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Abstract: Segmentation of clinically relevant regions from potentially noisy images 

represents a significant challenge in the field of mammography. We propose novel 

approaches based on the WaveCluster clustering algorithm for segmenting both the breast 

profile in the presence of significant acquisition noise and segmenting regions of interest 

(ROIs) within the breast. Using prior manual segmentations performed by domain experts 

as ground truth data, we apply our method to 150 film mammograms with significant 

acquisition noise from the University of South Florida’s Digital Database for Screening 

Mammography. We then apply a similar segmentation procedure to detect the position and 

extent of suspicious regions of interest. Our approach was able to segment the breast 

profile from all 150 images, leaving minor residual noise adjacent to the breast in three. 

Performance on ROI extraction was also excellent, with 81% sensitivity and 0.96 false 

positives per image when measured against manually segmented ground truth ROIs. When 

not utilizing image morphology, our approach ran in linear time with the input size. These 

results highlight the potential of WaveCluster as a useful addition to the mammographic 

segmentation repertoire. 
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1. Introduction 

Segmentation of clinically relevant regions of interest (ROIs) represents a significant challenge in 

the medical imaging domain, central to the performance of computer-assisted diagnostic systems. 

Within the context of screening mammography, segmentation is typically performed to extract and 

delineate possible lesions from the surrounding normal tissue. Additionally, although the transition to 

full-field digital mammography is ameliorating the need for mammographic background removal, 
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segmentation of the entire breast from a film mammogram with potentially significant acquisition 

noise represents a challenge in the many facilities which are as yet unable to transition to fully digital 

solutions, and in mining legacy data. Interestingly, these segmentation tasks are related: as we will 

show, the same approaches used to segment the entire breast profile are also useful for ROI extraction. 

However, existing breast and ROI segmentation approaches, such as approaches based on  

k-means [1], fuzzy c-means [2,3], gray level co-occurrence matrices (GLCM) [4], and the watershed 

transform [5], suffer several shortcomings. For example, k-means and fuzzy c-means tend to find 

spherical clusters, k-means cannot differentiate between significant and nonsignificant clusters (i.e., all 

pixels receive a label), GLCM makes assumptions on the texture of the underlying region, and 

watershed transforms have high sensitivity to noise and a well-known tendency to oversegment (See 

Figure 1). Many clustering algorithms are natively insensitive to locality, and may consider spatially 

dispersed regions part of the same cluster without the inclusion of additional spatial features–a 

property which is sometimes useful, but is often undesirable for the purpose of segmentation. 

Additionally, many clustering algorithms scale superlinearly with image area, and are therefore 

impractical for mining large medical imaging datasets. These properties typically render clustering 

algorithms unsuitable on their own for segmentation, necessitating construction of complex multi-step 

segmentation methodologies on top of them. 

Figure 1. (a) Left craniocaudal view of a patient with a malignant mass, manually 

segmented by a domain expert (circled). Low-power salt and pepper acquisition noise, not 

visible at scale, corrupts the image; (b) k-means clustering (k = 4) identifies regions of 

interest (ROIs), but loses part of the image border and does not distinguish between 

important and unimportant ROIs (e.g. the pectoral muscle, the lesion, and normal tissue all 

fall into the same cluster). Increasing k simply resulted in empty clusters; (c) Watershed 

segmentation of the gradient identifies the overall contour of the breast, but fails to identify 

any regions within and oversegments the noisy background; (d) WaveCluster with a low 

density threshold (15%) segments the entire breast, while (e) WaveCluster with a higher 

threshold (85%) isolates and highlights the suspicious regions. 

     

(a) (b) (c) (d) (e) 

In this paper, we make use of the WaveCluster [6] clustering algorithm in the context of 

mammographic segmentation to address these challenges. WaveCluster has linear runtime with respect 

to image area and can provide a usable segmentation without additional preprocessing steps beyond 
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basic image normalization and noise removal. The algorithm is also versatile enough to segment both 

the breast profile and regions of interest within the breast simply by varying one parameter. 

However, one major limitation of WaveCluster as initially proposed is its inability to cluster  

real-valued data, such as an intensity image–the algorithm as originally proposed can only operate on 

binary images [6]. Therefore, we make use of a novel “weighted WaveCluster” extension, which we 

have originally derived for use in fMRI imaging of the brain [7], which aggregates grid cell values via 

a weighted sum of neighborhood intensity values rather than a count of points. In the remainder of this 

paper, we demonstrate the efficacy of the approach in the domain of mammographic segmentation. 

2. Background 

2.1. Mammographic Segmentation 

Though a great deal of work has been conducted in breast profile and ROI segmentation, both 

remain open challenges. While some model-driven supervised approaches exist [2,8], the majority of 

segmentation algorithms utilize semisupervised or unsupervised approaches, particularly region 

growing [8,9], contour detection [8,10], polygon fitting [10], and image clustering [1,2,3,8]. Our work 

falls into the clustering category and represents the first application of WaveCluster to the 

mammographic domain. Image morphology is commonly used as a preprocessing step to remove small 

regions of noise and homogenize local intensity variations, and is also used to supply connected 

component detection to many segmentation algorithms. A Hough transform is often used to remove the 

pectoral muscle from the image prior to analysis [11]. 

In all cases, the objective of segmentation is extraction of “interesting” regions of an image from 

the surrounding background, either for display or as a precursor to further region-restricted analysis. 

2.2. WaveCluster 

2.2.1. WaveCluster Algorithm 

WaveCluster [6] is a grid and density-based clustering technique unique for performing clustering 

directly in wavelet space. This confers a number of advantages associated with wavelet transformations, 

including native multiresolution and multilevel analysis, linear runtime, and localization in space and 

time, rather than solely in frequency. The idea behind WaveCluster is as follows: 

 Quantize data to a grid, using the cell counts in place of the original data. 

 Apply a wavelet transformation using a hat-shaped wavelet (such as the 2.2 or 4.2 biorthogonal 

wavelets), retaining the approximation coefficients. These wavelets have the effect of 

emphasizing dense regions and suppressing sparse ones. 

 Threshold cells in the transformed space. Cells with values above a user-specified density 

threshold are “significant”, while other cells are dropped. 

 Apply a connected component algorithm to the significant cells to discover and label clusters. 

 Map the cells back to the data using a lookup table built during quantization. 

This approach is illustrated in Figure 2: 
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Figure 2. Illustrated step-by-step operation of the WaveCluster algorithm. 

 

 

WaveCluster is notable for its robustness to noise, linear runtime, ability to discover complex 

shapes, cluster significance thresholding, and native multiresolution analysis. Unlike k-means, the 

number of clusters need not be specified. However, WaveCluster has several additional parameters: 

grid cell size, significance threshold, wavelet name, and wavelet level. An additional drawback of 

WaveCluster is its tendency to underestimate border regions (which makes it useful for outlier 

detection). As outlined in [7], we adopt a variant of WaveCluster replacing grid cell counts with a 

weighted sum of intensity values to extend to grayscale segmentation. 

2.2.2. WaveCluster Parameters 

As previously mentioned, the WaveCluster algorithm is parameterized by the number of cells in the 

grid (inversely proportional to cell size), the wavelet function used to perform the transformation, and 

the density threshold to apply in order to determine whether a cell is “significant” after performing the 

wavelet transform. The density threshold can be an absolute cell value, but is often more convenient  

to think about in terms of a percentile among cell values, since malignant regions tend to manifest  

as regions of localized density relative to surrounding tissue. Unlike k-means, WaveCluster is not 

parameterized by the number of clusters, which is determined automatically by the algorithm. 
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Varying the parameters has several effects: 

 Increasing the number of cells increases the resolution of the analysis, allowing the algorithm  

to detect finer patterns but reducing the amount of neighborhood information which is 

incorporated in the clustering. 

 Increasing the density threshold reduces the number of cells which are considered “significant”, 

resulting in fewer “bridges” between clusters and a smaller number of “stronger” but more 

isolated clusters. The optimal value of this parameter is application-dependent: too low and the 

entire image may be merged into one cluster, too high and regions of the same cluster will break 

apart. At extremely high values, no clusters are detected whatsoever. 

 The wavelet function can be thought of as a convolution kernel applied to each pixel of the 

image. “Hat-shaped” wavelets are useful for clustering applications because they emphasize 

dense regions and suppress sparse ones, but more complex wavelet functions may be useful in 

niche applications, such as clustering highly anisotropic data. 

3. Results and Discussion 

3.1. Dataset 

We made use of a random sample of 100 malignant and 50 normal images from the public USF 

Digital Database for Screening Mammography [12]. Images are scanned film mammograms in CC and 

MLO views, acquired from 1991–1998 at a median resolution of 43.5 µm/pixel (range 42–50 µm/pixel). 

Labels represent pathology-confirmed diagnoses and domain experts have manually traced all ROIs. 

Many of the images are noisy, and some have white borders and other artifacts of imperfect digitization. 

3.2. Breast Profile Segmentation 

The breast was successfully segmented in all 150 images. Three images (all malignant) contained a 

small amount of residual noise adjacent to the breast (see Figure 3); this number increased to 14 when 

the significance threshold was lowered to 5%, illustrating the importance of this parameter in the 

quality of the final segmentation. Conversely, increasing the significance threshold to 25% eliminated 

the noise; however, small holes began appearing in the segmented borders, as isolated cells near the 

edges of the image began to fall below the threshold. Minor adjustments to the density threshold 

therefore represent a tradeoff between the false dismissal and false alarm rates. Unfortunately, ground 

truth breast margins were not provided with the dataset, therefore we were unable to conduct an ROC 

analysis against this parameter. 

  



Algorithms 2012, 5 323 

 

 

Figure 3. The three noisy images. Due to the periodic texture of the noise, it is likely that a 

gray-level co-occurrence or entropy-based approach could effectively filter it. 

   

3.3. ROI Segmentation 

By contrast, significantly increasing the density threshold permits us to discard the breast itself as 

background and segment out regions of interest within the breast. As the density requirements at a high 

threshold far exceed the density of background noise, morphological noise removal is no longer 

necessary for this procedure. This is best thought of as an algorithm for candidate selection or  

feature-space segmentation, as WaveCluster decides which regions are significant only through 

intensity and density information, and does not learn from other images in the dataset. 

We re-ran the WaveCluster analysis with a density threshold of 85% on the malignant images. We 

then applied the mean absolute density threshold from the malignant images (a cell density of 14) to 

the 50 normal images in our dataset. 

Ground truth data was available for all lesions, though margins were not precisely drawn. True 

positives were considered clusters which fell at least halfway within the bounds of a ground truth ROI. 

Because the ground truth data provided with the dataset was not precisely segmented, clusters smaller 

than the ROI were not penalized. Any ROI not overlapped by at least one cluster was considered a 

false negative. This resulted in a sensitivity of 81% with 0.96 false positives per image (89% and 

0.88/image, respectively, if any overlap at all was considered sufficient for a true positive). The most 

common false positive by far was the pectoral muscle; with this region excluded, the FPR dropped to 

0.7 per image. See Figure 4 for examples of sample false positives. Though the high sensitivity 

indicates that the majority of lesions were isolated and flagged significant by the clustering algorithm, 

it does not offer further guidance as to which cluster contains the malignancy. 
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Figure 4. Example false positive WaveCluster results overlaid on original images in red, 

ground truth in yellow. WaveCluster does not have a spherical clustering restriction; 

consequently, it can follow the contours of architectural distortions and spiculated lesions. 

(a) has two “false” positives along the contours of an architectural distortion, while (b) has 

one false positive at the bottom of the image and one FP resulting from oversegmentation 

of an actual lesion. 

 

 

(a) (b) 

3.4. Performance 

The mean image size was 4571 × 2339 pixels and the mean time to segment a single image (with 

morphological filtering) was 5.2 s. Consistent with WaveCluster’s theoretical complexity, the runtime 

of our approach (without morphological filtering) increased linearly with image area, as shown  

in Figure 5: 
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Figure 5. Runtime of WaveCluster as a function of image size. 

 

3.5. Comparison 

Similar segmentation approaches used in the literature include fuzzy c-means [2,3] and watershed 

segmentation [5]. These techniques were compared in accuracy and runtime, using the following 

experimental setup: 

 WaveCluster was run with an 85% density threshold and the 2.2 biorthogonal wavelet. 

 WaveCluster and watershed segmentation were evaluated by considering a cluster a true 

positive if and only if at least half of the cluster fell within the bounds of a ground truth ROI. 

 Naïve watershed segmentation is prone to severe oversegmentation. In practice, watershed 

segmentation requires an h-minima transform as a preprocessing step. The h-minima transform 

removes all minima in the image of depth less than h. h = 0.075 was chosen empirically. 

 Fuzzy c-means was run with c = 5. Since each pixel can have multiple cluster memberships, a 

cluster was considered a true positive if at least 50% of the sum of cluster weights came from 

pixels within the ground truth ROI. 

 All methods were run with the morphological post-filtering described above. This particularly 

improved performance on the watershed segmentation approach. 

Comparative results on the ROI detection task are shown in Table 1: 

Table 1. Comparison of sensitivity, false positive rate, and runtime for the WaveCluster, 

fuzzy c-means (c = 5), and Watershed segmentation approaches. 

 WaveCluster Fuzzy 5-means Watershed 

Sensitivity: 81% 23%/78% 33% 

False Positives: 0.96/image N/A 1.17/image 

Average Runtime: 5.2 s/image 325 s/image 7.3 s/image 
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While fuzzy c-means performed excellently at detecting dense tissue (the application originally 

proposed in [2]), correctly stratifying regions of the breast by density and discovering a significant 

cluster containing an ROI in 78% of positive cases, it was found unsuitable for differentiating between 

normal and abnormal density because it did not incorporate locality. This is shown in Figure 6, and is 

also visible in Figure 1 (as k-means). When compared using a similar 50% (weighted) coverage metric 

to the metric used to assess other algorithms, it only correctly isolated 23% of true positive ROIs. This 

could be corrected in many cases by adding the thresholding and connected component steps inherent 

in WaveCluster to the fuzzy c-means approach, imposing an additional partitioning on the existing 

clusters. However, since this is not part of the original fuzzy c-means approach, it was not performed. 

Fuzzy c-means was also orders of magnitude slower than other approaches, due to its nature as an 

iterative algorithm with superlinear computational complexity. 

Figure 6. Clustering a mammogram with high tissue density. (a) Fuzzy 5-means clusters  

1–3 map to red, green, and blue (clusters 4 and 5 merely outlined the breast and are not 

shown). Cluster weights were combined additively to form RGB colors. While the lesion 

was identified, it was not distinguished from other dense tissue by the clustering algorithm; 

(b) 7 clusters were discovered by watershed segmentation, which fails to distinguish the 

ROI due to heavy oversegmentation; (c) WaveCluster also falsely identifies two clusters of 

dense tissue, but correctly isolates the malignancy because it takes locality into account. 

   

(a) (b) (c) 

4. Experimental Section  

With the exception of variations in clustering parameters, our methods for segmenting the breast 

and the ROIs are identical, indicating the applicability of WaveCluster to more general mammographic 

segmentation problems. 

  



Algorithms 2012, 5 327 

 

 

4.1. Breast Profile Segmentation 

Image intensities are first normalized to double precision values in the range (0,1) to mitigate  

inter-scanner differences. To reduce the substantial acquired noise present in the background region of 

the image, we apply a morphological opening with a 10-pixel disk structuring element followed by a  

3 × 3 median filter. 

We then map the image to a grid of (x, y, intensity) triples and quantize these to 10 × 10 cells to 

form the WaveCluster grid. Grid mappings are stored for later unmapping of clusters. We assign each 

grid cell a single value corresponding to a sum of the pixel intensities which mapped to it. We then 

perform a 2-dimensional level-1 2.2 biorthogonal stationary wavelet transformation on the grid cells, 

thresholding with a density threshold corresponding to the 15th percentile of all values in the grid. We 

chose a small threshold in this application to exclude the background while preserving the entire breast 

profile: as the breast is much denser than the surrounding background regions of the image, it is 

considered “more significant” by the algorithm. Thresholding against this 15th percentile threshold 

yields a “binary image” of grid cell values, which we analyze using a connected component algorithm 

(Matlab’s built-in bwlabeln algorithm) to yield distinct cluster labels for regions which are not 

connected. Finally, we propagate the cluster labels of each grid cell to all points which fell into that 

cell (using the original mapping we built up when constructing the grid) and return one cluster label 

per point. The largest significant cluster is assumed to be the breast, a reasonable assumption in our 

case. However, this assumption is not true for methods such as k-means, which do not have intrinsic 

cluster significance metrics and in which the largest cluster is usually the background. 

4.2. ROI Segmentation 

The approach used to segment ROIs is identical with the exception of a few details: 

 The density threshold is raised to the 85th percentile. This places the entire background and 

most of the breast beneath the significance threshold, yielding a clustering in which only the 

most dense regions within the breast are considered significant. 

 Morphological noise filtering was not performed prior to clustering, as the low-power noise did 

not affect the significantly more dense regions of interest. 

 Clusters <30 pixels in radius were discarded using morphological opening by reconstruction, 

which preserves the shape of the remaining clusters. 

The steps of the WaveCluster algorithm used for ROI detection, shown theoretically in Figure 2, are 

illustrated on a mammogram in Figure 7: 
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Figure 7. (a) a 5386 × 3391 mammogram (b) quantized to a 108 × 68 grid by summing 

local regions of pixels and (c) run through a 1-level stationary wavelet transform using the 

2.2 biorthogonal wavelet; (d) A difference map between the transformed grid and original 

grid; (e) An 80th percentile density threshold is applied, tiny clusters are eliminated  

through morphological opening; and (f) connected components are merged to form three 

distinct clusters. 

 
 

(a) (b)  

    

(c) (d) (e) (f) 

5. Conclusions  

We presented a novel mammographic segmentation methodology based on an extension of 

WaveCluster, demonstrating WaveCluster’s ability to segment the breast profile from a highly noisy 

dataset of film mammograms as well as to extract individual regions of interest from these images, 

with the application determined by the density threshold. This paper also represents one of the first 

practical demonstrations of WaveCluster’s linear computational complexity. Our results demonstrate 

the efficacy and speed of this algorithm for the first time in the domain of mammography, and 

emphasize the need for further study of underutilized clustering approaches in image segmentation. 
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