorithms is presented, followed by
a comparison among lightweight cryptographic primitives and conventional ones, such as AES, which
are currently adopted by standard Internet security protocol, such as IPSec and TLS. Symmetric ciphers
for lightweight cryptography are presented first, followed by asymmetric ciphers. Cryptographic hash
functions are discussed next. Finally, privacy homomorphism is discussed. We remark that this overview
is not meant to be detailed or extensive, but aims at pointing out which encryption algorithms are most
suitable for practical implementation in IoT scenarios.

Figure 3. Secure communication with symmetric-key cryptographic algorithms.

𝐸௞ 𝑚  m c 

𝐷௞ 𝑐  m 

k 

c 

3.1. Symmetric-Key LWC Algorithms



Algorithms 2013, 6 207

Symmetric-key cryptographic algorithms use the same key for encryption of a plaintext and
decryption of a ciphertext. The encryption key represents a shared secret between the parties that
are involved in the secure communication. An illustrative representation of symmetric-key secure
communication is shown in Figure 3.

Symmetric-key encryption can use either block ciphers or stream ciphers:

• Block ciphers operate on fixed-length groups of bits, called blocks, padding the plaintext to make
its length equal to a multiple of the block size. An example is the AES algorithm;
• In stream ciphers the digits of a plaintext are encrypted one at a time with the corresponding digit

of a pseudorandom cipher digit stream (keystream).

3.1.1 Tiny Encryption Algorithm (TEA)

The Tiny Encryption Algorithm (TEA) is a block cipher renowned for its simplicity of description and
implementation, typically a few lines of code [25]. TEA operates on two 32-bit unsigned integers (could
be derived from a 64-bit data block) and uses a 128-bit key. TEA relies only on arithmetic operations on
32-bit words and uses only addition, XORing, and shifts. TEA uses a large number of iterations, rather
than a complicated program, in order to avoid preset tables and long setup times. The main design goal
of TEA is to define a simple and short cipher that does not rely on preset tables or pre-computations,
thus leading to a smaller footprint.

TEA was later revised in order to fix some weaknesses found in the original algorithm, such as the
problem of equivalent keys, which reduced the actual key size from 128 to 126 bits. The redesign of
TEA, named XTEA (Extended TEA) [26], fixes this problem by changing the key schedule. XTEA also
requires two fewer additions, thus resulting in a slightly faster algorithm. Other modifications of the
TEA algorithm have been presented, such as XXTEA, Block TEA, Speed TEA, and Tiny XTEA.

As the TEA family uses exclusively very simple operations (addition, XORing, shifts), and has a very
small code size, it is an ideal candidate as a cryptographic algorithm to implement security mechanisms
in smart objects and wireless sensors.

3.1.2 Scalable Encryption Algorithm (SEA)

The Scalable Encryption Algorithm (SEA) is targeted for small embedded applications [27]. The
design considers a context with very limited processing resources and throughput requirements. Another
design principle of SEA is flexibility: the plaintext size n, key size n, and processor (or word) size b are
design parameters, with the only constraint that n is a multiple of 6b; for this reason, the algorithm is
denoted as SEAn,b. The motivation of this flexibility is the observation that many encryption algorithms
perform differently depending on the platform, e.g., 8-bit or 32-bit processors. SEAn,b is designed to be
generic and adaptable to different security levels (by varying the key size) and target hardware. A great
advantage of SEAn,b is the “on-the-fly” key derivation. The main disadvantage is that SEAn,b trades
space for time and this may not be negligible on devices with limited computational power.



Algorithms 2013, 6 208

3.1.3 PRESENT Cipher

PRESENT is an ultra-lightweight block cipher algorithm based on a Substitution-Permutation
Network (SPN) [28]. PRESENT has been designed to be extremely compact and efficient in hardware.
It operates on 64-bit blocks and with keys of either 80 or 128 bits. It is intended to be used in situations
where low-power consumption and high chip efficiency are desired, thus making it of particular interest
for constrained environments. The main design goal of PRESENT is, as for the other lightweight ciphers,
simplicity. PRESENT is performed in 31 rounds, each comprising three stages:

• key-mixing, through XOR operation and a 61-bit rotation key schedule;
• substitution layer, through 16 4-bit (input) by 4-bit (output) S-boxes;
• permutation layer.

At the end of the 31st round, an additional round is performed by XORing the last round subkey.
ISO/IEC 29192-2:2012 “Lightweight Cryptography” specifies PRESENT as a block cipher suitable

for lightweight cryptography [29].

3.1.4 Hight

The HIGh security and light weigHT (HIGHT) encryption algorithm is a generalized Feistel network
with a block size of 64 bits, 128-bit keys and 32 rounds [30]. HIGHT was designed with an eye on
low-resource hardware performance. HIGHT uses very simple operations, such as XORing, addition
mod 28, and bitwise rotation. The key schedule in HIGHT is designed so that subkeys are generated on
the fly both in the encryption and the decryption phases.

3.1.5 Comparison of Symmetric LWC Algorithms

LWC algorithms are not intended to supersede existing ciphers, e.g., AES, for widespread use.
Their application is limited to those scenarios where classical ciphers might be inefficient, such as
scenarios where:

• a moderate security level is required, so that keys need not be too long;
• encryption should not be applied to large amounts of data;
• the hardware area needed for implementation and the power consumption are considered harder

requirements than speed.

For constrained devices, the choice of the cryptographic algorithm is a primary element that can
affect performance. When low cost and energy consumption are hard requirements, computational
power must inherently be downsized accordingly. Using 8-bit microcontrollers (such as Atmel
AVR microcontrollers [31]), which have limited capabilities in terms of computing power, memory,
and storage, requires that implemented ciphers have small footprint and are kept simple. This
may result in faster execution and thus in lower energy consumption, which may be critical for
battery-powered devices.

Although most symmetric cryptographic algorithms have been developed focusing on efficient
software implementations, the deployment of smart objects will lead to an increasing attention to those



Algorithms 2013, 6 209

ciphers that will perform well in hardware in terms of speed and energy consumption. In Table 1, we
report a direct comparison, presented in [23], among the LWC algorithms outlined in Subsection 3.1,
with particular reference to the following metrics: key size, block size, rounds, consumed area measured
in gate equivalents (GEs), code size (in bytes). Reported values for gate equivalents are related to
hardware implementations, while code size refers to software implementations.

Table 1. Comparison of different symmetric-key cryptographic algorithms. Key size and
Block size are expressed in number of bits. Code size is expressed in number of bytes.

Cipher Key size Block size Rounds GE (hardware impl.) Code size (software impl.)

SOFTWARE

CIPHERS

AES 128 128 10 3400 [32,33] 2606
TEA 128 64 32 3490 [34] 1140

SEA96,8 96 8 ≥ 3n/4

3758 1 [35]
21323925 2 [35]

2547 [36]

HARDWARE

CIPHERS

PRESENT 80 64 32 1570 [28] 936
HIGHT 128 64 32 3048 [30] 5672

1 Round-based implementation with datapath of size n; 2 Serialized implementation with datapath of
size b.

3.2. Public-Key (Asymmetric) LWC Algorithms

Public-key (asymmetric) cryptography requires the use of a public key and a private key. Public keys
can be associated with the identity of a node by including them into a public certificate, signed by a
Certification Authority (CA) that can be requested to verify the certificate. Public-key cryptography
requires the significant effort of deploying a Public Key Infrastructure (PKI). Moreover, asymmetric
cryptography requires higher processing and long keys (at least 1024 bits for RSA [37]) to be used.
Alternative public-key cryptographic schemes, such as Elliptic Curve Cryptography (ECC) [38], might
require shorter keys to be used in order to achieve the same security than RSA keys. However, because of
these reasons, symmetric cryptography is preferred in terms of processing speed, computational effort,
and size of transmitted messages. Public-key ciphers are usually used to setup symmetric keys to be used
in subsequent communications.

3.2.1 RSA Algorithm

The Rivest, Shamir, and Adleman (RSA) algorithm is the most known and widely used public-key
scheme. It is based on exponentiation in a finite field over integers modulo N . Consider a modulus N

and a pair of public and private keys (e, d). The encryption of a message m is given by c = me mod N ,
while the decryption is m = cd mod N . The key generation phase of RSA, aiming to generate the
public-private key pair, consists of the following steps:

1. select two large prime numbers denoted as p and q such that p 6= q;
2. compute n = p · q;



Algorithms 2013, 6 210

3. compute the Euler’s totient function Φ(n) = (p− 1) · (q − 1);
4. choose an integer e such that 1 < e < Φ(n) and that the GCD(e,Φ(n)) = 1;
5. compute d = e−1 mod Φ(n);
6. the pair (n, e) is the public key, while d is the private key.

The security of the RSA algorithm depends on the hard problem of factorizing large integers. In order
to achieve an acceptable level of security, n should be at least 1024 bits long, so that p and q and
consequently Φ(n) cannot be obtained, thus protecting the (e, d) pair.

RSA is unsuitable for adoption in constrained devices due to the need to operate on large numbers
and the fact that long keys are required to achieve sufficient security. Moreover, both key generation and
encryption/decryption are demanding procedures that result in higher energy consumption.

3.2.2 Elliptic Curve Cryptography (ECC)

ECC is an approach to public-key cryptography based on the algebraic structure of elliptic curves over
finite fields. While RSA is based on exponentiation on finite fields, ECC depends on point multiplication
on elliptic curves. An elliptic curve E over the finite field K (whose characteristic is not equal to 2 and
3) is defined as:

E(K) : y2 = x3 + ax + b with a, b ∈ K

Points P = (x, y) ∈ E(K) form an Abelian group, thus point addition and scalar point multiplication
can be performed.

ECC provides higher security and a better performance than the first generation public-key techniques
(RSA and Diffie–Hellman). Moreover, ECC is the most interesting public-key cryptographic family
for embedded environments because it can reach the same security level as RSA with much shorter
keys, as shown in Table 2 (http://www.nsa.gov/business/programs/elliptic curve.shtml), and with
computationally lighter operations, like addition and multiplication, rather than exponentiation.

Table 2. Comparison of security levels between symmetric ciphers, ECC, and RSA
(Recommended NIST key sizes).

Symmetric-key size (bits) 80 112 128 192 256

ECC Key size (bits) 160 224 256 384 512
RSA Key size (bits) 1024 2048 3072 7680 15360

ECC has been accepted commercially and has also been adopted by standardizing institutions
such as the American National Standards Institute (ANSI), the Institute of Electrical and Electronics
Engineers (IEEE), the International Organization for Standardization (ISO), the Standards for Efficient
Cryptography Group (SECG), and the National Institute of Standards and Technology (NIST) [39–43].

The implementation of a lightweight hardware ECC processor for constrained devices is attracting
a growing interest. In [23], a possible hardware implementation of a low-area, standalone, public-
key engine for Elliptic Curve Cryptography, with a 113-bit binary field for short-term security and a
193-bit binary field for medium-term security, is presented. The choice of use of a binary field, rather



Algorithms 2013, 6 211

than a prime field, is related to the corresponding carry-free arithmetic, which fits well in hardware
implementations. With respect to other ECC hardware implementations, the one presented uses a smaller
area (in terms of GEs) and faster execution.

3.2.3 Performance Comparison of Available Implementations of Public-key Cryptographic Algorithms

Hereafter, we recall the performance results, presented in [44], of RSA and ECC public-key different
available implementations, with benchmarks obtained in constrained devices (namely an 8-bit Arduino
Uno board), such as TinyECC and Wiselib. Table 3 shows implementation results for RSA public-key
encryption, when the private key is held in SRAM or in ROM. In Table 4, a performance comparison in
the ECDSA signature algorithms, using TinyECC and Wiselib implementations, is presented. Finally, a
ROM footprint comparison is shown in Table 5.

Table 3. RSA private key operation performance.

Key length (bits)
Execution time (ms) Memory footprint (bytes)

Key in SRAM Key in ROM Key in SRAM Key in ROM

64 66 70 40 32
128 124 459 80 64
512 25089 27348 320 256

1024 109666 218367 640 512
2048 1587559 1740267 1280 104

Table 4. ECDSA signature performance: TinyECC versus Wiselib implementations.

Curve parameters
Execution time (ms) Memory footprint (bytes) Comparable RSA

key lengthTinyECC Wiselib TinyECC Wiselib

128r1 1858 10774 776 732 704
128r2 2002 10615 776 732 704
160k1 2228 20164 892 842 1024
160r1 2250 20231 892 842 1024
160r2 2467 20231 892 842 1024
192k1 3425 34486 1008 952 1536
192r1 3578 34558 1008 952 1536

Table 5. Public-key encryption library ROM occupancy.

Library AvrCryptolib Wiselib TinyECC Relic-toolkit

ROM Footprint (Kbytes) 3.6 16 18 29



Algorithms 2013, 6 212

3.3. Lightweight Cryptographic Hash Functions

Cryptographic Hash Functions, such as MD5 [45] and SHA-1 [46], are an essential part for any
protocol that uses cryptography. Hash functions are used normally for different purposes, such as
message integrity check, digital signatures, and fingerprinting. Cryptographic hash functions should
ideally be:

• computationally inexpensive;
• pre-image resistant: given a hash h, it should be difficult to invert the hash function in order to

obtain the message m such that h = hash(m);
• second pre-image resistant: given a message m1, it should be difficult to find another message m2

such that hash(m1) = hash(m2);
• collision resistant: it should be difficult to find two messages m1 and m2, with m1 6= m2, such that

hash(m1) = hash(m2) (hash collision).

In general, for a hash function with an n-bit output, pre-image and second pre-image resistance require
2n operations, while collision resistance requires 2n/2 operations [47]. While the design of standard
cryptographic hash functions does not focus on hardware efficiency, lightweight cryptographic hash
functions are needed for use in resource-constrained devices in order to minimize the amount of hardware
(in terms of GEs) and energy consumption.

In this subsection, we will overview some proposals for lightweight cryptographic hash functions that
go beyond classical MD and SHA families.

3.3.1 DM-PRESENT and H-PRESENT

The authors in [47] propose DM-PRESENT and H-PRESENT, two lightweight hash functions based
on the PRESENT block cipher. DM-PRESENT is a 64-bit hash function and comes in two versions:
DM-PRESENT-80 and DM-PRESENT-128, depending on which cipher (PRESENT-80 or
PRESENT-128) is used as a basis. H-PRESENT (namely H-PRESENT-128) is a 128-bit hash
function based on the PRESENT-128 block cipher. In their work, the authors also consider the problem
of constructing longer hash functions based on the PRESENT block cipher in order to improve the
security level.

3.3.2 PHOTON

PHOTON [48] is a hardware-oriented family of cryptographic hash functions designed for constrained
devices. PHOTON uses a sponge-like construction [49] as domain extension algorithm and an
AES-like primitive as internal unkeyed permutation. A PHOTON instance is defined by its output size
(64 ≤ n ≤ 256), its input rate r and its ouptut rate r′ (PHOTON-n/r/r′). The use of sponge functions
framework aims at keeping the internal memory usage low. The framework has been extended in order
to increase speed when hashing small messages, which is typically inefficient with sponge functions
framework.



Algorithms 2013, 6 213

3.3.3 SPONGENT

SPONGENT [50] is a family of lightweight hash functions with output of 88, 128, 160, 224, and 256
bits. SPONGENT is based on a sponge construction with a PRESENT-type permutation. An instance
of SPONGENT is defined by the output size n, the rate r, and the capacity c (SPONGENT-n/c/r). The
size of the internal state, denoted as width, is b = r + c ≥ n. The implementations in an ASIC hardware
require 738, 1060, 1329, 1728, and 1950 GEs, respectively, making it the hash function with the smallest
footprint in hardware. The 88-bit hash size is used only to achieve pre-image resistance.

3.3.4 QUARK

The QUARK [51] hash family comes with three instances: U-QUARK, D-QUARK, and S-QUARK,
with hash sizes of 136, 176, and 256 bits, respectively. QUARK, like PHOTON and SPONGENT, is
based on a sponge construction. The QUARK hash family is optimized for hardware implementation
and, as stated by the authors, software implementations should instead rely on other designs. QUARK
has a bigger footprint than PHOTON and SPONGENT, but shows higher throughput than SPONGENT
and higher security than PHOTON.

3.3.5 KECCAK

KECCAK [52] is a family of sponge functions. KECCAK uses a sponge construction in which message
blocks are XORed into the initial bits of the state, which is then invertibly permuted. In the version used
in KECCAK, the state consists of a 5×5 array of 64-bit words, 1600 bits total. KECCAK produces
arbitrary output length.

KECCAK has been selected by the NIST as the winner of the SHA-3 competition [53] on October 2,
2012 and is now referenced as SHA-3.

3.3.6 SQUASH

SQUASH (SQUare-hASH) [54] is suited to challenge-response MAC applications in constrained
devices, such as RFID tags. SQUASH is completely deterministic, so it requires no internal source of
randomness. SQUASH offers a 64-bit pre-image resistance. SQUASH is not collision resistant, but this
is not an issue since it targets RFID authentication protocols, where collision resistance is not needed.
However, if collision resistance is a requirement, for instance in case of digital signatures, SQUASH is
unsuitable and other hash functions should be considered.

3.4. Homomorphic Encryption Schemes

Homomorphic encryption is a form of encryption that allows specific types of computations to be
executed on ciphertexts and obtain an encrypted result that is the ciphertext of the result of operations
performed on the plaintext. By denoting E{·} as the homomorphic encryption function and f(·) as the
computation function, it holds that:

E{f(a, b)} = f(E{a}, E{b})



Algorithms 2013, 6 214

An example of homomorphic encryption is the RSA algorithm. Consider a modulus N and an exponent
e. The encryption of a message m is given by E{m} = me mod N . The homomorphic property
holds, since:

E{m1 ·m2} = (m1 ·m2)
e mod N = (m1)

e mod N · (m2)
e mod N = E{m1} · E{m2}

Other examples of homomorphic encryption schemes are the ECC encryption [38], the ElGamal
cryptosystem [55] and the Pailler cryptosystem [56].

Homomorphic encryption is receiving a growing interest for application into IoT scenarios, since
it could be used to preserve confidentiality among the endpoints of communication, while making it
possible for intermediate nodes to be able to process the information without the need to decrypt the data
prior to processing. Homomorphic cryptosystems usually require higher computation and need longer
keys to achieve a comparable security level than symmetric-key algorithms.

Depending on the operation f(·) that can be performed on the encrypted data, the homomorphic
encryption scheme can be defined as additive or multiplicative. Additive homomorphism makes
it possible to compute sums, subtractions, and scalar multiplication of its operands; multiplicative
homomorphism allows to compute the product of its operands. The RSA algorithm is an example of
multiplicative homomorphic encryption. An example of additive homomorphic encryption is the Pailler
cryptosystem. Given a modulus n, a shared random integer g, and user-generated random integers r1

and r2, the homomorphic property is:

E{m1} · E{m2} = (gm1rn
1 mod n2) · (gm2rn

2 mod n2) = (gm1+m2)(r1r2)
n mod n2 = E{m1 + m2}

Homomorphic encryption schemes that are either additive or multiplicative are denoted as partially
homomorphic. If both addition and multiplication are supported, a cryptosystem is denoted as fully
homomorphic. Fully homomorphic cryptosystems preserve the ring structure of the plaintexts and,
therefore, enable more complex procedures. The investigation for fully homomorphic encryption
schemes is still at early stages and no practical scheme has been found with acceptable performance
(e.g., in terms of decryption delay). Application to IoT scenarios is a rich research topic.

4. Key Agreement, Distribution, and Security Bootstrapping

Key distribution and management is a crucial issue that needs to be addressed when security
mechanisms have to be adopted. Key agreement protocols have been around for years: the
Diffie–Hellman key exchange protocol is an example of a key agreement protocol that two parties
perform in order to setup a shared key to be used in a session [57]. Other mechanisms have been defined
and implemented. The Internet Key Exchange (IKE) [58] protocol is a the protocol defined to setup a
Secure Association to be used in IPSec.

4.1. Key Agreement Protocols

Asymmetric (public-key) cryptographic algorithms are often the basis for key agreement protocols,
yet other techniques that do not involve the adoption of asymmetric cryptography have been proposed.
A polynomial-based key pre-distribution protocol has been defined [59] and applied to Wireless Sensor



Algorithms 2013, 6 215

Networks in [60]. A possible alternative key agreement protocol is SPINS [61], which is a security
architecture specifically designed for sensor networks. In SPINS, each sensor node shares a secret key
with a base station, which is used as a trusted third-party to set up a new key, with no need of public-
key cryptography. The authors of [62] present three efficient random key pre-distribution schemes
for solving the security bootstrapping problem in resource-constrained sensor networks, each of which
represents a different tradeoff in the design space of random key protocols.

4.2. Shared Group-Key Distribution

The above mechanisms apply to scenarios where communication occurs between two parties (unicast
and point-to-point communications). In different communication scenarios, such as point-to-multipoint
(multicast) or multipoint-to-point communications, other mechanisms must be investigated and adopted.
In such scenarios, the adoption of a shared group-key is appealing.

Secure group communications provide confidentiality, authenticity, and integrity of messages
exchanged within the group, through the use of suitable cryptographic services and without interfering
with the communication data path. In order to achieve secure group communications, nodes must share
some cryptographic material that must be handled properly so that group membership changes, both
predictable and unpredictable, can be managed. In fact, any membership change should trigger a rekeying
operation, which is intended to update and redistribute the cryptographic material to the group members,
so that: (i) a former member cannot access current communication (forward secrecy [63]); (ii) a new
member cannot access previous communication (backward secrecy [64]). The authors in [65] define a
DTLS record based approach to secure multicast communication in lossy low-power networks.

Assuming that the used cryptographic primitives cannot be broken by an attacker with limited
computational power (i.e., for whom it is infeasible to carry out a brute force attack in order to solve
the problems behind cryptographic schemes, such as discrete logarithm, or inverting MD5/SHA-1), the
main challenge is the distribution of the group keys and their updates: this problem is referred to as Group
Key Distribution (GKD). The GKD problem can be tackled according to the two different approaches:

• current communications can be deciphered independently of previous communications (stateless
receivers): this approach is denoted as broadcast encryption [66,67];
• users maintain state of the past cryptographic material (stateful receivers): this approach is termed

multicast key distribution [68].

In the case of a multicast key distribution, centralized [69] or distributed [70] approaches can be
adopted. In a distributed approach, the group key is computed and maintained by the group members
themselves: an example of a distributed approach is the Tree-based Group Diffie–Hellman (TGDH)
protocol [71]. In a centralized approach, the task of key distribution is assigned to a single entity,
denoted as Key Distribution Center (KDC). This approach allows to have a simple mechanism with
a minimal number of exchanged messages. Logical Key Hierarchy (LKH) [63] and MARKS [72] are
key distribution protocols that try to optimize the number of exchanged messages between a KDC and
the group members. LKH is based on key graphs, where keys are arranged into a hierarchy and the KDC
maintains all the keys. MARKS is a scalable approach and does not need any update message when



Algorithms 2013, 6 216

members join or leave the group predictably. However, MARKS does not address the issue of member
eviction with a subsequent key revocation.

4.3. Security Bootstrapping

All key agreement protocols require that some credentials, either public/private key pairs, symmetric
keys, certificates, or others, have been previously installed and configured on nodes, so that the key
agreement procedure can occur securely. Bootstrapping refers to the processing operations required
before the network can operate: this requires that proper setup, ranging from link layer to application
layer information, must be done on the nodes. Bootstrapping is a very important phase in the lifecycle
of smart objects and can affect the way they behave in operational conditions. Even though the
bootstrapping phase is outside the scope of this paper, it is important to consider security bootstrapping
mechanisms and architecture [73], so that possible threats, such as cloning or malicious substitution
of objects, can be tackled properly. The author of [74] provides a sketch of a possible protocol to let
constrained devices to securely bootstrap into a system that uses them.

5. Processing Data in the Encrypted Domain: Secure Data Aggregation

In-network data aggregation in wireless sensor networks consists in executing certain operations (such
as sums and averages) at intermediate nodes in order to minimize the amount of transmitted messages
and the processing load at intermediate nodes, so that only significant information is passed along in
the network. This leads to several benefits, such as energy savings, which are crucial for constrained
environments, such as low-power and lossy networks. Data aggregation refers to a multipoint-to-point
communication scenario, which requires intermediate nodes to operate on received data and forward the
output of a suitable function applied to such input data. In those scenarios, where privacy on transmitted
data is an issue, it might be required to send encrypted data. Encryption can be adopted not only to
achieve confidentiality, but also to verify the authenticity and integrity of messages.

While secure data aggregation is certainly an application-related aspect also in WSNs, optimized
communication can have a positive impact also in some IoT scenarios. Smart parking or critical
infrastructures scenarios could benefit from minimizing transmitted data, possibly by adopting privacy
homomorphism algorithms, discussed in Section 3.

A simple aggregation strategy can be to queue the payloads of the received packets and send out only
one packet with all the information. This approach can bring only limited gains, since only the payloads
are considered. Another, more efficient, approach can be used if the aggregator is aware of the type of
operation that the final recipient is willing to perform. Consider a scenario where a node is interested
in counting all the nodes in the network. Nodes send a packet with “1” as a content. Aggregators
receive these packets and can just sum the “1”s received and send out one packet with the same size
whose content is the number of “1”s received. By doing this, the information sent across the network is
minimal and the final recipient must perform simpler processing.

Typically, secure data aggregation mechanisms require nodes to perform the following operations:

1. at the transmitting node, prior to transmission, data are encrypted with some cryptographic
function E;



Algorithms 2013, 6 217

2. at the receiving node, all received data packets are decrypted with the inverse cryptographic
function D = E−1 to retrieve the original data;

3. data are aggregated with an aggregation function;
4. prior to retransmission, aggregated data are encrypted through E and relayed to the next hop.

This process is iterated at intermediate nodes until the data reach the destination node that is interested in
receiving the result of aggregation, as shown in Figure 4. Both symmetric and asymmetric cryptographic
schemes can be applied.

Figure 4. In-network data aggregation.

Node1 

Node2 

Node3 Node4 

Node5 

Data 
aggregator1 

Data 
aggregator2 

Data 
aggregator3 

d1 

d2 

d3 d4 

d5 

ad1 = (d1,d2,d3) ad2 = (d4,d5) 

ad3 = (ad1,ad2) 

The aggregation procedure just explained raises the following issues, especially if we consider a
scenario where the aggregators are not special nodes, but have the same features as other nodes in
the network.

1. Aggregators must decrypt each incoming piece of information before processing, in order to
perform the aggregation and, subsequently, encrypt the result before transmission to the next
hop. This has clearly an impact on the computation and, therefore, on the energy consumption
of the aggregator.

2. An aggregator must keep a secure association (i.e., share a symmetric key) with any node that either
sends data to or receives data from it. This further introduces the need for increased complexity at
the aggregator.

3. Intermediate aggregators access the data that they receive, even though they are not intended
to do so, since the actual recipient of the data is another node. This might introduce privacy
concerns, especially in scenarios where intermediate nodes might not have a trust relationship
with the sender.

In order to cope with the problems sketched above, some actions can be considered. All these issues
can be addressed by using homomorphic encryption schemes, introduced in Section 3.4. Homomorphic
encryption can be used to avoid the need to decrypt the information that must be aggregated and encrypt
the result and operate on the encrypted data directly. This can dramatically increase the performance,
in terms of execution time and energy savings, since the encryption/decryption operations are typically
computationally demanding. Besides computational and energy efficiencies, a positive side effect of the
adoption of homomorphic encryption is the fact that only the sources and the final destination of the data
are capable of accessing the real data, thus preserving “end-to-end” confidentiality for the aggregation



Algorithms 2013, 6 218

application scenario. Additional security can be introduced by using probabilistic cryptosystems, such
as the Pailler cryptosystem: in this case, given two encrypted values, it is not possible to decide whether
they conceal the same value or not. This is especially useful to avoid that eavesdroppers can determine
the content of a secure communication just by observing the encrypted packets.

6. Authorization Mechanisms for Secure IoT Services

Authorization mechanisms should be considered when deploying IoT services, in order to tackle
possible concerns that the deployment of smart objects and services relying on them might raise in
public opinion. In particular, authorization mechanisms must address the following questions:

• Which users can access some given data?
• How should the information be presented to a given user?
• Which operations is a user allowed to perform?

Role-based Access Control (RBAC) and Attribute-based Access Control (ABAC) are the most
widespread approaches to restricting system access to authorized users. RBAC maps permissions to
roles that a user has been assigned. On the other hand, ABAC maps permissions to attributes of the
user. However, authorization mechanisms strongly depend on an authentication step that must have been
previously taken, in order to identify users. An example of a complex, context-aware Access Control
system designed for a Medical Sensor Networks scenario, which has critical privacy and confidentiality
issues, is described in [75].

Just like popular Internet-based services, such as social networks, have already faced the urge to solve
privacy-related problems when dealing with personal and protected data that might be made accessible
to third-parties, IoT applications are also going to be facing the same issues. Since IoT services are
expected to be offered in a RESTful paradigm, like those cited above, it could be helpful to borrow ideas
from the experience that has been already created with Internet REST services.

The OAuth (Open Authorization) protocol has been defined to solve the problem of allowing
authorized third-parties to access personal user data [76]. The OAuth protocol defines the following
three roles.

• Resource Owner: an entity capable of granting access to a protected resource, such as an end-user.
• Resource Server (Service Provider, SP): a server hosting user-related information.
• Client (Service Consumer, SC): a third-party willing to access personal user’s data to reach its

goals.

An additional role is defined: an Authorization Server (AS), which issues access tokens to the client after
successfully authenticating the resource owner and obtaining a proper authorization.

In a general scenario, a SC, which has been previously authorized by a user, can access the data that
the user has made visible to the SC. This can be achieved by letting the SC retrieve the data from the
SP on the user’s behalf. In order to do so, one possible approach could be to force the user to give out
personal authentication credentials to the SC. This approach has many drawbacks:

• the SC is going to appear to the SP just like the actual user, thus having unlimited access to the
user’s personal data;



Algorithms 2013, 6 219

• the user cannot define different restrictions for different SC;
• the user cannot revoke the grant to a SC, unless it changes its credentials.

It is thus necessary to provide a mechanism that can separate the different roles. This can be done
by granting specific credentials that the SC can exhibit to the SP, which contain information about its
identity and the user’s identity, so that the SP can serve its requests according to the access policies that
the user has defined for the SC. The OAuth protocol defines the mechanisms that are needed to grant,
use, and verify these credentials, named “access tokens”.

The OAuth protocol defines the following flow of interaction between the four roles introduced above,
as illustrated in Figure 5.

1. The client requests authorization from the resource owner: the authorization request can be made
directly to the resource owner or, preferably, indirectly via the AS as an intermediary.

2. The client receives an authorization grant, which is a credential representing the resource owner’s
authorization.

3. The client requests an access token by authenticating with the AS and presenting the authorization
grant.

4. The authorization server authenticates the client, validates the authorization grant, and if the grant
is valid, issues an access token.

5. The client requests the protected resource from the resource server and authenticates by presenting
the access token.

6. The SP validates the access token and, if valid, serves the request.

Figure 5. Interaction between the four roles of the OAuth protocol flow.

Resource Server 

Client 
Authorization 

Server 

Resource Owner 
1 

2 

3 

4 

5 

6 

Authorization Request 

Authorization Grant 

Authorization Grant 

Access Token 

Access Token 

Protected Resource 

The OAuth authorization framework (currently in version 2.0 [77]) enables a third-party application
to obtain limited access to an HTTP service, either on behalf of a resource owner by orchestrating an
approval interaction between the resource owner and the HTTP service, or by allowing the third-party
application to obtain access on its own behalf.



Algorithms 2013, 6 220

For IoT scenarios, when using CoAP as an application-layer protocol instead of HTTP, a modified
version of OAuth should be defined in order to ensure an authorization layer for restricting access to
smart objects services. Since OAuth is an open protocol to allow secure authorization in a simple and
standard method from web, mobile and desktop applications, it has to be adapted in order to fit into
IoT application scenarios and to be compatible with constrained environments. For instance, header
compression should be used to minimize the amount of information sent along.

HTTP/CoAP proxies should be able to perform OAuth proxying as well, in order to allow
interoperability between conventional and constrained OAuth clients and servers. This raises particular
challenges since the OAuth specification recommends the usage of HTTPS as a means to avoid
man-in-the-middle (MITM) attacks, thus preventing the access tokens to be stolen and used by malicious
nodes. This means that CoAPs should be used in order to comply with the specification. The
HTTP/CoAP proxy should then be able to perform a TLS-to-DTLS mapping in order to ensure
end-to-end security. However, the use of HTTPS (and CoAPs inherently) can be avoided: it is possible
to use OAuth over an insecure communication channel by adopting digital signature schemes with
HMAC-SHA1 and RSA-SHA1.

7. Conclusions

In this work, security in emerging IoT scenarios was analyzed from a multi-layer perspective. The
security protocols of the original Internet stack have been discussed together with the challenges that
their use in constrained IoT environments might raise. Compression and optimization of the existing
Internet protocols, including security protocols, has also been discussed.

Together with security protocols, another important aspect related to security is the definition
and implementation of cryptographic algorithms, tailored for constrained devices. Lightweight
cryptographic algorithms have been overviewed and compared in order to highlight the main features
of each and to isolate those that are more suitable for use in constrained environments.

Key agreement protocols and group key distribution mechanisms for secure group communication
have been discussed, since it may be particularly relevant in scenarios where several smart objects need
to communicate and cooperate in order to perform some common task. Related to this aspect, secure
data aggregation schemes through homomorphic encryption algorithms have been also discussed, as a
possible solution to minimize the processing of smart objects and optimize data transmission.

Finally, the problem of service authorization has been presented. Authorization represents a highly
relevant security property that must be dealt with in deploying services in smart objects, since these may
raise concerns about privacy and the use of personal data. The future of the IoT will have to cope with
this issue, which spans from an ethical perspective to technical aspects.

Acknowledgements

This work is funded by the European Community’s Seventh Framework Programme, area
“Internetconnected Objects”, under Grant no. 288879, CALIPSO project-Connect All IP-based Smart
Objects. The work reflects only the authors’ views; the European Community is not liable for any use
that may be made of the information contained herein.



Algorithms 2013, 6 221

References

1. Deering, S.; Hinden, R. RFC 2460-Internet Protocol, Version 6 (IPv6) Specification, 1998.
Available online: http://tools.ietf.org/rfc/rfc2460.txt (accessed on 31 January 2013).

2. Heer, T.; Garcia-Morchon, O.; Hummen, R.; Keoh, S.L.; Kumar, S.S.; Wehrle, K. Security
challenges in the IP-based internet of things. Wirel. Pers. Commun. 2011, 61, 527–542.

3. Garcia-Morchon, O.; Keoh, S.; Kumar, S.; Hummen, R.; Struik, R. Security Considerations in
the IP-based Internet of Things; IETF Internet Draft draft-garcia-core-security-04; The Internet
Engineering Task Force (IETF): Fremont, CA, USA, 2012.

4. Bormann, C. Guidance for Light-Weight Implementations of the Internet Protocol Suite; IETF
Internet Draft draft-ietf-lwig-guidance-02, The Internet Engineering Task Force (IETF): Fremont,
CA, USA, 2012.

5. IETF Constrained RESTful Environments Working Group. Available online: http://tools.ietf.org/
wg/core/ (accessed on 31 January 2013).

6. IETF IPv6 over Low power WPAN. Available online: http://tools.ietf.org/wg/6lowpan/ (accessed
on 31 January 2013).

7. IETF Routing Over Low power and Lossy networks Working Group. Available online:
http://tools.ietf.org/wg/roll/ (accessed on 31 January 2013).

8. IETF Light-Weight Implementation Guidance. Available online: http://tools.ietf.org/wg/lwig/
(accessed on 31 January 2013).

9. Fielding, R.; Gettys, J.; Mogul, J.; Frystyk, H.; Masinter, L.; Leach, P.;
Berners-Lee, T. RFC 2616, Hypertext Transfer Protocol – HTTP/1.1. 1999. Available
online: http://tools.ietf.org/rfc/rfc2616.txt (accessed on 31 January 2013).

10. Shelby, Z.; Hartke, K.; Bormann, C.; Frank, B. Constrained Application Protocol (CoAP); IETF
Internet Draft draft-ietf-core-coap-13; The Internet Engineering Task Force (IETF): Fremont, CA,
USA, 2012.

11. Kent, S.; Atkinson, R. RFC 2401—Security Architecture for the Internet Protocol, 1998. Available
online: http://tools.ietf.org/rfc/rfc2401.txt (accessed on 31 January 2013).

12. Raza, S.; Duquennoy, S.; Chung, T.; Yazar, D.; Voigt, T.; Roedig, U. Securing Communication in
6LoWPAN with Compressed IPsec. In Proceedings of the International Conference on Distributed
Computing in Sensor Systems (IEEE DCOSS 2011), Barcelona, Spain, 27–29 June 2011.

13. Moskowitz, R.; Heer, T.; Jokela, P.; Henderson, T. Host Identity Protocol Version 2 (HIPv2);
Technical report, IETF Internet Draft draft-ietf-hip-rfc5201-bis-10; The Internet Engineering Task
Force (IETF): Fremont, CA, USA, 2012.

14. Jokela, P.; Moskowitz, R.; Melen, J. Using the Encapsulating Security Payload (ESP) Transport
Format with the Host Identity Protocol (HIP); IETF Internet Draft draft-ietf-hip-rfc5202-bis-01;
The Internet Engineering Task Force (IETF): Fremont, CA, USA, 2012.

15. Dierks, T.; Allen, C. RFC 5246-The TLS Protocol, 2008. Available online: http://tools.ietf.org/
rfc/rfc5246.txt (accessed on 31 January 2013).

16. Rescorla, E.; Modadugu, N. RFC 6347-Datagram Transport Layer Security Version 1.2, 2012.
Available online: http://tools.ietf.org/rfc/rfc6347.txt (accessed on 31 January 2013).



Algorithms 2013, 6 222

17. Raza, S.; Trabalza, D.; Voigt, T. 6LoWPAN Compressed DTLS for CoAP. In Proceedings of the
8th IEEE International Conference on Distributed Computing in Sensor Systems (IEEE DCOSS
2012), Hangzhou, China, 16–18 May 2012.

18. Brachmann, M.; Keoh, S.; Morchon, O.; Kumar, S. End-to-End Transport Security in the IP-Based
Internet of Things. In Proceedings of the Computer Communications and Networks (ICCCN),
2012 21st International Conference on, Munich, Germany, 30 July–2 August 2012; pp. 1–5.

19. Brachmann, M.; Morchon, O.; Keoh, S.; Kumar, S. Security Considerations around End-to-End
Security in the IP-Based Internet of Things. In Proceedings of the Workshop on Smart Object
Security, in Conjunction with IETF83, Paris, France, 25–30 March 2012.

20. Ramsdell, B.; Turner, S. RFC 3711-Secure/Multipurpose Internet Mail Extensions (S/MIME)
Version 3.2 Message Specification, 2010. Available online: http://tools.ietf.org/rfc/rfc5751.txt
(accessed on 31 January 2013).

21. Baugher, M.; McGrew, D.; Naslund, M.; Carrara, E.; Norrman, K. RFC 3711-The Secure Real-time
Transport Protocol (SRTP), 2004. Available online: http://tools.ietf.org/rfc/rfc3711.txt (accessed
on 31 January 2013).

22. Daemen, J.; Rijmen, V. The Design of Rijndael; Springer-Verlag New York, Inc.: Secaucus, NJ,
USA, 2002.

23. Eisenbarth, T.; Kumar, S.; Paar, C.; Poschmann, A.; Uhsadel, L. A survey of
lightweight-cryptography implementations. IEEE Des. Test 2007, 24, 522–533.

24. Rinne, S.; Eisenbarth, T.; Paar, C. Performance Analysis of Contemporary Light-Weight Block
Ciphers on 8-bit. Avaialble online: http://www.emsec.rub.de/research/publications/performance-
analysis-contemporary-light-weight-blo/ (accessed on 1 April 2013).

25. Wheeler, D.; Needham, R. TEA, a Tiny Encryption Algorithm; Springer-Verlag: New York, NY,
USA, 1995; pp. 97–110.

26. Needham, R.M.; Wheeler, D.J. TEA Extensions; Technical report; University of Cambridge,
Cambridge, United Kingdom, 1997.

27. Standaert, F.X.; Piret, G.; Gershenfeld, N.; Quisquater, J.J. SEA: A Scalable Encryption Algorithm
for Small Embedded Applications. In Proceedings of the Smart Card Research and Applications,
Proceedings of Cardis 2006, LNCS, Tarragona, Spain, 19–21 April 2006; Springer-Verlag: New
York, NY, USA, 2006; pp. 222–236.

28. Bogdanov, A.; Knudsen, L.R.; Le, G.; Paar, C.; Poschmann, A.; Robshaw, M.J.B.; Seurin, Y.;
Vikkelsoe, C. PRESENT: An Ultra-Lightweight Block Cipher. In Proceedings of the CHES 2007,
Vienna, Austria, 10–13 September 2007; Springer: Berlin/Heidelberg, Germany, 2007.

29. ISO/IEC 29192-2:2012. Information Technology–Security Techniques–Lightweight Cryptography–
Part 2: Block Ciphers; ISO: Geneva, Switzerland, 2012.

30. Hong, D.; Sung, J.; Hong, S.; Lim, J.; Lee, S.; Koo, B.; Lee, C.; Chang, D.; Lee, J.; Jeong,
K.; et al. HIGHT: A New Block Cipher Suitable for Low-Resource Device. In Proceedings
of the Cryptographic Hardware and Embedded Systems-CHES 2006, 8th International Workshop,
Yokohama, Japan, 10–13 October 2006; Springer: Berlin/Heidelberg, Germany, 2006; Volume
4249, Lecture Notes in Computer Science, pp. 46–59.



Algorithms 2013, 6 223

31. Atmel AVR 8-bit Microcontrollers. Available online: http://www.atmel.it/products/microcontrollers/
avr/default.aspx (accessed on 31 January 2013).

32. Feldhofer, M.; Dominikus, S.; Wolkerstorfer, J. Strong Authentication for RFID Systems Using
the AES Algorithm. In Cryptographic Hardware and Embedded Systems-CHES 2004; Joye, M.,
Quisquater, J.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3156, pp. 357–370.

33. Feldhofer, M.; Wolkerstorfer, J.; Rijmen, V. AES implementation on a grain of sand. Inf. Security
IEEE Proc. 2005, 152, 13–20.

34. Kaps, J.P. Chai-Tea, Cryptographic Hardware Implementations of xTEA. In Proceedings of the 9th
International Conference on Cryptology in India: Progress in Cryptology, Kharagpur, India, 14–17
December 2008; Springer-Verlag: Berlin/Heidelberg, Germany, 2008; pp. 363–375.

35. Mac, F.; St, F.; Quisquater, J. ASIC Implementations of the Block Cipher SEA for Constrained
Applications. Available online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.926
(accessed on 1 April 2013).

36. Plos, T.; Dobraunig, C.; Hofinger, M.; Oprisnik, A.; Wiesmeier, C.; Wiesmeier, J. Compact
Hardware Implementations of the Block Ciphers mCrypton, NOEKEON, and SEA. In Progress
in Cryptology-INDOCRYPT 2012; Galbraith, S., Nandi, M., Eds.; Springer: Berlin/Heidelberg,
Germany, 2012; Volume 7668, pp. 358–377.

37. Rivest, R.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM 1978, 21, 120–126.

38. Koblitz, N. Elliptic curve cryptosystems. Math. Comput. 1987, 48, 203–209.
39. American National Standards Institute. Available online: http://www.ansi.org (accessed on 31

January 2013).
40. Institute of Electrical and Electronics Engineers. Available online: http://www.ieee.org (accessed

on 31 January 2013).
41. International Organization for Standardization. Available online: http://www.ieee.org (accessed on

31 January 2013).
42. Standards for Efficient Cryptography Group. Available online: http://secs.org (accessed on 31

January 2013).
43. National Institute of Standards and Technology. Available online: http://www.nist.gov (accessed

on 31 January 2013).
44. Sethi, M.; Arkko, A.; Keranen, A.; Rissanen, H. Practical Considerations and Implementation

Experiences in Securing Smart Object Networks; IETF Internet Draft draft-aks-crypto-sensors-02;
The Internet Engineering Task Force (IETF): Fremont, CA, USA, 2012.

45. Rivest, R. RFC 1321: The MD5 message-digest algorithm. The Internet Engineering Task Force
(IETF): Fremont, CA, USA, 1992.

46. Eastlake, D.E.; Jones, P.E. US Secure Hash Algorithm 1 (SHA1). Available online:
http://www.ietf.org/rfc/rfc3174.txt (accessed on 31 January 2013).

47. Bogdanov, A.; Leander, G.; Paar, C.; Poschmann, A.; Robshaw, M.J.; Seurin, Y. Hash Functions
and RFID Tags: Mind the Gap. In Proceedings of the 10th International Workshop on
Cryptographic Hardware and Embedded Systems, Washington, DC, USA, 10–13 August 2008;
Springer-Verlag: Berlin/Heidelberg, Germany, 2008; CHES ’08, pp. 283–299.



Algorithms 2013, 6 224

48. Guo, J.; Peyrin, T.; Poschmann, A. The PHOTON Family of Lightweight Hash Functions. In
Proceedings of the 31st Annual Conference on Advances in Cryptology, Santa Barbara, CA, USA,
14-18 August 2011; Springer-Verlag: Berlin/Heidelberg, Germany, 2011; CRYPTO’11, pp. 222–
239.

49. Bertoni, G.; Daemen, J.; Peeters, M.; Assche, G.V. Sponge functions, Ecrypt Hash Workshop,
24–25 May 2007, Barcelona, Spain.

50. Bogdanov, A.; Knežević, M.; Leander, G.; Toz, D.; Varici, K.; Verbauwhede, I. SPONGENT: A
Lightweight Hash Function. In Proceedings of the 13th International Conference on Cryptographic
Hardware and Embedded Systems, Nara, Japan, 28 September–1 October 2011; Springer-Verlag:
Berlin/Heidelberg, Germany, 2011; CHES’11, pp. 312–325.

51. Aumasson, J.P.; Henzen, L.; Meier, W.; Naya-Plasencia, M. QUARK: A Lightweight Hash.
In Proceedings of the 12th International Conference on Cryptographic Hardware and Embedded
Systems, Santa Barbara, CA, USA, 17–20 August 2010; Springer-Verlag: Berlin/Heidelberg,
Germany, 2010; CHES’10, pp. 1–15.

52. Bertoni, G.; Daemen, J.; Peeters, M.; Assche, G.V. Keccak specifications. Available online:
http://keccak.noekeon.org/Keccak-specifications.pdf (accessed on 1 April 2013).

53. NIST SHA-3 Competition. Available online: http://csrc.nist.gov/groups/ST/hash/sha-3 (accessed
on 31 January 2013).

54. Shamir, A. Fast Software Encryption; Springer-Verlag: Berlin/Heidelberg, Germany, 2008; chapter
SQUASH—A New MAC with Provable Security Properties for Highly Constrained Devices Such
as RFID Tags, pp. 144–157.

55. El Gamal, T. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms.
In Proceedings of CRYPTO 84 on Advances in Cryptology, Santa Barbara, CA, USA, 19–22
August 1984; Springer-Verlag New York, Inc.: New York, NY, USA, 1985; pp. 10–18.

56. Paillier, P. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In
Advances in Cryptology-EUROCRYPT ’99; Stern, J., Ed.; Springer: Berlin/Heidelberg, Germany,
1999; Volume 1592, Lecture Notes in Computer Science, pp. 223–238.

57. Diffie, W.; Hellman, M.E. New Directions in Cryptography. Available online:
http://www.cs.tau.ac.il/ bchor/diffie-hellman.pdf (accessed on 1 April 2013).

58. Harkins, D.; Carrel, D. RFC 2409—The Internet Key Exchange (IKE), 1998. Available online:
http://tools.ietf.org/rfc/rfc2409.txt (accessed on 31 January 2013).

59. Blundo, C.; Santis, A.D.; Herzberg, A.; Kutten, S.; Vaccaro, U.; Yung, M. Perfectly-Secure Key
Distribution for Dynamic Conferences. In Proceedings of the 12th Annual International Cryptology
Conference on Advances in Cryptology, Santa Barbara, California, USA, 16–20 August 1992;
Springer-Verlag: London, UK, 1993; CRYPTO ’92, pp. 471–486.

60. Liu, D.; Ning, P. Establishing Pairwise Keys in Distributed Sensor Networks. In Proceedings of the
10th ACM Conference on Computer and Communications Security, Washington, DC, USA, 27–30
October 2003; ACM: New York, NY, USA, 2003; CCS ’03, pp. 52–61.

61. Perrig, A.; Szewczyk, R.; Tygar, J.D.; Wen, V.; Culler, D.E. SPINS: Security protocols for sensor
networks. Wirel. Netw. 2002, 8, 521–534.



Algorithms 2013, 6 225

62. Chan, H.; Perrig, A.; Song, D. Random Key Predistribution Schemes for Sensor Networks. In
Proceedings of the 2003 IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 11–14
May 2003; IEEE Computer Society: Washington, DC, USA, 2003; SP ’03, pp. 197–213.

63. Wong, C.K.; Gouda, M.; Lam, S. Secure group communications using key graphs. IEEE/ACM
Trans. Netw. 2000, 8, 16–30.

64. Micciancio, D.; Panjwani, S. Optimal communication complexity of generic multicast key
distribution. IEEE/ACM Trans. Netw. 2008, 16, 803–813.

65. Keoh, S.; Garcia-Morchon, O.; Kumar, S.; Dijk, S. DTLS-based Multicast Security for
Low-Power and Lossy Networks (LLNs); Technical report, IETF Internet Draft draft-keoh-tls-
multicast-security-00; The Internet Engineering Task Force (IETF): Fremont, CA, USA, 2012.

66. Berkovits, S. How to Broadcast a Secret. In Proceedings of the International Conference on
Theory and Application of Cryptographic Techniques (EUROCRYPT) Brighton, UK, 8–11 April
1991; Springer-Verlag: Brighton, UK, 1991; pp. 535–541.

67. Naor, D.; Naor, M.; Lotspiech, J. Revocation and Tracing Schemes for Stateless Receivers. In
Advances in Cryptology (CRYPTO); Kilian, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2001;
Lecture Notes in Computer Science, Volume 2139, pp. 41–62.

68. Ballardie, A. Scalable Multicast Key Distribution 1996. The Internet Engineering Task Force
(IETF): Fremont, CA, USA.

69. Lin, J.; Huang, K.; Lai, F.; Lee, H. Secure and efficient group key management with shared key
derivation. Comput. Stand. Interfaces 2009, 31, 192–208.

70. Lee, P.; Lui, J.; Yau, D. Distributed collaborative key agreement and authentication protocols for
dynamic peer groups. IEEE/ACM Trans. Netw. 2006, 14, 263–276.

71. Kim, Y.; Perrig, A.; Tsudik, G. Tree-based group key agreement. ACM Trans. Inf. Syst. Secur.
2004, 7, 60–96.

72. Briscoe, B. MARKS: Zero Side Effect Multicast Key Management Using Arbitrarily
Revealed Key Sequences. In Networked Group Communication; Rizzo, L., Fdida, S., Eds.;
Springer: Berlin/Heidelberg, Germany, 1999; Lecture Notes in Computer Science, Volume 1736,
pp. 301–320.

73. Sarikaya, B.; Ohba, Y.; Moskowitz, R.; Cao, Z.; Cragie, R. Security Bootstrapping Solution
for Resource-Constrained Devices; Technical report, IETF Internet Draft draft-sarikaya-core-
sbootstrapping-05; The Internet Engineering Task Force (IETF): Fremont, CA, USA, 2012.

74. Jennings, C. Transitive Trust Enrollment for Constrained Devices; Technical report, IETF
Internet Draft draft-jennings-core-transitive-trust-enrollment-01; The Internet Engineering Task
Force (IETF): Fremont, CA, USA, 2012.

75. Garcia-Morchon, O.; Wehrle, K. Modular Context-Aware Access Control for Medical Sensor
Networks. In Proceedings of the 15th ACM Symposium on Access Control Models and
Technologies, Newark, NJ, USA, 20-22 June 2012; ACM: New York, NY, USA, 2010; SACMAT
’10, pp. 129–138.

76. Hammer-Lahav, E. RFC 5849—The OAuth 1.0 Protocol, 2010. Available online:
http://tools.ietf.org/rfc/rfc5849.txt (accessed on 31 January 2013).



Algorithms 2013, 6 226

77. Hardt, D. RFC 6749—The OAuth 2.0 Authorization Framework, 2012. Available online:
http://tools.ietf.org/rfc/rfc6749.txt (accessed on 31 January 2013).

c© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


	Introduction
	Security Protocols
	Network-Layer Security
	Transport-Layer Security
	Application-Layer Security

	Lightweight Cryptography for Smart Objects
	Symmetric-Key LWC Algorithms
	 Tiny Encryption Algorithm (TEA)
	 Scalable Encryption Algorithm (SEA)
	 PRESENT Cipher
	 Hight
	 Comparison of Symmetric LWC Algorithms

	Public-Key (Asymmetric) LWC Algorithms
	 RSA Algorithm
	 Elliptic Curve Cryptography (ECC)
	 Performance Comparison of Available Implementations of Public-key Cryptographic Algorithms

	 Lightweight Cryptographic Hash Functions
	 DM-PRESENT and H-PRESENT
	 PHOTON
	 SPONGENT
	 QUARK
	 Keccak
	 SQUASH

	Homomorphic Encryption Schemes

	Key Agreement, Distribution, and Security Bootstrapping
	Key Agreement Protocols
	Shared Group-Key Distribution
	Security Bootstrapping

	Processing Data in the Encrypted Domain: Secure Data Aggregation
	Authorization Mechanisms for Secure IoT Services
	Conclusions
	Acknowledgements

