Algorithms 2012, 5, 50-55; doi:10.3390/a5010050

algorithms

ISSN 1999-4893
www.mdpi.com/journal/algorithms
Article

A Note on Sequence Prediction over Large Alphabets
Travis Gagie

Department of Computer Science and Engineering, Aalto University, 00076 Aalto, Finland;
E-Mail: travis.gagie @aalto.fi

Received: 14 November 2011, in revised form: 11 February 2012 / Accepted: 13 February 2012 /
Published: 17 February 2012

Abstract: Building on results from data compression, we prove nearly tight bounds on how
well sequences of length n can be predicted in terms of the size o of the alphabet and the
length £ of the context considered when making predictions. We compare the performance
achievable by an adaptive predictor with no advance knowledge of the sequence, to the
performance achievable by the optimal static predictor using a table listing the frequency
of each (k + 1)-tuple in the sequence. We show that, if the elements of the sequence are
chosen uniformly at random, then an adaptive predictor can compete in the expected case if
k <log,n — 3 — ¢, for a constant € > 0, but not if £ > log,_ n.

Keywords: sequence prediction; alphabet size; analysis

1. Introduction

The relation between compression and prediction dates back at least as far as William of Ockham
in the fourteenth century. This relation was not properly formalized, however, until the notion of
Kolmogorov complexity was developed in the twentieth century [1-3]. Since then, there have been
many efforts to harness compression algorithms for prediction, with a number of researchers focusing
particularly on prediction for prefetching either disk pages or web pages. We refer the reader to the text
by Cesa—Bianchi and Lugosi [4] and references therein for a thorough discussion. For example, Krishnan
and Vitter [5] showed that a prefetcher based on LZ78 [6] is asymptotically competitive with the best
finite-state prefetcher. For prefetching, however, the alphabet of possible elements—i.e., all pages on the
disk or web—is huge. In this paper we investigate, therefore, what effect the size of the alphabet has
on predictability.

Krishnan and Vitter considered the problem of pure prefetching, in which the prefetcher can replace

all the contents of the cache between each page request. They combined a predictor by Hannan [7],

Algorithms 2012, 5 51

which is asymptotically competitive against any memoryless predictor, with an instantaneous version
of LZ78, thus obtaining a predictor such that, for any finite-state predictor and any sequence, their
predictor’s success rate converges to or exceeds the finite-state predictor’s success rate with probability
approaching 1 as the sequence length increases. (As Krishnan and Vitter noted, a similar construction for
predicting binary sequences was given by Feder, Merhav and Gutman [8].) Notice that this bound cannot
be improved to hold with certainty instead of with high probability: the predictor must be randomized
because, for any deterministic predictor, an adversary can choose each bit of the sequence to be the
opposite of what the predictor guesses. Krishnan and Vitter’s proof is based on the fact that, for any
finite-state compressor and any sequence, LZ78’s asymptotic compression ratio is at most that of the
finite-state compressor; this necessarily involves the assumption that both the alphabet and the context
length used in prediction are fixed. It is known what effect the size of the alphabet has on compressibility,
both when we make certain assumptions about the source of the sequence [9,10] and when we want to
bound the size of the encoding in terms of the kth-order empirical entropy of the sequence [11,12]. We
will define a notion of predictability that is analogous to empirical entropy and use similar arguments to
give nearly tight bounds on how large the alphabet can be before we cannot guarantee good prediction.

The rest of this paper is laid out as follows: in Section 2 we briefly review several notions of entropy
in computer science—Shannon entropy, empirical entropy, Rényi entropy and min-entropy—before
defining empirical predictability; in Section 3 we show that we can achieve good expected prediction
in terms of a sequence’s kth-order empirical predictability when k£ < log,n — 3 — €, where k is the
length of the contexts considered when making predictions, o is the size of the alphabet, n is the length
of the sequence and ¢ > 0 is a constant; in Section 4 we show we cannot achieve the same bound when
k > log, n. A preliminary version of these results [13] was reported at the 9th Canadian Workshop on
Information Theory (CWIT ’05) while the author was at the University of Toronto.

2. Empirical Predictability

Shannon [14] defined the entropy of a random variable to be our uncertainty about its value.
Specifically, if a random variable X" takes on one of o values according to a probability distribution

P=p, ..., ps, then
7 1
H(X) =) pjlog—
j=1 Dj

The base of the logarithm determines the unit of uncertainty; in computer science, the base is usually
assumed to be 2 with the result that the unit is the bit (i.e., our uncertainty about the outcome of flipping
a fair coin). Throughout the rest of this paper we write log to mean log,. Given P, the expected number
of bits needed to encode the value of X’ is at least H(X') and less than H(X) + 1.

The Oth-order empirical entropy H(S) of a sequence S[1...n| is simply our uncertainty about an
element chosen uniformly at random from S, i.e.,

n

Hy(5) = ! > occ(a, S) logm

n a€esS

where a € S means that element a occurs in .S and occ(a, S) is its frequency. For & > 1, the kth-order
empirical entropy Hy(.S) of S is our expected uncertainty about the random variable s[i] in the following

Algorithms 2012, 5 52

experiment: 7 is chosen uniformly at random between 1 and n; if ¢ < k, then we are told s[i|; if i > k,
then we are told s[i — k...i — 1] and asked to guess s[i]. Specifically,

Hi(S) = & 3 [SalHo(S0)

|a|=k
where S, is the concatenation of the elements in S immediately following occurrences of the k-tuple a.
Notice that |S,| = occ(c, S) unless « is a suffix of .S, in which case it is 1 less. Given a table listing the
frequency of each (k + 1)-tuple in S, it takes about nH(.S) bits to encode S. For further discussion of
empirical entropy, we refer readers to Manzini’s analysis [15] of the Burrows—Wheeler Transform.

The Rényi entropy of order ¢ of X is defined as

1

1 t
(5

for 0 < t # 1, where the random variable X again takes on values according to the probability

distribution P = py, ..., p,. The Rényi entropy of order O of & is the logarithm of the size of the support
of P. The limit of the Rényi entropy of order ¢ of X" as t approaches 1 is the Shannon entropy H(X)
of X'; as ¢ approaches infinity, the limit is — log sup,;,, p;, which is often called the min-entropy of
X. Min-entropy is related to predictability because, given P and asked to guess the value of X, our best
strategy is to choose the most probable value and, thus, guess correctly with probability max;<;<,{p;}.
If we are asked to guess the value of an element s[i] chosen uniformly at random from the sequence

S with no context given, then our best strategy is to choose the most frequent element and, thus,
occ(a,S)
n

this probability the Oth-order empirical predictability Py(S) of S. We define the kth-order empirical
predictability Py(S) of S to be the expected predictability of the random variable s[i] in the following

guess correctly with probability max,cg . Following the example of empirical entropy, we call

experiment: 7 is chosen uniformly at random between 1 and n; if ¢ < k, then we are told s[i|; if i > k,
then we are told s[i — k...7 — 1] and asked to guess s[i]. Specifically,

Py(S) = Tll (k:+ > \SalPo(ScJ)

laf=k

for k > 1, where S, is again the concatenation of the elements in S immediately following occurrences
of the k-tuple . For example, if S = TORONTO then Fy(S) = 3/7 ~ 0.429,

(14 Py(T) 4+ 2B5(RN) + P, (0) + 2F,(00))

= ~ 0.857

TR RN TSRS T

and all higher-order empirical entropies are 1. In other words, if someone asks us to guess an element
chosen uniformly at random from TORONTO then, given no context, we should choose O, in which
case the probability of our prediction being correct is 3/7. If we are given the preceding element (or told

there is no preceding element) and it is not an O, then we can answer with certainty; if it is an O, which

Algorithms 2012, 5 53

has probability 2/7, then we should guess either R or N and be right with probability 1/2; overall, the
probability of our prediction being correct is 6/7. If we are given the two preceding elements (or told
how many preceding elements there are), then we can always answer with certainty.

Given a table listing the frequency of each (k4 1)-tuple in S, we can build a static predictor that, after
seeing k elements, always predicts the element that follows that k-tuple most often in S'; this predictor
guesses correctly nP,(S) times when predicting all the elements in S, which is optimal for a static
predictor that uses contexts of length at most £.

3. Upper Bound

Having defined the kth-order predictability P;(.S) of .S, it is natural to ask when an adaptive predictor
with no advance knowledge of S can achieve success rate P;(S). Whenever both & and the size
o of the alphabet are fixed, Krishnan and Vitter’s predictor [5] almost certainly achieves a success
rate asymptotically approaching Py (.S) as n goes to infinity. If S is a randomly-chosen permutation,
however, then P;(S) = 1 but the expected success rate of any predictor without advance knowledge of
S, approaches 0 as n increases. In this section we show that if £ < log, n — 3 — ¢, for a constant € > 0,
then an adaptive predictor can achieve expected success rate P;(.S) on any sufficiently long sequence.
For simplicity we assume that % is given although, in practice, a predictor should find an optimal or
nearly optimal context length by itself.

The most obvious Oth-order predictor is the one that always guess that the next element will be the
most frequent element seen so far. Hannan [7] randomized this predictor and obtained a predictor A
whose expected success rate converges to Py(S) when n = w(o®). We now consider the most obvious
generalization A, of Hannan’s predictor to use contexts of a given length k: after seeing a k-tuple o, we
apply Hannan’s predictor to the subsequence of elements consisting of the concatenation of elements so
far that immediately followed occurrences of «; i.e.,

AW(S[L. i) = A((S[L...1))a)

where « = S[i — k...7— 1] and (S[1...1i]), is as defined in Section 2.

Fix ¢ > 0 and assume k£ < log, n — 3 — e. Consider the subsequences into which A partitions S
before applying A, and let £ be the subset of them that are each of length at least o>+</2. Notice that
A achieves expected success rate (.S”) on any subsequence S’ € L so, by linearity of expectation, Ay
achieves expected success rate at least

LD SUEATIEN

la|=F,
Sa€L

On the other hand, the total length of the subsequences not in £ is less than o - 037¢/2 < 3 = o(n), so

PS) = ; Ft S SalPo(Sa) + 3 1S4l Po(S0)

|al=k, |a|=k,
Sa€L Sa gLl
1
= - Z |Sa|Po(Sa) + o(1)
T ag=k,
Sacl

Therefore, when S is sufficiently long, Ay, achieves expected success rate Py(S).

Algorithms 2012, 5 54

Theorem 1 If the n elements of a sufficiently long sequence S are chosen arbitrarily from an alphabet

of size o and k < log, n — 3 — ¢, for a constant € > 0, then Ay, achieves expected success rate Py(S).
4. Lower Bound

Compression researchers (see, e.g., [16] for a survey) have shown how to store S in
nHi(S) + o(nlogo) for all £ < (1 — €) log, n simultaneously, where ¢ is a positive constant. In a
previous paper [11] we showed that it is impossible to prove a worst-case bound of this form when
k > log, n:

e in o-ary De Bruijn cycles [17] of order £, each k-tuple appears exactly once, so such cycles have
length o* and kth-order empirical entropy 0;

e there are (61)7" ' /o* such cycles [18] and log, ((U!)"kil/ak) = O(c*logo);

e by the pigeonhole principle, there is no injective mapping from o-ary strings of length n with
kth-order empirical entropy 0, to binary strings of length o(n log o);

o therefore, if £ > log, n, then in the worst case we cannot store S in A\nHy(S) + o(n log o) bits for
any coefficient \.

In a recent paper [12] we used similar but more sophisticated arguments to show that, if £ >
(1 + €) log, n for some positive constant e, then in the expected case we cannot store S in A\nH(S) +
o(nlog o) bits for any coefficient A = o(n°); if £ > (2 + €) log,, n, then with high probability we cannot
store .S in that many bits for any coefficient \.

We now turn our attention to proving lower bounds for prediction and show that, if £ > log, n and
the elements of S are chosen uniformly at random, then no predictor without advance knowledge of S
can achieve an expected success rate close to P;(.S). Notice that nP,(S) is, by definition, at least the
number of distinct k-tuples in .S minus 1: for any distinct k-tuple « that occurs in S and is not a suffix
of S, the optimal static predictor described in Section 2 correctly guesses the element after at least one
occurrence of « in S. Suppose k > log, n—implying that ¢ > 2—and let ¢ = ¢*/n > 1. Janson,
Lonardi and Szpankowski [19] showed that the expected number of distinct k-tuples in S'is

ak@—eiﬁ>+owy+oCi>:mﬂﬁ—éi>+0@y+owﬁ)

SO

MH@NECO— 1)21—i>0&2

el/c
On the other hand, no predictor without advance knowledge of S can achieve an expected success rate
greater than 1 /0 < 1/2.

Theorem 2 [f the n elements of a sequence S are chosen uniformly at random from an alphabet of size
o and k > log, n, then S’s expected kth-order empirical predictability E[Py(S)] > 1 — 1/e > 0.632
but no predictor without advance knowledge of S can achieve an expected success rate greater than
1/o <1/2.

Algorithms 2012, 5 55

References

10.

11.
12.
13.

14.
15.
16.
17.
18.

19.

Solomonoff, R.J. A formal theory of inductive inference. Inf. Control 1964, 7, 1-22, 224-254.
Kolmogorov, A.N. Three approaches to the quantitative definition of information. Probl. Inf.
Transm. 1965, 1, 1-7.

Li, M.; Vitanyi, P. An Introduction to Kolmogorov Complexity and Its Applications, 3rd ed.;
Springer: Berlin, Germany, 2008.

Cesa-Bianchi, N.; Lugosi, G. Prediction, Learning, and Games; Cambridge University Press:
Cambridge, UK, 2006.

Krishnan, P.; Vitter, J.S. Optimal prediction for prefetching in the worst case. SIAM J. Comput.
1998, 27, 1617-1636.

Ziv, J.; Lempel, A. Compression of individual sequences via variable-length coding. IEEE Trans.
Inf. Theory 1978, 24, 530-536.

Hannan, J. Approximation of Bayes Risk in Repeated Plays. In Contributions to the Theory of
Games; Dresher, M., Tucker, A., Wolfe, P., Eds.; Princeton University Press: Princeton, NJ, USA,
1957; Volume 3, pp. 97-139.

Feder, M.; Merhav, N.; Gutman, M. Universal prediction of individual sequences. IEEE Trans. Inf.
Theory 1992, 38, 1258-1270.

Rissanen, J. Modeling by shortest data description. Automatica 1978, 14, 465-471.

Rissanen, J. Complexity of strings in the class of Markov sources. IEEE Trans. Inf. Theory 1986,
32,526-532.

Gagie, T. Large alphabets and incompressibility. Inf. Process. Lett. 2006, 99, 246-251.

Gagie, T. Bounds from a card trick. J. Discret. Algorithm. 2012, 10, 2—4.

Gagie, T. A Note on Sequence Prediction. In Proceedings of the 9th Canadian Workshop on
Information Theory, Montreal, Canada, 5—-8 June 2005; pp. 304-306.

Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379423,
623-656.

Manzini, G. An analysis of the Burrows-Wheeler transform. J. ACM 2001, 48, 407-430.

Navarro, G.; Mikinen, V. Compressed full-text indexes. ACM Comput. Surv. 2007, 39.

de Bruijn, N.G. A combinatorial problem. K. Ned. Akad. Wet. 1946, 49, 758-764.

van Aardenne-Ehrenfest, T.; de Bruijn, N.G. Circuits and trees in oriented linear graphs. Simon
Stevin 1951, 28, 203-217.

Janson, S.; Lonardi, S.; Szpankowski, W. On average sequence complexity. Theor. Comput. Sci.
2004, 326, 213-227.

(© 2012 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/.)

	Introduction
	Empirical Predictability
	Upper Bound
	Lower Bound

