
Algorithms 2013, 6, 119-135; doi:10.3390/a6010119
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

A Polynomial-Time Algorithm for Computing the Maximum
Common Connected Edge Subgraph of Outerplanar Graphs of
Bounded Degree
Tatsuya Akutsu * and Takeyuki Tamura

Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji,
Kyoto 611-0011, Japan; E-Mail: tamura@kuicr.kyoto-u.ac.jp

* Author to whom correspondence should be addressed; E-Mail: takutsu@kuicr.kyoto-u.ac.jp;
Tel.: +81-774-38-3015; Fax: +81-774-38-3022.

Received: 30 October 2012; in revised form: 27 January 2013 / Accepted: 7 February 2013 /
Published: 18 February 2013

Abstract: The maximum common connected edge subgraph problem is to find a connected
graph with the maximum number of edges that is isomorphic to a subgraph of each of the
two input graphs, where it has applications in pattern recognition and chemistry. This paper
presents a dynamic programming algorithm for the problem when the two input graphs
are outerplanar graphs of a bounded vertex degree, where it is known that the problem is
NP-hard, even for outerplanar graphs of an unbounded degree. Although the algorithm
repeatedly modifies input graphs, it is shown that the number of relevant subproblems is
polynomially bounded, and thus, the algorithm works in polynomial time.

Keywords: maximum common subgraph; outerplanar graph; dynamic programming

1. Introduction

Finding common parts of graph-structured data is an important and fundamental task in computer
science. Among many such problems, the maximum common subgraph problem has applications in
various areas, which include pattern recognition [1,2] and chemistry [3,4]. Although there are several
variants, the maximum common subgraph problem (MCS) usually means the problem of finding a
connected graph with the maximum number of edges that is isomorphic to a subgraph of each of the
two input undirected graphs (i.e., the maximum common connected edge subgraph problem).

Algorithms 2013, 6 120

Because of its importance in pattern recognition and chemistry, many practical algorithms have been
developed for MCS and its variants [1–4]. Some exponential-time algorithms that are better than naive
ones have also been developed [5,6]. Kann studied the approximability of MCS and related problems [7].

It is also important for MCS to study a polynomially solvable subclasses of graphs, because graph
structures are restricted in many application areas. It is well-known that if input graphs are trees, MCS
can be solved in polynomial time using maximum weight bipartite matching [8]. Akutsu showed that
MCS can be solved in polynomial time if input graphs are almost trees of bounded degree, whereas
MCS remains NP-hard for almost trees of unbounded degree [9], where a graph is called an almost tree
if it is connected and the number of edges in each biconnected component is bounded by the number
of vertices plus some constant. Yamaguchi et al. developed a polynomial-time algorithm for MCS and
the maximum common induced connected subgraph problem for a degree bounded partial k-tree and a
graph with a polynomially bounded number of spanning trees, where k is a constant [10]. However,
the latter condition seems rather artificial. Schietgat et al. developed a polynomial-time algorithm
for outerplanar graphs under the block-and-bridge preserving subgraph isomorphism [11]. However,
they modified the definition of MCS by this restriction. Although it was announced that MCS can be
solved in polynomial time if input graphs are partial k-trees and MCS must be k-connected (for example,
see [12]), the restriction that subgraphs are k-connected is too strict from a practical viewpoint. As for
the subgraph isomorphism problem, which is closely related to MCS, polynomial-time algorithms have
been developed for biconnected outerplanar graphs [13,14] and for partial k-trees with some constraints,
as well as their extensions [15,16].

In this paper, we present a polynomial-time algorithm for outerplanar graphs of a bounded degree
(a preliminary version has appeared in [17]). Although this graph class is not a superset of the classes
in previous studies [9,10], it covers a wide range of chemical compounds (it was reported that 94.4%
of chemical compounds in the NCI database have outerplanar graph structures [18]). Furthermore, the
algorithm and its analysis in this paper are not simple extensions or variants of those for the subgraph
isomorphism problem for outerplanar graphs [13,14] or partial k-trees [15,16]. These algorithms heavily
depend on the property that each connected component in a subgraph is not decomposed. However, to be
discussed in Section 4, connected components from both input graphs can be decomposed in MCS, and
considering all decompositions easily leads to exponential-time algorithms. In order to cope with this
difficulty, we introduce the concept of a blade. The blade and its analysis play a key role in this paper.

It is to be noted that the number of MCS can be exponential even for trees [19]. Therefore, our
proposed algorithm and all polynomial-time algorithms mentioned above are focusing on finding the one
of MCS’s. It should also be noted that the proposed algorithm is not practical, because the polynomial
degree is very high, although it gives a non-trivial theoretical result on the computation of MCS.

2. Preliminaries

A graph is called outerplanar if it can be drawn on a plane such that all vertices lie on the outer face
(i.e., the unbounded exterior region) without crossing of edges. Although there exist many embeddings
(i.e., drawings on a plane) of an outerplanar graph, it is known that one embedding can be computed in
linear time. Therefore, in this paper, we assume that each graph is given with its planar embedding. A

Algorithms 2013, 6 121

path is called simple if it does not pass the same vertex multiple times. In this paper, a path always means
a simple path that is not a cycle.

A cut vertex of a connected graph is a vertex whose removal disconnects the graph. A graph is
biconnected if it is connected and does not have a cut vertex. A maximal biconnected subgraph is called
a biconnected component. A biconnected component is called a block if it consists of at least three
vertices; otherwise, it is an edge and called a bridge. An edge in a block is called an outer edge if it lies
on the boundary of the outer face; otherwise, it is called an inner edge. It is well-known that any block
of an outerplanar graph has a unique Hamiltonian cycle, which consists of outer edges only [20]. For
the details of the terminology used in graphs and outerplanar graphs, refer to an appropriate textbook on
graph theory (e.g., [21]).

If we fix an arbitrary vertex of a graph G as the root r, we can define the parent-child relationship on
biconnected components. For two vertices, u and v, u is called further than v if every simple path from
u to r contains v. A biconnected component, C, is called a parent of a biconnected component C ′ if C

and C ′ share a vertex v, where v is uniquely determined, and every path from any vertex in C ′ to the root
contains v. In such a case, C ′ is called a child of C. A cut vertex v is also called a parent of C if v is
contained in both C and its parent component (both of a cut vertex and a biconnected component can
be parents of the same component). Furthermore, the root, r, is a parent of C if r is contained in C.

For each cut vertex v, G(v) denotes the subgraph of G induced by v and the vertices further than v.
For a pair of a cut vertex v and a biconnected component, C, containing v, G(v, C) denotes the subgraph
of G induced by vertices in C and its descendant components. For a biconnected component, B, with
its parent cut vertex, w, a pair of vertices, v and v′, in B is called a cut pair if v ̸= v′, v ̸= w and
v′ ̸= w hold. For a cut pair (v, v′) in B, V B(v, v′) denotes the set of the vertices lying on the one of
the two paths connecting v and v′ in the Hamiltonian cycle that does not contain the parent cut vertex,
except its endpoints. B(v, v′) is the subgraph of B induced by V B(v, v′) and is called a half block. It is
to be noted that B(v, v′) contains both v and v′. Then, G(v, v′) denotes the subgraph of G induced by
V B(v, v′) and the vertices in the biconnected components, each of which is a descendant of some vertex
in V B(v, v′) − {v, v′}, and G(v, v′) denotes the subgraph of G induced by the vertices in G(v, v′) and
descendant components of v and v′, where descendants are defined via the parent-child relationship.

Example Figure 1 shows an example of an outerplanar graph G(V,E). Blocks and bridges are shown
by gray regions and bold lines, respectively. B1, B3 and e2 are the children of the root r. B4, B6 and B7

are the children of B3, whereas B4 and B6 are the children of w. Both w and B3 are the parents of B4

and B6. G(w) consists of B4, B5 and B6, whereas G(w, B4) consists of B4 and B5. (v, v′) is a cut pair
of B7, and B7(v, v′) is a region surrounded by a dashed bold curve. G(v, v′) consists of B7(v, v′), B8,
B9, B10, e4, e5 and e6, whereas G(v, v′) consists of B7(v, v′), B10, e4 and e5.

If a connected graph, Gc(Vc, Ec), is isomorphic to a subgraph of G1 and a subgraph of G2, we call
Gc a common subgraph of G1 and G2. A common subgraph Gc is called a maximum common connected
edge subgraph of G1 and G2 if its size is the maximum among all common subgraphs (we use MCS
to denote both the problem and the maximum common subgraph), where the size means the number of
edges. In what follows, for the sake of simplicity, a maximum common subgraph (MCS) always means
a maximum common connected edge subgraph. In this paper, we consider the following problem.

Algorithms 2013, 6 122

Figure 1. Example of an outerplanar graph.

r

v’
w

B1

B2

B3

B4

B5 B6

B7

B8

B7(v,v’)

B9

v

e1

e2

e3

e6

e4

e5

outerface

B10

G(v,v’)

G(v,v’)

Maximum Common Subgraph of Outerplanar Graphs of Bounded Degree (OUTER-MCS)
Given two undirected connected outerplanar graphs, G1 and G2, whose maximum vertex degree is
bounded by a constant, D, find a maximum common subgraph of G1 and G2.

Note that the degree bound is essential, because MCS is NP-hard for outerplanar graphs of unbounded
degree, even if each biconnected component consists of at most three vertices [9]. Although we do not
consider labels on vertices or edges, our results can be extended to vertex-labeled and/or edge-labeled
cases in which label information must be preserved in isomorphic mapping. In the following, n denotes
the maximum number of vertices of two input graphs (it should be noted that the number of vertices and
the number of edges are in the same order, since we only consider connected outerplanar graphs).

In this paper, we implicitly make extensive use of the following well-known fact [13], along with
outerplanarity of the input graphs.

Fact 1 Let G1 and G2 be biconnected outerplanar graphs. Let (u1, u2, . . . , um) (resp. (v1, v2, . . . , vn))
be the vertices of G1 (resp. G2) arranged in clockwise order in a planar embedding of G1 (resp. G2).
If there is an isomorphic mapping {(u1, vi1), (u2, vi2), . . . , (um, vim)} from G1 to a subgraph of G2, then
vi1 , vi2 , . . . , vim appear in G2 in either clockwise or counterclockwise order.

3. Algorithm for a Restricted Case

In this section, we consider the following restricted variant of OUTER-MCS, which is called
SIMPLE-OUTER-MCS, and present a polynomial-time algorithm for it: (i) any two vertices in different
biconnected components in a maximum common subgraph, Gc, must not be mapped to vertices in the
same biconnected component in G1 (resp. G2); (ii) each bridge in Gc must be mapped to a bridge in G1

(resp. G2); (iii) the maximum degree need not be bounded.
It is to be noted from the definition of a common subgraph (regardless of the above restrictions) that

no two vertices in different biconnected components in G1 (resp. G2) are mapped to vertices in the
same biconnected component in any common subgraph, and no bridge in G1 (resp. G2) is mapped to an

Algorithms 2013, 6 123

edge in a block in any common subgraph (otherwise there would exist a cycle containing the edge in a
common subgraph, which would mean that the edge in G1 (resp., G2) is not a bridge).

SIMPLE-OUTER-MCS is intrinsically the same as the one studied by Schietgat et al. [11]. Although
our algorithm is more complex and less efficient than their algorithm, we present it here, because the
algorithm for a general (but bounded degree) case is rather involved and is based on our algorithm for
SIMPLE-OUTER-MCS.

Here, we present a recursive algorithm to compute the size of MCS in SIMPLE-OUTER-MCS, which
can be easily transformed into a dynamic programming algorithm to compute an MCS, as is true for many
other dynamic programming algorithms. The following is the main procedure of the recursive algorithm.

Procedure SimpleOuterMCS(G1, G2)

smax ← 0;
for all pairs of vertices (u, v) ∈ V1 × V2 do

Let (u, v) be the root pair (r1, r2) of (G1, G2);
smax ← max(smax,MCSc(G1(r1), G2(r2)));

return smax.

The algorithm consists of a recursive computation of the following three scores:

MCSc(G1(u), G2(v)): the size of an MCS Gc between G1(u) and G2(v), where (u, v) is a pair of the
roots or a pair of cut vertices, and Gc must contain a vertex corresponding to both u and v.

MCSb(G1(u, C), G2(v, D)): the size of an MCS Gc between G1(u,C) and G2(v, D), where (C,D)

is either a pair of blocks or a pair of bridges, u (resp. v) is the cut vertex belonging to both C

(resp. D) and its parent, Gc must contain a vertex corresponding to both u and v and Gc must
contain a biconnected component (which can be empty) corresponding to a subgraph of C and a
subgraph D.

MCSp(G1(u, u′), G2(v, v′)): the size of an MCS Gc between G1(u, u′) and G2(v, v′), where (u, u′)

(resp. (v, v′)) is a cut pair, and Gc must contain a cut pair (w,w′) corresponding to both (u, u′)

and (v, v′). If there does not exist such Gc (which must be connected), its score is −∞.

In the following, we describe how to compute these scores.
Computation of MCSc(G1(u), G2(v))

As in the dynamic programming algorithm for MCS for trees or almost trees [9], we construct a
bipartite graph and compute a maximum weight matching.

Let C1, . . . , Ch1 , e1, . . . , eh2 and D1, . . . , Dk1 , f1, . . . , fk2 be children of u and v respectively, where
Ci’s and Dj’s are blocks and ei’s and fj’s are bridges (see Figure 2). We construct an edge-weighted
bipartite graph BG(X, Y ; E) by

X = {C1, . . . , Ch1 , e1, . . . , eh2}
Y = {D1, . . . , Dk1 , f1, . . . , fk2}
E = {(x, y) | x ∈ X, y ∈ Y }

w(Ci, fj) = 0

Algorithms 2013, 6 124

w(Ci, Dj) = MCSb(G1(u,Ci), G2(v, Dj))

w(ei, Dj) = 0

w(ei, fj) = MCSb(G1(u, ei), G2(v, fj))

Then, we let MCSc(G1(u), G2(v)) be the weight of the maximum weight bipartite matching of
BG(X,Y ; E). It is to be noted that w(Ci, fj) = 0 (resp., w(ei, Dj) = 0) comes from the fact that
fj must be mapped to a bridge in Gc, but a bridge in Gc must not be mapped to an edge in any block
(e.g., Ci), because of the condition (ii) of SIMPLE-OUTER-MCS.

Figure 2. Computation of MCSc(G1(u), G2(v)).

G2G1
C1

C2

C3

r1
u

e1
e2

e3

D1

r2
v

f1

D2

D3

D4

f2

Computation of MCSb(G1(u,C), G2(v,D))

Let (u1, u2, . . . , uh) be the sequence of vertices in G1(u,C), such that there exists an edge, {ui, u},
for each ui, where u1, u2, . . . , uh are arranged in clockwise order. (v1, v2, . . . , vk) is defined for G2(v, D)

in the same way. It is to be noted that (C, D) is either a pair of blocks or a pair of bridges. A pair of
subsequences ((ui1 , ui2 , . . . , uig), (vj1 , vj2 , . . . , vjg)) is called an alignment if i1 < i2 < · · · < ig and
j1 < j2 < · · · < jg or jg < jg−1 < · · · < j1 hold (the latter ordering is required for handling
mirror images.), where g = 0 is allowed. We compute MCSb(G1(u,C), G2(v, D)) by the following
(see Figure 3):

Procedure SimpleOuterMCSb(G1(u, C), G2(v, D))

smax ← 0;
for all alignments ((ui1 , ui2 , . . . , uig), (vj1 , vj2 , . . . , vjg)) do;

if C is a block and g = 1 then continue; /* blocks must be preserved */
s← 0;
for t = 1 to g do s← s + 1 + MCSc(G1(uit), G2(vjt));
for t = 2 to g do s← s + MCSp(G1(uit−1 , uit), G2(vjt−1 , vjt));
smax ← max(s, smax);

return smax.

In the above procedure, the first inner for loop takes care of blocks, such as C1, C4, D1 and D4 in
Figure 3, whereas the second inner for loop takes care of half blocks, such as C2, C3, D2, D3 and D5 in
Figure 3.

For example, consider an alignment, ((u1, u2, u3), (v1, v2, v4)), in Figure 3, where all
alignments are to be examined in the algorithm. Then, the score of this alignment is given by

Algorithms 2013, 6 125

3+MCSb(G1(u1, C1), G2(v1, D1))+MCSp(G1(u1, u2), G2(v1, v2)) +MCSp(G1(u2, u3), G2(v2, v4)).
MCSb(G1(u1, C1), G2(v1, D1)) comes via the computation of MCSc(G1(u1), G2(v1)), in which
BG(X,Y ; E) is given by X = {C1}, Y = {D1}, E = {(C1, D1)}, and thus, the maximum weight
matching is given by w(C1, D1) = MCSb(G1(u1, C1), G2(v1, D1)). In this case, an edge, {v, v3}, is
removed and then v3 is treated as a vertex on the path connecting v2 and v4 in the outer face. For another
example, consider an alignment ((u1), (v1)) in the same figure. Then, this alignment is ignored by the
“if ... then ...” line of the procedure, because a bridge in Gc, which would correspond to {u, u1} in G1

and {v, v1} in G2, must not be mapped to an edge in C or D. However, if both {u, u1} and {v, v1} are
bridges, the resulting score would be 1 + MCSc(G1(u1), G2(v1)).

Figure 3. Computation of MCSb(G1(u,C), G2(v, D)).

u

u1

u2

u3

C1

C4

G1(u,C) G2(v,D)

v

v1

v2

v4

D1
D4

C2

C3

C D

D3

D2

D5

v3

Since the above procedure examines all possible alignments, it may take exponential time. However,
we can modify it into a dynamic programming procedure, as shown below, where we omit a
subprocedure for handling mirror images, because it is trivial. In this procedure, u1, u2, . . . , uh and
v1, v2, . . . , vk are processed from left to right. In the first for loop, M [s, t] stores the size of MCS
between G1(us) and G2(vt) plus one (corresponding to a common edge between {u, us} and {v, vt}).
The double for loop computes an optimal alignment. M [s, t] stores the size of MCS between G1(u,C)

and G2(v,D) up to us and vt, respectively. flag is introduced to ensure the connectedness of a common
subgraph. For example, flag = 0 if G1(u) is a triangle, but G2(v) is a rectangle. If C (and also D) is an
edge, flag = 0, but the procedure returns M [1, 1].

for all (s, t) ∈ {1, . . . , h} × {1, . . . , k} do
M [s, t]← 1 + MCSc(G1(us), G2(vt));

flag ← 0;
for s = 2 to h do

for t = 2 to k do
M [s, t]←M [s, t] + maxs′<s,t′<t{M [s′, t′] + MCSp(G1(us′ , us), G2(ut′ , ut))};
if M [s, t] > −∞ then flag ← 1;

if C is a block and flag = 0 then return 0 else return maxs,t M [s, t].

Computation of MCSp(G1(u, u′), G2(v, v′))

Let (u1, u2, . . . , uh) be the sequence of vertices in G1(u, u′), such that there exists an edge {ui, u}
or {ui, u

′} for each ui, where u1, u2, . . . , uh are arranged in clockwise order. (v1, v2, . . . , vk) is defined
for G2(v, v′) in the same way. For a pair, (ui, vj), l(ui, vj) = 1 if {ui, u} ∈ E1 and {vj, v} ∈ E2 hold,

Algorithms 2013, 6 126

otherwise, l(ui, vj) = 0. Similarly, for a pair, (ui, vj), r(ui, vj) = 1 if {ui, u
′} ∈ E1 and {vj, v

′} ∈ E2

hold, otherwise, r(ui, vj) = 0. We compute MCSp(G1(u, u′), G2(v, v′)) by the following procedure,
where it does not examine alignments with jg < jg−1 < · · · < j1:

Procedure SimpleOuterMCSp(G1(u, u′), G2(v, v′))

if {u, u′} ∈ E1 and {v, v′} ∈ E2 then smax ← 1 else smax ← −∞;
for all alignments ((ui1 , ui2 , . . . , uig), (vj1 , vj2 , . . . , vjg)) do

if l(uit , vjt) = 0 and r(uit , vjt) = 0 hold for some t then continue;
if l(ui1 , vj1) = 0 or r(uig , vjg) = 0 holds then continue;
if {u, u′} ∈ E1 and {v, v′} ∈ E2 then s← 1 else s← 0;
for t = 1 to g do s← s + l(uit , vjt) + r(uit , vjt) + MCSc(G1(uit), G2(vjt));
for t = 2 to g do s← s + MCSp(G1(uit−1 , uit), G2(vjt−1 , vjt));
smax ← max(s, smax);

return smax.

This procedure returns −∞ if there is no connected common subgraph between G1(u, u′) and
G2(v, v′) that contains (w, w′) corresponding to both (u, u′) and (v, v′). It should be noted that the
first line in the body of the main loop puts the constraint that all corresponding pairs, (uit , vjt), in an
alignment must be connected to either (u, v) or (u′, v′), and the second line puts the constraint that
(ui1 , vj1) must be connected to (u, v) and (uig , vjg) must be connected to (u′, v′).

As an example, consider an alignment, ((u1, u2, u3, u4), (v1, v2, v3, v5)), in Figure 4.
Then, the score is given by 4 + MCSp(G1(u1, u2), G2(v1, v2)) + MCSp(G1(u2, u3),

G2(v2, v3)) + MCSb(G1(u3, C3), G2(v3, D4)) + MCSp(G1(u3, u4), G2(v3.v5)), where
MCSb(G1(u3, C3), G2(v3, D4)) is given via the computation of MCSc(G1(u3), G2(v3)).

Figure 4. Computation of MCSp(G1(u, u′), G2(v, v′)).

u

u1 u2

u’

u3 u4

C1
C2 C3

C4

G1(u,u’) G2(v,v’)

v v’

v4

v5

v1
v2 v3

D1
D2 D3 D4 D5

D6

For another example, the score is −∞ for each of alignments, ((u1, u3), (v4, v5)), ((u1, u2), (v1, v2))

and ((u3), (v3)), whereas the score of ((u2), (v3)) is 2, since {u, u′} /∈ E, {v, v′} /∈ E, l(u2, v3) = 1,
r(u2, v3) = 1 and MCSc(G1(u2), G2(v3)) = 0. It is to be noted that vertices not appearing in an
alignment can match in a later dynamic programming process; for example, u2 can match with v2 under
an alignment of ((u1, u3), (v1, v4)), although edges {u, u2} and {v, v2} are ignored.

As in the case of SimpleOuterMCSb(G1(u,C), G2(v, D)), SimpleOuterMCSp

(G1(u, u′), G2(v, v′)) can be modified into a dynamic programming version.
Then, we have the following theorem:

Algorithms 2013, 6 127

Theorem 1 SIMPLE-OUTER-MCS can be solved in polynomial time.

Proof. First we consider the correctness of the algorithm SimpleOuterMCS(G1, G2). The
crucial points of the algorithm are that it examines all possible combinations of the neighbors via
alignments examined in SimpleOuterMCSb(G1(u,C), G2(v, D)) for each pair of cut vertices (u, v)

and via alignments examined in SimpleOuterMCSp(G1(u, u′), G2(v, v′)) for each pair of cut pairs
((u, u′), (v, v′)), where the connectedness in the latter case is taken care of by the use of l(ui, vj) and
r(ui, vj). It should be noted that non-neighbors of u cannot be neighbors of a node corresponding to
u in MCS, and the ordering of neighbors must be preserved by Fact 1. Therefore, examination of all
alignments covers all valid combinations of neighbors. Based on these facts, it is straightforward to see
that SimpleOuterMCS(G1, G2) correctly computes the size of MCS.

Next, we consider the time complexity. Since we examine O(n2) possible root pairs, we focus on the
case where the roots are fixed, where n is the maximum number of vertices in G1 and G2.

Although SimpleOuterMCS(G1, G2) is described as a recursive algorithm, the numbers of required
scores of MCS(G1(u), G2(v)), MCS(G1(u,C), G2(v, D)) and MCS(G1(u, u′), G2(v, v′)) are O(n2),
O(n2) and O(n4), respectively. Therefore, by storing these values in some tables, we can transform
SimpleOuterMCS (G1, G2) into a dynamic programming algorithm.

Computation of MCS(G1(u), G2(v)) can be done in O(n3) time per call, because a maximum weight
bipartite matching can be computed in O(n3) time [22]. Using the dynamic programming version,
the computation of each of MCS(G1(u,C), G2(v, D)) and MCS(G1(u, u′), G2(v, v′)) can be done in
O(h2k2) ≤ O(n4) time per call.

Therefore, the total time complexity is O(n2)×(O(n2)×O(n3)+O(n2)×O(n4)+O(n4)×O(n4)) =

O(n10). 2

Though it might be possible to substantially reduce the degree of polynomial by some simplification,
as done in [11], we do not go further, because our main purpose is to present a polynomial-time algorithm
for the non-restricted (but bounded degree) case.

4. Algorithm for Outerplanar Graphs of Bounded Degree

In order to extend the algorithm in Section 3 for a general (but bounded degree) case, we need to
consider the decomposition of biconnected components. For example, consider graphs G1 and G2 in
Figure 5. We can see that in order to obtain a maximum common subgraph, biconnected components in
G1 and G2 should be decomposed, as shown in Figure 5, where there can be multiple ways of optimal
decompositions in general. This is the crucial point, because considering all possible decompositions
easily leads to exponential-time algorithms. In order to characterize decomposed components, we
introduce the concept of a blade, as shown below (see also Figure 6).

Suppose that vi1 , . . . , vik are the vertices of a half block arranged in this order, and vi1 and vik are
respectively connected to v and v′, where v and v′ can be the same vertex. If we cut one edge, {vih , vih+1

}
for ih ∈ {2, 3, ..., k−2}, we obtain two half blocks, one induced by vi1 , vi2 , . . . , vih and the other induced
by vik , vik−1

, . . . , vih+1
. However, only one half block is obtained in the case of i1 = ih or ik = ih+1,

and no half block is obtained in the case of k = 2 (see Figure 7). Each of these half blocks is a chain
of biconnected components called a blade body, and a subgraph consisting of a blade body and its

Algorithms 2013, 6 128

descendants is called a blade. Vertices vi1 and vik , an edge {vih , vih+1
} and vertices vih , vih+1

are called
base vertices, a tip edge and tip vertices, respectively. The sequence of edges in the shortest path from
vi1 to vih (resp. from vik to vih+1

) is called the backbone of a blade. As a result, the edges between two
blades are deleted (it does not cause a problem, because all possible configurations are examined, as
discussed later). In addition, there exists three subcases, depending on the existence of edges {vi1 , vik}
and {v′, vi1} (cases with {v, vik} can be handled in an analogous way). We need not consider the case
where {v′, vi1} is deleted, but {vi1 , vik} remains, because deletion of {v′, vi1} can be handled in the
computation of MCSp(G1(u, u′), G2(v, v′))):

• both {vi1 , vik} and {v′, vi1} are deleted
• {vi1 , vik} is deleted, but {v′, vi1} remains
• both {vi1 , vik} and {v′, vi1} remain

where these three cases are respectively denoted by “deletion of e”, “deletion of e” and “deletion of ê”
(see Figure 7). It is to be noted that, in any case, we cannot have multiple tip edges simultaneously for
the same pair, (v, v′), because disconnected component(s) would appear if multiple tip edges exist.

Figure 5. Example of a difficult case.

G1 G2

Figure 6. (A) Construction of blades where subgraphs, excluding gray regions (descendant
components), are blade bodies; and (B) schematic illustration of a blade.

base
vertices

tip edge

(A)
tip vertices

v

v’

vi1

vik

vih

vih+1

blade

blade

base vertex

tip edge

(B)

backbone

tip vertex

v

v’

backbone

Algorithms 2013, 6 129

Figure 7. Types and subcases of blades, where two other subcases for (ii) and another
subcase (i.e., {v′, vi1} remains) for (iii) and (iv) are omitted.

e

(i)

e e

(ii)

ee

(iii) (iv)

e

v

v’

vi1

vik

v’

v

vik

vi1

v’

v

vik

vi1

e

e

v

v’

vi1

vik

e

v

v’

vi1

vi2

v’

v

vik

vi1

v

v’

vi1

vik

e

v

v’

vi1

vik

v

v’

vi1

vik

v

v’

vi1

vik

In addition, we allow {v, vi1} (resp. {v′, vik}) to be a tip edge. In this case, after removing this tip
edge, the resulting half block induced by vik , . . . , vi2 , vi1 (resp. (vi1 , vi2 , . . . , vik)) is a blade body, where
vik (resp. vi1) becomes the base vertex. For example, the rightmost blade in Figure 8 is created by
removing a tip edge {u, u5} and u4 becomes the base vertex.

Figure 8. Example of configuration and its resulting subgraph of G1(u). Black circles,
dark gray regions and thin dotted lines denote selected vertices, blades and removed edges,
respectively. Block C1 and edges e1, e2 are the children of u in G1(u), where block H1 is
a child of e1, blocks H2, H3 are children of C1 and block H4 is a child of e2. Edges, ea, eb,
are tip edges, where {u, u5} is also regarded as a tip edge. Then, edge e1 is deleted along
with block H1, whereas edge e2 remains as it is. Block C1 is divided into block C ′

1, blades
B1, . . . , B5 and edge e′1, where blocks, H2, H3, and blades, B1, B2, B3, are children of C ′

1

and blades, B4, B5, are children of e′1. In the resulting subgraph, block, C ′
1, and edges, e′1, e

′
2,

are the children of u.

u u

e1 e2

e1’

e2

C1’

u1 u2 u3 u4 u5

ebea

C1

H1 H4

B1 B2 B3 B4 B5
H2

H3
H3

H2

H4

Since a blade can be specified by a pair of base and tip vertices and an orientation (clockwise or
counterclockwise), there exist O(n2) blades in G1 and G2. Of course, we need to consider the possibility
that during the execution of the algorithm, other subgraphs may appear from which new blades are
created. However, we will show later that blades appearing in the algorithm are restricted to be those in
G1 and G2.

Algorithms 2013, 6 130

4.1. Description of Algorithm

In this subsection, we describe the algorithm as a recursive procedure, which can be transformed into
a dynamic programming one, as stated in Section 3.

The main procedure, OuterMCS(G1, G2) is the same as that mentioned in Section 3, and we
recursively compute three kinds of scores: MCSc(G1(u), G2(v)), MCSb(G1(u,C), G2(v, D)) and
MCSp(G1(u, u′), G2(v, v′)), where cut vertices, cut pairs, blocks and bridges do not necessarily mean
those in the original graphs, but may mean those in subgraphs generated by the algorithm.

Computation of MCSc(G1(u), G2(v))

Let C1, . . . , Ch1 and e1, . . . , eh2 be children of u, where Ci’s and ej’s are blocks and bridges,
respectively. Let ui1 , . . . , uih be the neighboring vertices of u that are contained in the children of u.
We define a configuration as a tuple of the following (see Figure 8).

s(uij) ∈ {0, 1} for j = 1, . . . , k: s(uij) = 1 means that uij is selected as a neighbor of u in a common
subgraph, otherwise s(uij) = 0. uij is called a selected vertex if s(uij) = 1.

tip(uij , uik): e = tip(uij , uik) is an edge in B(uij , uik), where B is the block containing uij , uik and
u. This edge is defined only for a consecutive selected vertex pair, uij and uik , in the same block
(i.e., B(uij , uik) does not contain any other selected vertex). e is used as a tip edge, where e can
be empty, which means that we do not cut any edge in B(uij , uik). It is to be noted that, at most,
one edge in B(uij , uik) can be a tip edge, and thus, each B(uij , uik) is divided into, at most, two
blade bodies; further decomposition will be done in later steps. We also consider e and ê for
e = tip(uij , uik) whenever available.

Each configuration defines a subgraph of G1(u) as follows:

• ei = {uij , u} (i ∈ {1, . . . , h2}) remains if s(uij) = 1. Otherwise, ei is removed along with its
descendants.
• If no vertex in Ci is selected, it is removed along with its descendants. Otherwise, Ci is divided

into blocks, blade bodies (according to s(. . .)’s and tip(. . .)’s) and bridges, where edges, {uij , u}
with s(uij) = 0, are removed.

Let C ′
1, . . . , C

′
p1

and e′1, . . . , e
′
p2

be the resulting blocks and bridges containing u, which are new
‘children’ of u, for a configuration, F1. Configurations are defined for G2(v) in an analogous way.
Let D′

1, . . . , D
′
q1

and f ′
1, . . . , f

′
q2

be the resulting new children of v for a configuration F2 of G2. As
stated in Section 3, we construct a bipartite graph BGF1,F2 by

w(C ′
i, f

′
j) = 0

w(C ′
i, D

′
j) = MCSb(G1(u,C ′

i), G2(v,D′
j))

w(e′i, D
′
j) = 0

w(e′i, f
′
j) = MCSb(G1(u, e′i), G2(v, f ′

j))

and we compute the weight of the maximum weight matching for each configuration pair (F1, F2)

(although a bridge cannot be mapped on a block here, a bridge can be mapped to an edge in a block of

Algorithms 2013, 6 131

an input graph by converting the block into smaller blocks and bridges using tip edge(s)). The following
is a procedure for computing MCSc(G1(u), G2(v)):

Procedure OuterMCSc(G1(u), G2(v))

smax ← 0;
for all configurations F1 for G1(u) do

for all configurations F2 for G2(v) do
s← weight of the maximum weight matching of BGF1,F2 ;
if s > smax then smax ← s;

return smax.

Computation of MCSb(G1(u,C ′), G2(v, D′))

This score can be computed, as stated in Section 3, although we should take blades into account. In
this case, we can directly examine all possible alignments, because the number of neighbors of u or v is
bounded by a constant, and we need to examine a constant number of alignments.
Computation of MCSp(G1(u, u′), G2(v, v′))

As in OuterMCSc(G1(u), G2(v)), we examine all possible configurations by specifying selected
vertices and tip edges (see Figure 9). Each configuration defines a subgraph of G1(u, u′) (resp.
G2(v, v′)). This subgraph contains three kinds of biconnected components:

(i) components connecting only to u (resp. v)
(ii) components connecting only to u′ (resp. v′) and

(iii) component connecting to both u and u′ (resp. v and v′), where this type (iii) component is
uniquely determined.

Figure 9. Example of configuration and its resulting subgraph for G1(u, u′). Black circles,
dark gray regions and thin dotted lines denote selected vertices, blade, and removed edges,
respectively. Edges, ea, eb, are tip edges, where {u′, u′′} is also regarded as a tip edge. In
the resulting subgraph, C ′

1 is a type (i) component, e′1 and e′2 are type (ii) components and
C0(u, u′) is a type (iii) component.

u u’ u u’

C0(u,u’)C1’

e1’
e2’

ea eb

u’’

For each of type (i) and type (ii) components, we construct a bipartite graph, as in
OuterMCS(G1(u), G2(v)), although blades might appear in the recursive process. Let the resulting
bipartite graphs be BGl

F1,F2
and BGr

F1,F2
, respectively. Let C0(u, u′) and D0(v, v′) be type (iii)

Algorithms 2013, 6 132

components (i.e., half blocks) for G1(u, u′) and G2(v, v′), respectively. For this pair of components, we
compute a maximum common subgraph, as in SimpleOuterMCS(G1(u, u′), G2(v, v′)). The following
is a pseudocode of OuterMCS(G1(u, u′), G2(v, v′)):

Procedure OuterMCS(G1(u, u′), G2(v, v′))

smax ← 0;
for all configurations F1 for G1(u, u′) do

for all configurations F2 for G2(v, v′) do
s← score of the maximum common subgraph between C0(u, u′) and D0(v, v′);
s← s + weight of the maximum weight matching of BGl

F1,F2
;

s← s + weight of the maximum weight matching of BGr
F1,F2

;
if s > smax then smax ← s;

return smax.

4.2. Analysis

As mentioned before, each blade is specified by base and tip vertices in G1 or G2 and an orientation.
Each half block is also specified by two vertices in a block in G1 or G2. We show that this property is
maintained throughout the execution of the algorithm and bound to the number of half blocks and blades,
as below.

Lemma 1 The number of different half blocks and blades appearing in OuterMCS(G1, G2) is O(n2).

Proof. We prove it by mathematical induction on the number of steps in the execution of the algorithm.
At the beginning of the algorithm, this property is trivially maintained, because we only have G1 and G2.
A new half block (along with its descendants) or a new blade is created only when graphs are modified
according to a configuration or alignment. In the alignment case, it is straightforward to see that new
half blocks are half blocks of the current block or current half block. It can also be seen that whenever
a blade is newly created, it is a half block (along with descendants) of the current block or current half
block. The crucial cases lie when an existing blade is modified according to a configuration. Let u and
{u,w} be the base vertex and a backbone edge in a blade BD, respectively. Let C0 be the block in G1

(resp. G2) from which BD was created. Then, we need to consider the following three cases (Figure 10)
(new blades may also be created by a tip edge in a half block specified by a pair of selected vertices):

(a) w is not selected.
The base vertex of a new blade is the selected vertex nearest to w in the first block (i.e., block
containing u) of BD. Since the original blade body was a half block of a block C0, the resulting
blade body is also a half block of C0.

(b) w is selected, and there is no tip edge between w and its nearest selected vertex.
The resulting blade body begins from w (in the next step), which is a half block of C0.

(c) w is selected, and there is a tip edge between w and its nearest selected vertex.
The resulting blade body begins from w, which is a half block of C0. Furthermore, two (or less)
new blade bodies are created, both of which are half blocks of C0.

Algorithms 2013, 6 133

Therefore, we can see that every half block or blade appearing in the algorithm is specified by two
vertices in a block of G1 or G2, from which the lemma follows. 2

Figure 10. Three cases considered in the proof of Lemma 1. Bold lines and dark gray
regions denote backbone edges and new blade bodies, respectively.

(a)

u

w

u

w

(b)

u

w

u

w

(c)

u

w

tip edge

u

w

Finally, we obtain the following theorem.

Theorem 2 A maximum common connected edge subgraph of two outerplanar graphs of bounded
degree can be computed in polynomial-time.

Proof. It is straightforward to check the correctness of the algorithm, because it implicitly examines
all possible common subgraphs via alignment, decomposition by configurations and bipartite matching,
where Fact 1 enables us to use alignment and dynamic programming. Therefore, we focus on the
time complexity.

Since the number of half blocks and blades is O(n2) and the maximum degree is bounded, the number
of different G1(u)’s and G1(u, u′)’s (resp. G2(v)’s and G2(v, v′)’s) appearing in the algorithm, some of
which can be obtained from subgraphs of G1 (resp. G2), is O(n3), where an additional O(n) factor
comes from the fact that O(n) new blocks and bridges may be created per blade. Therefore, we can
transform the recursive algorithm into a dynamic programming algorithm using O(n3)×O(n3) = O(n6)

size tables.
For each subgraph appearing in OuterMCS(G1(u), G2(v)) or OuterMCS(G1(u, u′), G2(v, v′)) as

an argument, the number of configurations is O(n2D−3), because there exists at most 2D−2 neighboring
vertices (excluding those nearer to the root) of u and u′ (resp. v and v′) for a constant, D, (D > 2) and
a tip edge lies between a path connecting two neighboring vertices. For some block pair, we need to
examine all possible alignments. Since the maximum degree is bounded by constant, D, we need to
examine a constant number of alignments, and thus, this calculation can be done in constant time. By
the same reason, a maximum matching can be computed in constant time. All other miscellaneous
operations, which include modification of edges and summation of scores, can be performed in O(n2)

time per pair of configurations, pair of biconnected components and pair of half blocks. Since we need
to examine O(n2) pairs of the roots, the total computation time is:

O(n2)×O(n6)×O(n2D−3)×O(n2D−3)×O(n2) = O(n4D+4)

for a constant, D (a constant factor depending only on D is ignored here, because we assume that D is a
constant). 2

Algorithms 2013, 6 134

5. Concluding Remarks

We have presented a polynomial-time algorithm for the maximum common connected edge subgraph
problem for outerplanar graphs of bounded degree. However, it is not practically efficient. Therefore,
development of a much faster algorithm is left as an open problem. Although the proposed
algorithm might be modified for outputting all maximum common subgraphs, it would not be an
output-polynomial-time algorithm. Therefore, such an algorithm should also be developed.

Recently, it has been shown that the maximum common connected edge subgraph problem is NP-hard,
even for partial k-trees of a bounded degree, where k = 11 [23]. Since outerplanar graphs have treewidth
2 and most chemical compounds have a treewidth of at most 3 [10,18], to decide whether the problem
for partial k-trees is NP-hard for k = 3 is left as an interesting open problem.

Acknowledgments

Tatsuya Akutsu was partly supported by JSPS, Japan (Grants-in-Aid 22240009 and 22650045).
Takeyuki Tamura was partly supported by JSPS, Japan (Grant-in-Aid for Young Scientists (B)
23700017).

References

1. Conte, D.; Foggia, P.; Sansone, C.; Vento, M. Thirty years of graph matching in pattern recognition.
Int. J. Pattern Recognit. Artif. Intell. 2004, 18, 265–298.

2. Shearer, K.; Bunke, H.; Venkatesh, S. Video indexing and similarity retrieval by largest common
subgraph detection using decision trees. Pattern Recognit. 2001, 34, 1075–1091.

3. Raymond, J.W.; Willett, P. Maximum common subgraph isomorphism algorithms for the matching
of chemical structures. J. Comput. Aided Mol. Des. 2002, 16, 521–533.

4. Hans-Christian Ehrlich, H-C.; Rarey, M. Maximum common subgraph isomorphism algorithms
and their applications in molecular science: A review. WIREs Comput. Mol. Sci. 2011, 1, 68–79.

5. Abu-Khzam, F.N.; Samatova, N.F.; Rizk, M.A.; Langston, M.A. The Maximum Common Subgraph
Problem: Faster Solutions via Vertex Cover. In Proceedings of the 2007 IEEE/ACS International
Conference Computer Systems and Applications, IEEE, Piscataway, NJ, USA, 2007; pp. 367–373.

6. Huang, X.; Lai, J.; Jennings, S.F. Maximum common subgraph: Some upper bound and lower
bound results. BMC Bioinforma. 2006, 7 (Suppl. 4), S6:1–S6:9.

7. Kann, V. On the Approximability of the Maximum Common Subgraph Problem. In Proceedings
of the 9th Symposium Theoretical Aspects of Computer Science; Springer: Heidelberg, Germany,
1992; Volume 577, pp. 377–388.

8. Garey, M.R.; Johnson, D.S. Computers and Intractability; Freeman: New York, NY, USA, 1979.
9. Akutsu, T. A polynomial time algorithm for finding a largest common subgraph of almost trees of

bounded degree. IEICE Trans. Fundam. 1993, E76-A, 1488–1493.
10. Yamaguchi, A.; Aoki, K.F.; Mamitsuka, H. Finding the maximum common subgraph of a partial

k-tree and a graph with a polynomially bounded number of spanning trees. Inf. Proc. Lett. 2004,
92, 57–63.

Algorithms 2013, 6 135

11. Schietgat, L.; Ramon, J.; Bruynooghe, M. A Polynomial-Time Metric for Outerplanar Graphs. In
Proceedings of the Workshop on Mining and Learning with Graphs, Firenze, Italy, 1 August 2007.

12. Bachl, S.; Brandenburg, F-J.; Gmach, D. Computing and drawing isomorphic subgraphs. J. Graph
Algorithms Appl. 2004, 8, 215–238.

13. Lingas, A. Subgraph isomorphism for biconnected outerplanar graphs in cubic time. Theoret.
Comput. Sci. 1989, 63, 295–302.

14. Syslo, M.M. The subgraph isomorphism problem for outerplanar graphs. Theoret. Comput. Sci.
1982, 17, 91–97.

15. Dessmark, A.; Lingas, A.; Proskurowski, A. Faster algorithms for subgraph isomorphism of
k-connected partial k-trees. Algorithmica 2000, 27, 337–347.

16. Hajiaghayi, M.; Nishimura, N. Subgraph isomorphism, log-bounded fragmentation, and graphs of
(locally) bounded treewidth. J. Comput. Syst. Sci. 2007, 73, 755–768.

17. Akutsu, T.; Tamura, T. A Polynomial-Time Algorithm for Computing the Maximum Common
Subgraph of Outerplanar Graphs of Bounded Degree. In Proceedings of the 37th International
Symposium on Mathematical Foundations of Computer Science; Springer: Heidelberg, Germany,
2012; Volume 7464, pp. 76–87.

18. Horváth, T.; Ramon, J.; Wrobel, S. Frequent Subgraph Mining in Outerplanar Graphs. In
Proceedings of the 12th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining; ACM:
New York, NY, USA, 2006; pp. 197–206.

19. Akutsu, T. An RNC algorithm for finding a largest common subtree of two trees. IEICE Trans. Inf.
Syst. 1992, E75-D, 95–101.

20. Syslo, M.M. Characterizations of outerplanar graphs. Disc. Math. 1979, 26, 47–53.
21. Chartrand, G.; Lesniak, L.; Zhang, P. Graphs and Digraphs, Fifth Edition; Chapman and Hall/CRC:

Boca Raton, FL, USA, 2010.
22. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, Third Edition;

The MIT Press: Cambridge, MA, USA, 2009.
23. Akutsu, T.; Tamura, T. On the Complexity of the Maximum Common Subgraph Problem for Partial

k-trees of Bounded Degree. In Proceedings of the 23rd International Symposium Algorithms and
Computation; Springer: Heidelberg, Germany, 2012; Volume 7676, pp. 146–155.

c⃝ 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

