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Abstract: Forecasting the unit cost of every product type in a factory is an important task. 

However, it is not easy to deal with the uncertainty of the unit cost. Fuzzy collaborative 

forecasting is a very effective treatment of the uncertainty in the distributed environment. 

This paper presents some linear fuzzy collaborative forecasting models to predict the unit 

cost of a product. In these models, the experts’ forecasts differ and therefore need to be 

aggregated through collaboration. According to the experimental results, the effectiveness of 

forecasting the unit cost was considerably improved through collaboration. 
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1. Introduction 

Cost forecasting means different things at different stages of the product life cycle. In product design, 

the designer needs to know whether the product will be economically produced. After a product goes 

into mass production, forecasting the unit cost is the basis of financial and production planning activities. 

When a product enters the market, the follow-up customer service and maintenance costs must also be 

taken into account. 

Accurately predicting the unit cost of each product type is a very important task in any factory. If the 

unit cost is less than expected, then the efforts and investment of cost reduction are not necessary. 

Conversely, if the unit cost is more than expected, then the profitability of the product will be 

over-estimated, resulting in the wrong investment and production decisions. However, forecasting the 

unit cost is not an easy task because of the uncertainty of the unit cost, mainly due to the cost of human 

operations in the production of products, which is sometimes unstable. In addition, there is not much 

relevant literature in the unit cost forecasting. On the other hand, several recent studies (e.g. [1–14]) 
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showed that fuzzy collaborative forecasting has great potential for the prediction of processes with 

uncertainty, such as yield learning, changes in price, fluctuations in the cycle time, and others. For these 

reasons, the application of fuzzy collaborative forecasting methods to improve the performance of the 

unit cost forecasting is worth a try. Therefore, some fuzzy collaborative forecasting models are proposed 

in this study, in order to enhance the accuracy and precision of the unit cost forecast. 

In the proposed methodology, the stakeholders are a group of domain experts, such as the product 

engineer, factory managers and accounting department staff. These experts apply fuzzy linear regression 

methods to predict the unit cost of a product. A fuzzy linear regression equation can be converted into a 

linear or nonlinear programming problem in a variety of ways. Furthermore, within the conversion 

process some parameters need a subject setting. As a result, forecasts obtained by the experts may be 

very different and therefore requires a collaborative mechanism to deal with the following issues: 

(1) How to integrate these forecasts? 

(2) How experts can refer to the forecasts of others to modify their own?  

In response to this issue, the methods presented in this study are as follows: 

(1) Some linear fuzzy regression models for the unit cost forecasting are proposed and compared. 

(2) Development of dedicated software to pass the forecast of each expert to other experts for their 

reference. In the meantime, the software can integrate different forecasts using the hybrid fuzzy 

intersection and back propagation network approach. 

(3) In reference to the forecasts of others, each expert subjectively modifies the parameters in the fuzzy 

linear regression method. 

The objectives of this study are as follows: 

(1) To enhance the accuracy of the unit cost forecast. In other words, the forecasts obtained must be very 

close to the actual values. 

(2) To improve the precision of the unit cost forecasting. Namely, a very small range containing the 

actual value can be estimated.  

(3) The application of an instance to compare the advantages and disadvantages of different linear fuzzy 

collaborative forecasting models. 

The organization of this study is described as follow. Section 2 first reviews the literature related to 

fuzzy collaborative forecasting and the unit cost forecasting. The problems faced by the existing 

methods are also discussed. Then, in Section 3, some fuzzy collaborative forecasting models are 

proposed to predict the unit cost of a product. An example is given to illustrate the applicability of these 

models. Section 4 makes conclusions and suggests some directions for future research. 

2. Related Work 

Carnes [15] established a basic equation to calculate the unit cost of a wafer. Carnes also compared 

the long-term costs of ownership of two alternative machines, but these costs were not allocated to the 

two machines. Wood [16] defined the lowest cost of all operations on the same machine as the minimum 

wafer cost. In Pfitzner et al.’s view, the recovery of wafers is becoming increasingly important in 

reducing the unit cost along with the growth in size of a wafer [17].  
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Although there have been some literature about fuzzy collaborative intelligence and systems, but very 

few directly related to fuzzy collaborative forecasting. Shai and Reich [18,19] defined the concept of 

infused design as an approach for establishing effective collaboration between designers from different 

engineering fields. Büyüközkan and Vardaloglu [20,21] applied the fuzzy cognitive map method to the 

collaborative planning, forecasting and replenishment of a supply chain. The initial values of the 

concepts and the connection weights of the fuzzy cognitive map are dependent on the subjective belief of 

the expert and can be modified after collaboration. According to Poler et al. [22], the comparison of 

collaboration methods and the proposing of software tools, especially as regards forecasting methods for 

collaborative forecasting, are still lacking. Pedrycz and Rai [14] discussed the problem of collaborative 

data analysis by a group of agents having access to different parts of data and exchanging findings 

through their collaboration. A two-phase optimization procedure was established, so that the results of 

communication can be embedded into the local optimization results. In recent years, Chen [6] used a 

hybrid fuzzy linear regression-back propagation network approach to predict the efficient cost per unit 

of a semiconductor product. This method first gathered a group of experts in the field. Each expert then 

used a fuzzy linear regression equation to predict the future unit cost. The result is a fuzzy value, and can 

be regarded as a non-symmetric interval forecast. A crisp forecast rarely equal to the actual value. In 

contrast, a fuzzy forecast can contain the actual value. The fuzzy forecasts obtained by different experts 

are aggregated using a fuzzy intersection, resulting in a polygon-shaped fuzzy number, which can be 

defuzzified using a back propagation network. Chen [4] considered the case in which each expert has 

only partial access to the data, and is not willing to share the raw data he/she owns. The forecasting 

results by an expert are conveyed to other experts for the modification of their settings, so that the actual 

values will be contained in the fuzzy forecasts after collaboration. All fuzzy collaborative intelligence 

methods seek consensus of results. In this field, Ostrosi et al. [23] defined the concept of consensus as 

the overlapping of design clusters of different perspectives. Similarly, Chen [2] defined the concept of 

partial consensus as the intersection of the views of some experts. Cheikhrouhou et al. [24] thought that 

collaboration is necessary because of the unexpected events that may occur in the future demand. 

In short, the existing approaches have the following problems: 

(1) The unit cost forecasted by the existing methods may be lower than the actual value, resulting in 

over-estimated profits if the financial plan is based on the forecasts. 

(2) For precision in the unit cost forecasting, the narrowest scope containing the actual value is required; 

however, this has rarely been discussed. 

(3) The peak and average unit costs are forecasted separately, which is problematic because it is possible 

that the forecast becomes invalid in the sense that the average value may be higher than the peak 

value [10]. 

(4) The existing fuzzy linear regression-back propagation network methods selected particular fuzzy 

linear regression methods, but did not explain the reasons or compared with other fuzzy linear 

regression methods. 
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3. Methodology 

The parameters used in the proposed methodology are defined in advance. 

(1) b: learning constant. 

(2) ta : normalized unit cost at period t.  

(3) ct: actual unit cost at period t. 

(4) tc : fuzzy unit cost forecast at period t. 1 2 3( , , )t t t tc c c c  if it is represented with a triangular fuzzy 

number . 

(5) C: unit wafer cost. 

(6) G: gross die. 

(7) r(t): homoscedastical, serially non-correlated error term. 

(8) t: period. 

(9) T: current period. 

(10) Yt: yield at period t. 

(11) Y0: asymptotic/final yield. 

Prior to predict the unit cost of a product, we emphasize at the outset that the reduction in the unit cost 

follows a learning process, which is the assumption of this study. 

3.1. Fuzzy Linear Regression Methods for Forecasting the Unit Cost 

According to Gruber [25], the yield of a product follows a learning process: 

/ ( )
0

b t r t
tY Y e   (1) 

The unit cost can be calculated as 

/( )t tc C Y G  / ( ) / ( )
0 0/( ) /b t r t b t r tC Y e G C Y Ge      (2) 

Obviously, the change in the unti cost is also a learning process, not a usual time-series. After converting 

to logarithms, 

0ln ln ln ln / ( )tc C Y G b t r t     / ( )a b t r t    (3) 

where a = lnC − lnY0 − lnG. To consider the uncertainty in the unit cost, parameters in equation (3) are 

given in asymmetric triangular fuzzy numbers as follows [26–29]: 

1( ,a a  2 ,a  3)a  (4) 

1( ,b b  2 ,b  3)b  (5) 

Therefore, 

1 2 3 1 1 2 2 3 3ln (ln , ln , ln ) ( ) / ( ) ( / , / , / ) ( )t t t tc c c c a b t r t a b t a b t a b t r t          (6) 

where (+) represents fuzzy addition. Equation (6) is obviously a fuzzy linear regression equation. 

A fuzzy linear regression equation can be fitted in various ways. For example, in Tanaka and  

Watada [30], a linear programming problem is solved to minimize the fuzziness: 
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Min 3 1
1

(ln ln )
T

t t
t

Z c c


   (7) 

subject to 

1 2 1ln ln (ln ln )t t t tc c s c c    (8) 

3 2 3ln ln (ln ln )t t t tc c s c c    (9) 

1 1 1 /tc a b t   (10) 

2 2 2 /tc a b t   (11) 

3 3 3 /tc a b t   (12) 

1 2 30 a a a    (13) 

1 2 30 b b b    (14) 

t = 1 ~ T (15) 

where s is the satisfaction level. For the training data, the actual values will fall within the ranges of the 

fuzzy forecasts. Clearly, the higher value of s leads to wider fuzzy forecasts. This model is indicated with 

WT(s). 

The second method for fitting a fuzzy linear regression equation is Peters’ method [31], in which the 

following linear programming problem is solved, aimed at the maximization of the average  

satisfaction level: 

Max Z s  (16) 

subject to 

3 1

1

(ln ln )
T

t t

t

c c T d


    (17) 

)ln(lnlnln 121 ttttt ccscc   (18) 

)ln(lnlnln 323 ttttt ccscc   (19) 

1

T

t

t

s

s
T




 
(20) 

1 1 1 /tc a b t   (21) 

2 2 2 /tc a b t   (22) 

3 3 3 /tc a b t   (23) 

3210 aaa   (24) 

3210 bbb   (25) 

10  ts  (26) 

t = 1 ~ T (27) 
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where d is the required range of a fuzzy forecast. Clearly, a larger value of d results in a higher average 

satisfaction level. This model is indicated with Peters(d). 

The third method for fitting a fuzzy linear regression equation is Donoso’s quadratic non-possibilistic 

method [32], in which the quadratic error for both the central tendency and each one of the spreads  

is minimized: 

Min 2 2 2
1 2 2 3 1

1 1

( ) (( ln ) ( ln ) )
T T

t t t t t t
t t

Z k c c k c c c c
 

        (28) 

subject to 

1 2 1ln ln (ln ln )t t t tc c s c c    (29) 

3 2 3ln ln (ln ln )t t t tc c s c c    (30) 

1 1 1 /tc a b t   (31) 

2 2 2 /tc a b t   (32) 

3 3 3 /tc a b t   (33) 

1 2 30 a a a    (34) 

1 2 30 b b b    (35) 

t = 1 ~ T (36) 

where k1 and k2 belong to [0 1], and add up to 1. This model is indicated with Donoso(k1, k2, s). 

The fourth method for fitting a fuzzy linear regression equation is Chen and Lin’s nonlinear 

programming method [8], which changes the objectives and constraints in the two linear programming 

models into nonlinear: 

Model I 

Min 3 1
1

(ln ln )
T

o
t t

t

Z c c


   (37) 

subject to 

1 2 1ln ln (ln ln )t t t tc c s c c    (38) 

3 2 3ln ln (ln ln )t t t tc c s c c    (39) 

1 1 1 /tc a b t   (40) 

2 2 2 /tc a b t   (41) 

3 3 3 /tc a b t   (42) 

1 2 30 a a a    (43) 

1 2 30 b b b    (44) 

t = 1 ~ T (45) 

Model II 

Max Z s  (46) 

subject to 
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
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(50) 

1 1 1 /tc a b t   (51) 

2 2 2 /tc a b t   (52) 

3 3 3 /tc a b t   (53) 

3210 aaa   (54) 

3210 bbb   (55) 

10  ts  (56) 

t = 1 ~ T (57) 

where o reflects the sensitivity to the uncertainty of the fuzzy forecast; o ranges from 0 (not sensitive)  

to ∞ (extremely sensitive); s indicates the required satisfaction level; 0 1s  ; d is the desired range of 

every fuzzy forecast; 0 d ; m represents the relative importance of the outliers in fitting the fuzzy linear 

regression equation; m Z  . When m = 1, the relative importance of the outliers is the highest and is 

equal to that of the non-outliers. o should be set within [0 1] if the variation in the variable is less than 1. 

Otherwise, it should be greater than 1. The two nonlinear programming models are indicated with  

CL1(o, s) and CL2(o, d, m), respectively. 

3.2. Aggregation of Fuzzy Forecasts in Fuzzy Collaborative Forecasting 

A mechanism is required to combine the fuzzy forecasts. The aggregation mechanism consists of two 

steps. In the first step, fuzzy intersection is applied to aggregate the fuzzy forecasts into a 

polygon-shaped fuzzy number, in order to improve the precision of forecasting. Every fuzzy forecast 

contains the actual value. As a result, the intersection of the fuzzy forecasts also contains the actual 

value. Besides, the intersection has a narrower range than those of the original regions. Therefore, the 

forecasting precision measured in terms of the average range is indeed improved after intersection, 

which is one of the basic mechanisms of fuzzy collaborative forecasting. Fuzzy intersection combines n 

fuzzy forecasts in the following manner: 

))(...,),(),(min()( )(~)2(~)1(~))(~...,)2(~),1(~( xxxx LcccLcccI tttttt
   (58) 

where ))(~...,),2(~),1(~( LcccI ttt  indicates the result of obtaining the fuzzy intersection of the fuzzy 

forecasts by L experts. If these fuzzy forecasts are approximated with triangular fuzzy numbers, then the 

fuzzy intersection is a polygon-shaped fuzzy number (see Figure 1). 
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Figure 1. The fuzzy intersection of two triangular fuzzy numbers. 

ct



 

The result of this step is a polygon-shaped fuzzy number that specifies the narrowest range of the 

fuzzy forecast. However, in practical applications a crisp forecast is usually required. Therefore, a crisp 

forecast has to be generated from the polygon-shaped fuzzy number. For this purpose, a variety of 

defuzzification methods are applicable [33]. Once the defuzzified value is obtained it is compared with 

the actual value to evaluate the accuracy. However, among the existing defuzzification methods, no one 

method is better than all the other methods in every case. In addition, the most suitable defuzzification 

method for a fuzzy variable is often chosen from the existing methods, and thus the optimality of the 

chosen method cannot be guaranteed. Also, the shape of the polygon-shaped fuzzy number is special. 

These phenomena are reasons for proposing a tailored defuzzification method. In this study, a back 

propagation network is applied, because theoretically a well-trained back propagation network (without 

being stuck in a local minima) with a good selected topology can successfully map any  

complex distribution. 

The configuration of the back propagation network used is established as follows: 

(1) Inputs: 2m parameters corresponding to the m corners of the polygon-shaped fuzzy number and 

the membership function values of these corners. The reason is that simple–aggregation results 

in a convex domain and each point in it can be expressed with the combination of corners. The 

fuzzy intersection of L fuzzy forecasts will have at most 2(2
L
 + 2) corners. All input parameters 

have to be normalized into a range narrower than [0 1] before they are fed into the network.  

(2) Single hidden layer: Generally one or two hidden layers are more beneficial for the 

convergence property of the back propagation network. 

(3) The number of neurons in the hidden layer is chosen from 1~4m according to a preliminary 

analysis, considering both effectiveness (forecasting accuracy) and efficiency (execution time). 

(4) Output: the crisp forecast. 

(5) Network learning rule: Delta rule. 

(6) Network learning algorithms: There are many advanced algorithms for training a back 

propagation network, e.g. the Fletcher–Reeves algorithm, the 

Broydon–Fletcher–Goldfarb–Shanno algorithm, the Levenberg–Marquardt algorithm, and the 

Bayesian regularization method [34]. In this study, the Levenberg–Marquardt algorithm  

is applied. 
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(7) Number of epochs per replication: 10,000. 

(8) Activation function: Log-sigmoid function. 

(9) Number of initial conditions/replications: Because the performance of a back propagation 

network is sensitive to the initial condition, the training process will be repeated many times 

with different initial conditions that are randomly generated. Among the results, the best one is 

chosen for the subsequent analyses. 

The Levenberg-Marquardt algorithm was designed for training with second-order speed without 

having to compute the Hessian matrix. It uses approximation and updates the network parameters in a 

Newton-like way. When training a back propagation network, the Hessian matrix can be  

approximated as: 

JJH T  (59) 

and the gradient can be computed as: 

eJg T  (60) 

where J is the Jacobian matrix containing the first derivatives of the network errors with respect to the 

weights and biases; e is the vector of the network errors. The Levenberg-Marquardt algorithm uses this 

approximation and updates the network parameters in a Newton-like way: 

eJIJJxx TT
epep

1
1 ][ 
    (61) 

where ep is the epoch number. Newton’s method is faster and more accurate near an error minimum, so 

the Levenberg-Marquardt algorithm’s purpose is to move as quickly as possible to Newton’s method. 

Thus, μ decreases after each successful step and increases only when a tentative step will increase the 

performance function. Consequently, the performance function is always reduced after each epoch. 

3.3. Performance Evaluation in Fuzzy Collaborative Forecasting 

Some performance measures of fuzzy collaborative forecasting are defined as follows. 

Definition 1. F(p) is a fuzzy forecasting method with parameter p. The fuzzy forecast at period t using 

F(p) is indicated with 
1 2 3( ) ( ( ), ( ), ( ))t t t tF p F p F p F p . The precision and accuracy of F(p) are indicated 

with Prec(F(p)) and Accur(F(p)), respectively. Some of the common functions for Prec(F(p)) and 

Accur(F(p)) are described below: 

(1) The average range (AR): 

PrecAR(F(p)) = 3 1

1

( ( ) ( )) /
T

t t

t

F p F p T


  (62) 

(1) Mean absolute error (MAE): 

AccuMAE(F(p)) =
1

| ( ( )) | /
T

t t

t

D F p a T


  (63) 

where D() is the defuzzification function; 
ta  is the actual value at period t. 

Mean absolute percentage error (MAPE): 
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AccuMAPE(F(p)) =
1

| ( ( )) | /T
t t t

t

D F p a a

T


  (64) 

(2) Root mean squared error (RMSE): 

AccuRMSE(F(p)) =
2

1

( ( ( )) )T
t t

t

D F p a

T


  (65) 

All of these performance indicators are as small as possible. 

Definition 2. FCF(F, G) is a fuzzy collaborative forecasting method on the basis of two forecasting 

methods F and G. The quality of collaboration in the precision and accuracy are indicated with 

QoCp(FCF) and QoCa(FCF), respectively. Some of the common functions for QoCp(FCF) and 

QoCa(FCF) are described below: 

(1) Maximum percentage improvement (MPI): 

QoCpMPI(FCF) = 
( ) ( ) ( ) ( )

( , )
( ) ( )

Prec F Prec FCF Prec G Prec FCF
Max

Prec F Prec G

 
100% (66) 

QoCaMPI(FCF) = 
( ) ( ) ( ) ( )

( , )
( ) ( )

Accu F Accu FCF Accu G Accu FCF
Max

Accu F Accu G

 
100% (67) 

(2) Average percentage improvement (API): 

QoCpAPI(FCF) = 
( ) ( ) ( ) ( )

( ) / 2
( ) ( )

Prec F Prec FCF Prec G Prec FCF

Prec F Prec G

 
 100% (68) 

QoCaAPI(FCF) = 
( ) ( ) ( ) ( )

( ) / 2
( ) ( )

Accu F Accu FCF Accu G Accu FCF

Accu F Accu G

 
 100% (69) 

These functions can easily be extended to involve more than two objects. 

3.4. Some Fuzzy Collaborative Forecasting Models for the Unit Cost Forecasting 

An example is given in Table 1. The data of the first 7 periods were used as training data, and the 

remaining data are left for testing. 

Table 1. An example. 

t ct (US$) 

1 2.57  

2 1.61  

3 1.76  

4 1.28  

5 1.53  

6 1.19  

7 1.32  

8 1.32  

9 1.61  

10 1.32  
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Some linear fuzzy collaboration forecasting models for used to predict the unit cost. 

Model 1. FCF(WT(s1), WT(s2)) 

In this model, the two objects use the same fuzzy linear regression method (WT(s)), but with different 

values of s to predict the unit cost. In WT(s), the most precise forecast is associated with the minimum 

value of s that satisfies the constraints. In addition, the results when s is large often contain the results 

when s is relatively small, which makes it less effective for their collaboration. Nevertheless, the fuzzy 

collaborative forecasting method, to a certain extent, improves the precision of WT(s). In the previous 

example, assuming the s values specified by the objects are 0.3 and 0.6, respectively: 

PrecAR(WT(0.3)) = 0.56 

PrecAR(WT(0.6)) = 1.14 

PrecAR(FCF(WT(0.3), WT(0.6))) = 0.53 

Therefore, the quality of collaboration with respect to the forecasting precision can be evaluated as 

QoCpMPI,AR(FCF(WT(0.3), WT(0.6))) = max((1.14 − 0.53)/1.14, (0.56 − 0.53)/0.56) = 54%. 

QoCpAPI,AR(FCF(WT(0.3), WT(0.6))) = ((1.14 − 0.53)/1.14 + (0.56 − 0.53)/0.56)/2 = 29%. 

In order to evaluate the forecasting accuracy, the forecasts by the two objects are defuzzified using 

the center of gravity (COG) method, and then are compared with the actual values: 

AccuMAE(WT(0.3)) = 0.16 

AccuMAE(WT(0.6)) = 0.24 

AccuMAPE(WT(0.3)) = 10% 

AccuMAPE(WT(0.6)) = 15% 

AccuRMSE(WT(0.3)) = 0.19 

AccuRMSE(WT(0.6)) = 0.31 

while in the fuzzy collaborative forecasting method, the forecasts by the two objects are aggregated 

using the fuzzy intersection and back propagation network approach to generate a single crisp value: 

AccuMAE(FCF(WT(0.3), WT(0.6))) = 0.06 

AccuMAPE(FCF(WT(0.3), WT(0.6))) = 4% 

AccuRMSE(FCF(WT(0.3), WT(0.6))) = 0.10 

Therefore, the quality of collaboration with respect tothe forecasting accuracy can be evaluated as 

QoCaMPI,MAE(FCF(WT(0.3), WT(0.6))) = max((0.16 − 0.07)/0.16, (0.24 − 0.07)/0.24) = 71%. 

QoCaAPI,MAE(FCF(WT(0.3), WT(0.6))) = ((0.16 − 0.07)/0.16 + (0.24 − 0.07)/0.24)/2 = 64%. 

QoCaMPI,MAPE(FCF(WT(0.3), WT(0.6))) = max((10% − 5%)/10%, (15% − 5%)/15%) = 67%. 

QoCaAPI,MAPE(FCF(WT(0.3), WT(0.6))) = ((10% − 5%)/10% + (15% − 5%)/15%)/2 = 58%. 

QoCaMPI,RMSE(FCF(WT(0.3), WT(0.6))) = max((0.19 − 0.15)/0.19, (0.31 − 0.15)/0.31) = 52%. 

QoCaAPI,RMSE(FCF(WT(0.3), WT(0.6))) = ((0.19 − 0.15)/0.19 + (0.31 − 0.15)/0.31)/2 = 36%. 

Model 2. FCF(Peters(d1), Peters(d2)) 

In this model, both objects use Peters(d), but with different d values to predict the unit cost. In 

Peters(d), the most precise forecast is associated with the minimum value of d that satisfies the 

constraints. In addition, the results when d is large often contain the results when d is relatively small. As 

a result, the benefits of collaboration are not obvious. In the previous example, assuming the d values 

specified by the objects are 0.3 and 0.5, respectively. The forecasting performances of the two objects 

are evaluated as 
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PrecAR(Peters(0.3)) = 0.48 

PrecAR(Peters(0.5)) = 0.68 

AccuMAE(Peters(0.3)) = 0.16 

AccuMAE(Peters(0.5)) = 0.20 

AccuMAPE(Peters(0.3)) = 10% 

AccuMAPE(Peters(0.5)) = 12% 

AccuRMSE(Peters(0.3)) = 0.19 

AccuRMSE(Peters(0.5)) = 0.25 

After collaboration, the forecasting precision and accuracy are both improved: 

PrecAR(FCF(Peters(0.3), Peters(0.5))) = 0.48 

AccuMAE(FCF(Peters(0.3), Peters(0.5))) = 0.07 

AccuMAPE(FCF(Peters(0.3), Peters(0.5))) = 6% 

AccuRMSE(FCF(Peters(0.3), Peters(0.5))) = 0.13 

The quality of collaboration in the two aspects can be evaluated as 

QoCpMPI,AR(FCF(Peters(0.3), Peters(0.5))) = 29%. 

QoCpAPI,AR(FCF(Peters(0.3), Peters(0.5))) = 15%. 

and 

QoCaMPI,MAE(FCF(Peters(0.3), Peters(0.5))) = 65%. 

QoCaAPI,MAE(FCF(Peters(0.3), Peters(0.5))) = 61%. 

QoCaMPI,MAPE(FCF(Peters(0.3), Peters(0.5))) = 50%. 

QoCaAPI,MAPE(FCF(Peters(0.3), Peters(0.5))) = 45%. 

QoCaMPI,RMSE(FCF(Peters(0.3), Peters(0.5))) = 48%. 

QoCaAPI,RMSE(FCF(Peters(0.3), Peters(0.5))) = 40%. 

respectively. 

Model 3. FCF(Donoso(k11, k21, s1), Donoso(k12, k22, s2)) 

In this model, both objects use Donoso(k1, k2, s), but with different parameter values to predict the 

unit cost. This method has more parameters that can be adjusted, so there is a greater degree of freedom, 

which provides a space for coordination. Assuming in the previous example, the parameter values 

specified by the two objects are 

(k11, k21, s1) = (0.2, 0.8, 0.2) 

(k12, k22, s2) = (0.7, 0.3, 0.3) 

Then their forecasting performances are 

PrecAR(Donoso(0.2, 0.8, 0.2)) = 0.48 

PrecAR(Donoso(0.7, 0.3, 0.3)) = 0.57 

AccuMAE(Donoso(0.2, 0.8, 0.2)) = 0.15 

AccuMAE(Donoso(0.7, 0.3, 0.3)) = 0.14 

AccuMAPE(Donoso(0.2, 0.8, 0.2)) = 9% 

AccuMAPE(Donoso(0.7, 0.3, 0.3)) = 9% 

AccuRMSE(Donoso(0.2, 0.8, 0.2)) = 0.17 

AccuRMSE(Donoso(0.7, 0.3, 0.3)) = 0.18 

Comparatively, the forecasting performance of the fuzzy collaborative forecasting method is 
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PrecAR(FCF(Donoso(0.2, 0.8, 0.2), Donoso(0.7, 0.3, 0.3))) = 0.48 

AccuMAE(FCF(Donoso(0.2, 0.8, 0.2), Donoso(0.7, 0.3, 0.3))) = 0.07 

AccuMAPE(FCF(Donoso(0.2, 0.8, 0.2), Donoso(0.7, 0.3, 0.3))) = 5% 

AccuRMSE(FCF(Donoso(0.2, 0.8, 0.2), Donoso(0.7, 0.3, 0.3))) = 0.10 

Therefore, the quality of collaboration can be evaluated as 

QoCpMPI,AR(FCF(Donoso(0.2, 0.8, 0.2), Donoso(0.7, 0.3, 0.3)))) = 16%. 

QoCpAPI,AR(FCF(Donoso(0.2, 0.8, 0.2), Donoso(0.7, 0.3, 0.3)))) = 8%. 

QoCaMPI,MAE(FCF(Donoso(0.2, 0.8, 0.2), Donoso(0.7, 0.3, 0.3)))) = 53%. 

QoCaAPI,MAE(FCF(Donoso(0.2, 0.8, 0.2), Donoso(0.7, 0.3, 0.3)))) = 52%. 

QoCaMPI,MAPE(FCF(Donoso(0.2, 0.8, 0.2), Donoso(0.7, 0.3, 0.3)))) = 44%. 

QoCaAPI,MAPE(FCF(Donoso(0.2, 0.8, 0.2), Donoso(0.7, 0.3, 0.3)))) = 44%. 

QoCaMPI,RMSE(FCF(Donoso(0.2, 0.8, 0.2), Donoso(0.7, 0.3, 0.3)))) = 44%. 

QoCaAPI,RMSE(FCF(Donoso(0.2, 0.8, 0.2), Donoso(0.7, 0.3, 0.3)))) = 43%. 

It is worth noting that the performance of this collaboration model is not as good as expected. 

Model 4. FCF(CL1(o1, s1), CL1(o2, s2)) 

In this model, the two objects use the same method CL1(o, s), but with different values of o and s to 

predict the unit cost. CL1(o, s) is an extension of WT(s) by considering a nonlinear objective function 

instead. To make a comparison, the parameter values of the two objects are set to 

(o1, s1) = (3, 0.3) 

(o2, s2) = (2, 0.6) 

The s values are the same with those in the original WT(s) methods. After forecasting the unit cost, 

the performances of the two objects are evaluated as 

PrecAR(CL1(3, 0.3)) = 0.56 

PrecAR(CL1(2, 0.6)) = 1.12 

AccuMAE(CL1(3, 0.3)) = 0.16 

AccuMAE(CL1(2, 0.6)) = 0.23 

AccuMAPE(CL1(3, 0.3)) = 10% 

AccuMAPE(CL1(2, 0.6))) = 14% 

AccuRMSE(CL1(3, 0.3)) = 0.19 

AccuRMSE(CL1(2, 0.6)) = 0.30 

Then, the forecasting performances are compared with those of the linear methods WT(0.3) and 

WT(0.6). The results are summarized in Table 2. 

Table 2. Comparison of the performances of CL1(o, s) and WT(s). 

 PrecAR AccuMAE AccuMAPE AccuRMSE 

WT(0.3) 0.56 0.16 0.1 0.19 

CL1(3, 0.3) 0.56 0.16 0.1 0.19 

WT(0.6) 1.14 0.24 0.15 0.31 

CL1(2, 0.6) 1.12 0.23 0.14 0.3 

Obviously, the use of a nonlinear objective function may change the optimal solution. The quality of 

collaboration is evaluated as follows: 
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QoCpMPI,AR(FCF(CL1(3, 0.3), CL1(2, 0.6))) = 50%. 

QoCpAPI,AR(FCF(CL1(3, 0.3), CL1(2, 0.6))) = 25%. 

QoCaMPI,MAE(FCF(CL1(3, 0.3), CL1(2, 0.6))) = 71%. 

QoCaAPI,MAE(FCF(CL1(3, 0.3), CL1(2, 0.6))) = 65%. 

QoCaMPI,MAPE(FCF(CL1(3, 0.3), CL1(2, 0.6))) = 67%. 

QoCaAPI,MAPE(FCF(CL1(3, 0.3), CL1(2, 0.6))) = 60%. 

QoCaMPI,RMSE(FCF(CL1(3, 0.3), CL1(2, 0.6))) = 66%. 

QoCaAPI,RMSE(FCF(CL1(3, 0.3), CL1(2, 0.6))) = 57%. 

Then, the quality of collaboration in FCF(CL1(3, 0.3), CL1(2, 0.6)) is compared with that in 

FCF(WT(0.3), WT(0.6)). The results are shown in Table 3.  

Table 3. Comparison of FCF(WT(0.3), WT(0.6)) and FCF(CL1(3, 0.3), CL1(2, 0.6)). 

 FCF(WT(0.3), WT(0.6)) FCF(CL1(3, 0.3), CL1(2, 0.6)) 

QoCpMPI,AR 54% 50% 

QoCpAPI,AR 29% 25% 

QoCaMPI,MAE 71% 71% 

QoCaAPI,MAE 64% 65% 

QoCaMPI,MAPE 67% 67% 

QoCaAPI,MAPE 58% 60% 

QoCaMPI,RMSE 52% 66% 

QoCaAPI,RMSE 36% 57% 

As can be seen from this table, the use of a nonlinear model CL1(o, s) instead of the linear model 

WT(s) can indeed achieve a better quality of collaboration, especially in the forecasting accuracy. 

Model 5. FCF(CL2(o1, d1, m1), CL2(o2, d2, m2)) 

This model assumes that both of the two objects use CL2(o, d, m), but with different values to predict 

the unit cost 

(o1, d1, m1) = (3, 0.3, 2) 

(o2, d2, m2) = (2, 0.5, 3) 

The performances of the two objects are evaluated as 

PrecAR(CL2(3, 0.3, 2)) = 0.48 

PrecAR(CL2(2, 0.5, 3)) = 0.66 

AccuMAE(CL2(3, 0.3, 2)) = 0.16 

AccuMAE(CL2(2, 0.5, 3)) = 0.16 

AccuMAPE(CL2(3, 0.3, 2)) = 10% 

AccuMAPE(CL2(2, 0.5, 3))) = 10% 

AccuRMSE(CL2(3, 0.3, 2)) = 0.19 

AccuRMSE(CL2(2, 0.5, 3)) = 0.20 

Through the collaboration of the two objects, FCF(CL2(3, 0.3, 2), CL2(2, 0.5, 3)) achieves a better 

forecasting performance: 

PrecAR(FCF(CL2(3, 0.3, 2), CL2(2, 0.5, 3))) = 0.35 

AccuMAE(FCF(CL2(3, 0.3, 2), CL2(2, 0.5, 3))) = 0.05 
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AccuMAPE(FCF(CL2(3, 0.3, 2), CL2(2, 0.5, 3))) = 4% 

AccuRMSE(FCF(CL2(3, 0.3, 2), CL2(2, 0.5, 3))) = 0.09 

The quality of collaboration is assessed as follows: 

QoCpMPI,AR(FCF(CL2(3, 0.3, 2), CL2(2, 0.5, 3))) = 46%. 

QoCpAPI,AR(FCF(CL2(3, 0.3, 2), CL2(2, 0.5, 3))) = 37%. 

QoCaMPI,MAE(FCF(CL2(3, 0.3, 2), CL2(2, 0.5, 3))) = 69%. 

QoCaAPI,MAE(FCF(CL2(3, 0.3, 2), CL2(2, 0.5, 3))) = 68%. 

QoCaMPI,MAPE(FCF(CL2(3, 0.3, 2), CL2(2, 0.5, 3))) = 63%. 

QoCaAPI,MAPE(FCF(CL2(3, 0.3, 2), CL2(2, 0.5, 3))) = 63%. 

QoCaMPI,RMSE(FCF(CL2(3, 0.3, 2), CL2(2, 0.5, 3))) = 54%. 

QoCaAPI,RMSE(FCF(CL2(3, 0.3, 2), CL2(2, 0.5, 3))) = 53%. 

Model 6. FCF(CL1(o1, s1), CL2(o2, d2, m2)) 

In this model, one of the two objects uses CL1(o, s), and the other uses CL2(o, d, m). 

(o1, s1) = (3, 0.3) 

(o2, d2, m2) = (2, 0.5, 3) 

The forecasting performance of FCF(CL1(3, 0.3), CL2(2, 0.5, 3)) is evaluated as 

PrecAR(FCF(CL1(3, 0.3), CL2(2, 0.5, 3))) = 0.39 

AccuMAE(FCF(CL1(3, 0.3), CL2(2, 0.5, 3))) = 0.07 

AccuMAPE(FCF(CL1(3, 0.3), CL2(2, 0.5, 3))) = 5% 

AccuRMSE(FCF(CL1(3, 0.3), CL2(2, 0.5, 3))) = 0.11 

The quality of collaboration is assessed as follows: 

QoCpMPI,AR(FCF(CL1(3, 0.3), CL2(2, 0.5, 3))) = 41%. 

QoCpAPI,AR(FCF(CL1(3, 0.3), CL2(2, 0.5, 3))) = 30%. 

QoCaMPI,MAE(FCF(CL1(3, 0.3), CL2(2, 0.5, 3))) = 59%. 

QoCaAPI,MAE(FCF(CL1(3, 0.3), CL2(2, 0.5, 3))) = 59%. 

QoCaMPI,MAPE(FCF(CL1(3, 0.3), CL2(2, 0.5, 3))) = 52%. 

QoCaAPI,MAPE(FCF(CL1(3, 0.3), CL2(2, 0.5, 3))) = 52%. 

QoCaMPI,RMSE(FCF(CL1(3, 0.3), CL2(2, 0.5, 3))) = 46%. 

QoCaAPI,RMSE(FCF(CL1(3, 0.3), CL2(2, 0.5, 3))) = 45%. 

3.5. Comparison of the Performances of the Fuzzy Collaborative Forecasting Models 

In this section, the performances of the fuzzy collaborative forecasting models are compared. First, 

the forecasting accuracy considering the average range of forecasts, the performances of different 

models are compared in Figure 2. Obviously, in terms of the forecasting accuracy, FCF(CL2(3, 0.3, 2), 

CL2(2, 0.5, 3)) is much better than the other models. However, this is partly because the settings of the 

parameters in the models are different and subjective. In order to confirm the effects of different models 

for the forecasting accuracy, the quality of collaboration, especially QoCpAPI,AR, is considered to be a 

better indicator. The comparison results are shown in Figure 3. As can be seen from this figure, 

FCF(CL2(3, 0.3, 2), CL2(2, 0.5, 3)) is indeed the most precise fuzzy collaborative forecasting model in 

this case. 
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Figure 2. The forecasting accuracy of the fuzzy collaborative forecasting models. 
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Secondly, in order to compare the forecasting accuracy of the models, three indicators—MAE, 

MAPE, and RMSE are considered. The comparison results in the three indicators are shown in Figures 

4-6, respectively. For all indicators of the forecasting accuracy, FCF(CL2(3, 0.3, 2), CL2(2, 0.5, 3)) is 

the best fuzzy collaborative forecasting model. Next, the quality of collaboration is compared, and the 

results are shown in Figure 7. The quality of collaboration in FCF(CL1(3, 0.3), CL1(2, 0.6)) is the best if 

RMSE is taken into account, and FCF(CL2(3, 0.3, 2), CL2(2, 0.5, 3)) achieves the highest quality of 

collaboration if MAE or MAPE is considered. 

Figure 3. The quality of collaboration of the fuzzy collaborative forecasting models. 
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Figure 4. The forecasting accuracy (MAE) of the fuzzy collaborative forecasting models. 
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Figure 5. The forecasting accuracy (MAPE) of the fuzzy collaborative forecasting models. 
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Figure 6. The forecasting accuracy (RMSE) of the fuzzy collaborative forecasting models. 
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Figure 7. The quality of collaboration of the fuzzy collaborative forecasting models. 
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4. Conclusions 

Forecasting the unit cost of every product type in a factory is an important task. After the unit cost of 

every product type in a factory is accurately forecasted, several managerial goals (including pricing, cost 

down projecting, capacity planning, ordering decision support, and guiding subsequent operations) can 

be simultaneously achieved. However, it is not easy to deal with uncertainty in the unit cost. This paper 

presents some fuzzy collaborative forecasting models based on a few well-known fuzzy linear 

regression methods to predict the unit cost of a product. An example is used to illustrate the applicability 

of the proposed methodology. According to the experimental results, 

(1) The effectiveness of the unit cost forecasting was greatly improved through the collaboration of the 

experts, especially when using FCF(CL2(o1, d1, m1), CL2(o2, d2, m2)). 

(2) With respect to the quality of collaboration on the forecasting precision, only one performance 

measure is proposed and the proposed performance measure can effectively compare the differences 

among the models. 

(3) With respect to the forecasting accuracy on the forecasting accuracy among the performance 

measures, the one that considers MAPE can effectively compare the differences among the models. 

The contribution of this study includes the following: 

(1) Six fuzzy collaborative forecasting models for the unit cost forecasting are investigated. From this, 

the most effective one can be identified. 

(2) More performance measures on the quality of collaboration have been proposed. 
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