
Algorithms 2011, 3, 200-222; doi:10.3390/a4030200
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Approximating Frequent Items in Asynchronous Data Stream
over a Sliding Window
Hing-Fung Ting 1,?, Lap-Kei Lee 2, Ho-Leung Chan 1 and Tak-Wah Lam 1

1 Department of Computer Science, University of Hong Kong, Pokfulam, Hong Kong, China;
E-Mails: hlchan@cs.hku.hk (H.-L.C.); twlam@cs.hku.hk (T.-W.L.)

2 MADALGO (Center for Massive Data Algorithmics, a Center of the Danish National Research
Foundation), Department of Computer Science, Aarhus University, Aarhus C DK-8000, Denmark;
E-Mail: lklee@madalgo.au.dk

? Author to whom correspondence should be addressed; E-Mail: hfting@cs.hku.hk;
Tel.:+852-2859-8944; Fax: +852-2549-7908.

Received: 23 June 2011; in revised form: 23 June 2011 / Accepted: 10 September 2011 /
Published: 22 September 2011

Abstract: In an asynchronous data stream, the data items may be out of order with respect
to their original timestamps. This paper studies the space complexity required by a data
structure to maintain such a data stream so that it can approximate the set of frequent items
over a sliding time window with sufficient accuracy. Prior to our work, the best solution
is given by Cormode et al. [1], who gave an O

(
1
ε

logW log(εB
logW

) min{logW, 1
ε
} log |U |

)
-

space data structure that can approximate the frequent items within an ε error bound,
where W and B are parameters of the sliding window, and U is the set of all
possible item names. We gave a more space-efficient data structure that only requires
O
(

1
ε

logW log(εB
logW

) log logW
)

space.

Keywords: asynchronous data streams; frequent items; sliding window; space complexity

1. Introduction

Identifying frequent items in a massive data stream has many applications in data mining and network
monitoring, and the problem has been studied extensively [2–5]. Recent interest has been shifted
from the statistics of the whole data stream to that of a sliding window of recent data [6–9]. In most

Algorithms 2011, 3 201

applications, the amount of data in a window is gigantic when compared with the amount of memory
available in the processing units. It is impossible to store all the data and then find the exact frequent
items. Existing research has focused on designing space-efficient data structures to support finding the
approximate frequent items. The key concern is how to minimize the space so as to achieve a required
level of accuracy.

1.1. Asynchronous Data Stream

Most of the previous work on data streams assume that items in a data stream are synchronous in the
sense that the order of their arrivals is the same as the order of their creations. This synchronous model
is however not suitable to applications that are distributed in nature. For example, in a sensor network,
the sink collects data transmitted from sensors over a large area, and the data transmitted from different
sensors would suffer different delay. It is possible that an item created at time t at a certain sensor may
arrive at the sink later than an item created after t at another sensor. From the sink’s viewpoint, items in
the data stream are out of order with respect to their creation times. Yet the statistics to be computed are
usually based on the creation times. More specifically, an asynchronous data stream (a.k.a. out-of-order
data stream) [1,10,11] can be considered as a sequence (a1, t1), (a2, t2), (a3, t3), . . ., where ai is the name
of a data item chosen from a fixed universe U , and ti is an integer timestamp recording the creation time
of this item. Items arriving at the data stream are in arbitrary order regarding their timestamps, and it is
possible that more than one data item has the same timestamp.

1.2. Previous Work on Approximating Frequent Items

Consider a data stream and, in particular, those data items whose timestamps fall into the last W time
units (W is the size of the sliding window). An item (or precisely, an item name) is said to be a frequent
item if its count (i.e., the number of occurrences) exceeds a certain required threshold of the total item
count. Arasu and Manku [6] were the first to study approximating frequent items over a sliding window
under the synchronous model, in which data items arrive in non-decreasing order of timestamps. The
space complexity of their data structure is O(1

ε
(log 1

ε
)2 log(εB)), where ε is a user-specified error bound

and B is the maximum number of items with timestamps falling into the same sliding window. Their
work was later improved by Lee and Ting [7] to O(1

ε
log(εB)) space. Recently, Cormode et al. [1]

initiated the study of frequent items under the asynchronous model, and gave a solution with space
complexity O(1

ε
logW log(εB

logW
) min{logW, 1

ε
} log |U |), where U is the set of possible item names.

Later, Cormode et al. [12] gave a hashing-based randomized solution using O(1
ε2

log |U |) space. The
space complexity is quadratic in 1

ε
, which is less preferred, but that is a general solution that can solve

other problems like finding the sum and quantiles.
The earlier work on asynchronous data stream focused on a relatively simpler problem called

ε-approximate basic counting [10,11]. Cormode et al. [1] improved the space complexity of basic
counting to O(1

ε
logW log(εB

logW
)). Notice that under the synchronous model, the best data structure

requires O(1
ε

log(εB)) space [9]. It is believed that there is roughly a gap of logW between the
synchronous model to the asynchronous model. Yet, for frequent items, the asynchronous result of
Cormode et al. [1] has space complexity way bigger than that of the best synchronous result, which is

Algorithms 2011, 3 202

O(1
ε

log(εB)) [7]. This motivates us to study more space-efficient solutions for approximating frequent
items in the asynchronous model.

1.3. Formal Definition of Approximate Frequent Item Set

For any time interval I and any data item a, let fa(I) denote the frequency of item a in interval I ,
i.e., the number of arrived items named a with timestamps falling into I . Define f∗(I) =

∑
a∈U fa(I) to

be the total number of all arrived items with timestamps within I .
Given a user-specified error bound ε and a window size W , we want to maintain a data structure to

answer any ε-approximate frequent item set query for any sub-window (specified at query time), which
is in the form (φ,W ′) where φ ∈ [ε, 1] is the required threshold and W ′ ≤ W is the sub-window size.
Suppose that τcur is the current time. The answer to such a query is a set S of item names satisfying the
following two conditions:

(C1) S contains every item a whose frequency in interval I = [τcur −W ′ + 1, τcur] is at least φf∗(I),
i.e., fa(I) ≥ φf∗(I).

(C2) For any item a in S, its frequency in interval I is at least (φ− ε)f∗(I), i.e., fa(I) ≥ (φ− ε)f∗(I).

The set S is also called an ε-approximate φ-frequent item set. For example, assume ε = 1%, then the
query (10%, 10, 000) would return all items whose frequencies in the last 10, 000 time units are each
at least 10% of the total item count, plus possibly some other items with frequency at least 9% of the
total count.

1.4. Our Contribution

This paper gives a more space-efficient data structure for answering any ε-approximate frequent
item set query. Our data structure uses O(1

ε
logW log(εB

logW
) log logW) words, which is significantly

smaller than the one given by Cormode et al. [1] (see Table 1). Furthermore, this space complexity
is larger than the best synchronous solution by only a factor of O(logW log logW), which is close to
the expected gap of O(logW). Similar to existing data structures for this problem, it takes time linear
to the data structure’s size to answer an ε-approximate frequent item set query. Furthermore, it takes
O(log(εB

logW
)(log 1

ε
+ log logW)) time to modify the data structure for a new data item. Occasionally,

we might need to clean up some old data items that are no longer significant to the approximation; in the
worst case, this takes time linear to the size of the data structure, and thus is no bigger than the query
time. As a remark, the solution of Cormode et al. [1] requires O(log(εB

logW
) logW log log |U |) time for

an update.

Algorithms 2011, 3 203

Table 1. The space complexity for answering ε-approximate frequent item set query in a
sliding time window. Results from this paper are marked with [†]. Note that we assume
B ≥ 1

ε
logW ; otherwise, we can always store all items in the window for exact answer,

using O(1
ε

logW) words. Similarly, for the result with tardiness, we assume B ≥ 1
ε

log dmax.

Space Complexity (words)

Synchronous [7] O(1
ε

log(εB))

Asynchronous [1] O(1
ε

logW log(εB
logW

) min{logW, 1
ε
} log |U |)

Asynchronous [†] O(1
ε

logW log(εB
logW

) log logW)

Asynchronous
O(1

ε
log dmax log(εB

log dmax
) log log dmax)

with tardiness [†]

In the asynchronous model, if a data item has a delay more than W time units, it can be discarded
immediately when it arrives. In many applications, the delay is usually small. This motivates us to extend
the asynchronous model to consider data items that have a bounded delay. We say that an asynchronous
data stream has tardiness dmax if a data item created at time t must arrive at the stream no later than time
t+ dmax. If we set dmax = 0, the model becomes the synchronous model. If we allow dmax ≥ W , this is
in essence the asynchronous model studied above. We adapt our data structure to take advantage of small
tardiness such that when dmax is small, it uses smaller space (see Table 1) and support faster update time
(which is O(log(εB

log dmax
)(log 1

ε
+ log log dmax))). In particular, when dmax = Θ(1), the size and update

time of our data structure match those of the best data structure for synchronous data stream.
Remark. This paper is a corrected version of a paper with the same title in WAOA 2009 [13]; in

particular, the error bound on the estimates was given incorrectly before and is fixed in this version.

1.5. Technical Digest

To solve the frequent item set problem, we need to estimate the frequency of any item with relative
error εf∗(I) where I = [τcur −W + 1, τcur] is the interval covered by the sliding window. To this end,
we first propose a simple data structure for estimating the frequency of a fixed item over the sliding
window. Then, we adapt a technique of Misra and Gries [14] to extend our data structure to handle any
item. The result is an O(f∗(I))/λ)-space data structure that allows us to obtain an estimate for any item
with an error bound of about λ logW . Here λ is a design parameter. To ensure λ logW to be no greater
than εf∗(I), we should set λ ≤ εf∗(I)/ logW . Since f∗(I) can be as small as Θ(1

ε
logW) (the case for

smaller f∗(I) can be handled by brute-force), we need to be conservative and set λ to some constant.
But then the size of the data structure can be Θ(B) because f∗(I) can be as large as B. To reduce
space, we introduce a multi-resolution approach. Instead of using one single data structure, we maintain
a collection of O(logB) copies of our data structure, each uses a distinct, carefully chosen parameter λ
so that it could estimate the frequent item set with sufficient accuracy when f∗(I) is in a particular range.
The resulting data structure uses O(1

ε
logW logB) space.

Algorithms 2011, 3 204

Unfortunately, a careful analysis of our data structure reveals that in the worst case, it can only
guarantee estimates with an error bound of εf∗(H ∪ I) where H = [τcur − 2W + 1, τcur − W], not
the required εf∗(I). The reason is that the error of its estimates over I depend on the number of updates
made during I , and unlike synchronous data stream, this number for asynchronous data stream can be
significantly larger than f∗(I). For example, at time τcur −W + 1, there may still be many new items
(a, u) with timestamps u ∈ H , for which we must update our data structure to get good estimates when
the sliding window is at earlier positions. Indeed, the number of updates during I can be as large as
f∗(H ∪ I), and this gives an error bound of εf∗(H ∪ I).

To reduce the error bound to εf∗(I), we introduce a novel algorithm to split the data structure into
independent smaller ones at appropriate times. For example, at time τcur − W + 1, we can split our
data structure into two smaller ones DH and DI , and we will only update DH for items (a, u) with
u ∈ H and update DI for those with u ∈ I . Then, when we need to find an estimate on I at time τcur,
we only need to consult DI , and the number of updates made to it is f∗(I). In this paper, we develop
sophisticated procedures to decide when and how to split the data structure so as to enable us to get
good enough estimates when sliding window moves continuously. The resulting data structure has size
O(1

ε
(logW)2 log(εB

logW
)). Then, we further make the data structure adaptive to the input size, allowing

us to reduce the space to O(1
ε
(log logW) logW log(εB

logW
)).

2. Preliminaries

Our data structures for the frequent item set problem depends on data structures for the following two
related data stream problems. Let 0 < ε < 1 be any real number, and τcur be the current time.

• The ε-approximate basic counting problem asks for data structure that allows us to obtain, for
any interval I = [τcur − W ′ + 1, τcur] where W ′ ≤ W , an estimate f̂∗(I) of f∗(I) such that
|f̂∗(I)− f∗(I)| ≤ εf∗(I).
• The ε-approximate counting problem asks for data structure that allows us to obtain, for any item
a and any interval I = [τcur −W ′ + 1, τcur] where W ′ ≤ W , an estimate f̂a(I) of fa(I) such that
|f̂a(I)− fa(I)| ≤ εf∗(I).

As mentioned in Section 1, Cormode et al. [1] gave an O(1
ε

logW log(εB
logW

))-space data
structure Bε for solving the ε-approximate basic counting problem. In this paper, we give an
O(1

ε
logW log(εB

logW
) log logW)-space data structure Dε for solving the harder ε-approximate counting

problem. The theorem below shows how to use these two data structures to answer ε-approximate
frequent item set query.

Theorem 1 Let εo = ε/4. Given Bεo andDεo , we can answer any ε-approximate frequent item set query.
The total space required is O(1

ε
logW log(εB

logW
) log logW).

Proof The space requirement is obvious. Consider any ε-approximate frequent item set query (φ,W ′)

where ε ≤ φ ≤ 1 and W ′ ≤ W . Let I = [τcur − W ′ + 1, τcur]. Since εo = ε/4, the estimates
given by Bεo satisfy |f̂∗(I) − f∗(I)| ≤ ε

4
f∗(I), and for any item a, the estimates given by Dεo satisfy

|f̂a(I)− fa(I)| ≤ ε
4
f∗(I). To answer the query (φ,W ′), we return the set

Sφ = {a | f̂a(I) ≥ (φ− ε
2
)f̂∗(I)}

Algorithms 2011, 3 205

which satisfies the required conditions (C1) and (C2) because

• for any item a with fa(I) ≥ φf∗(I), f̂a(I) ≥ fa(I) − ε
4
f∗(I) ≥ (φ − ε

4
)f∗(I) ≥ (φ −

ε
4
)(1

1+ ε
4
)f̂∗(I) ≥ (φ− ε

4
)(1− ε

4
)f̂∗(I) ≥ (φ− ε

2
)f̂∗(I), and a ∈ Sφ; thus (C1) is satisfied, and

• for every a ∈ Sφ, we have fa(I) ≥ f̂a(I) − ε
4
f∗(I) ≥ (φ − ε

2
)f̂∗(I) − ε

4
f∗(I) ≥ (φ − ε

2
)(1 −

ε
4
)f∗(I)− ε

4
f∗(I) ≥ (φ− ε)f∗(I); thus (C2) is satisfied.

The building block of Dε is a data structure that counts items over some fixed interval (instead of the
sliding window). For any interval I = [`I , rI] of size W , Theorem 4 in Section 4 gives a data structure
DI,ε that usesO(1

ε
logW log(εB

logW
) log logW) space, supportsO(log(εB

logW
)·(log 1

ε
+log logW)) update

time, and enables us to obtain, for any item a and any time t ∈ I , an estimate f̂a([t, rI]) of fa([t, rI])
such that

|f̂a([t, rI])− fa([t, rI])| ≤ εf∗([t, rI]) (1)

Given DI1,ε,DI2,ε, . . . where Ii = [(i − 1)W + 1, iW], we can obtain, for any W ′ ≤ W , an estimate
f̂a([s, τcur]) of fa([s, τcur]) where s = τcur −W ′ + 1 as follows.

• Let Ii and Ii+1 be the intervals such that [s, τcur] ⊂ Ii ∪ Ii+1.
• Use DIi,ε to get an estimate f̂a([s, iW]) of fa([s, iW]), and DIi+1,ε an estimate f̂a([iW + 1,

(i+ 1)W]) of fa([iW + 1, (i+ 1)W]).
• Our estimate f̂a([s, τcur]) = f̂a([s, iW]) + f̂a([iW + 1, (i+ 1)W]).

By Equation (1), we have

|f̂a([s, iW])− fa([s, iW])| ≤ εf∗([s, iW]) (2)

and
|f̂a([iW + 1, (i+ 1)W])− fa([iW + 1, (i+ 1)W])| ≤ εf∗([iW + 1, (i+ 1)W]) (3)

Observe that any item that arrives at or before the current time τcur must have timestamp no greater than
τcur; hence fa([iW +1, (i+1)W]) = fa([iW +1, τcur]) and f∗([iW +1, (i+1)W]) = f∗([iW +1, τcur]),
and Equation (3) is equivalent to

|f̂a([iW + 1, (i+ 1)W])− fa([iW + 1, τcur])| ≤ εf∗([iW + 1, τcur]) (4)

Adding Equations (2) and (4), we conclude |f̂a([s, τcur])− fa([s, τcur])| ≤ εf∗([s, τcur]), as required.
Our data structure Dε is just the collection of DI1,ε,DI2,ε, Note that we only need to physically

store in Dε the data structures DIi,ε and DIi+1,ε where [τcur −W + 1, τcur] ⊆ Ii ∪ Ii+1. The intervals
of the earlier ones will no longer be covered by the sliding window and the corresponding DI,ε’s can be
thrown away. Together with Theorem 4, we have the following theorem.

Theorem 2 The data structure Dε solves the ε-approximate counting problem. The space usage is
O(1

ε
logW log(εB

logW
) log logW) and it supports O(log(εB

logW
) · (log 1

ε
+ log logW)) update time.

Algorithms 2011, 3 206

3. A Simple Data Structure For Frequency Estimation

Let I = [`I , rI] be any interval of size W . To simplify notation, we assume that W is a power of 2, so
that logW is an integer and we can avoid the floor or the ceiling functions. In this section, we describe
a simple data structure CI,λ,κ that enables us to obtain, for any item a, a good estimate of a’s frequency
over I . The parameters λ and κ determine its accuracy and space usage. However, its accuracy is not
enough for answering any ε-approximate frequent item set query. We will explain how to improve the
accuracy in the next section.

Roughly speaking, CI,λ,κ is a set of queues Qa
I,λ, i.e., CI,λ,κ = {Qa

I,λ | a ∈ U}. For an item a, the
queue Qa

I,λ keeps track of the occurrences of a in I . Each node N in Qa
I,λ is associated with an interval

i(N), a value v(N), and a debit d(N); v(N) counts the number of arrived items (a, u) with u ∈ i(N),
and d(N) is for implementing a space reduction technique. Initially, Qa

I,λ has only one node N with
i(N) = I , and v(N) = d(N) = 0. In general, Qa

I,λ is a queue 〈N1, N2, . . . , Nk〉 of nodes whose
intervals form a partition of I , i.e.,

〈i(N1), i(N2), . . . , i(Nk)〉 = 〈[p1, q1], [p2, q2], . . . , [pk, qk]〉

where qi−1 + 1 = pi ≤ qi and
⋃

1≤i≤k[pi, qi] = I . When an item (a, u) with u ∈ I arrives, we update
Qa
I,λ as follows.

Qa
I,λ.Debit()

1: find the unique node N in Qa
I,λ with u ∈ i(N) = J = [p, q];

2: increase the value of N by 1, i.e., v(N) = v(N) + 1;
3: if (|J | > 1 and λ units have been added to v(N) since J is assigned to i(N)) then
4: /∗ refine J ∗/
5: create a new node N ′ and insert it to the left of N ;
6: let i(N ′) = [p,m], i(N) = [m+ 1, q] where m = b(p+ q)/2c;
7: let v(N ′) = 0 and d(N ′) = 0;
8: /∗ we make no change to v(N) and d(N) ∗/
9: end if

Figure 1 gives an example on how Qa
I,λ is updated using the procedure.

Algorithms 2011, 3 207

Figure 1. Suppose that λ = 4. (i) shows the queue Qa
I,λ before the arrivals of items

(a, 1), (a, 2), (a, 3), (a, 8); (ii) is the resulting queue after the updates for these items;
(iii) shows that after the arrival of another item (a, 1), the first node in (ii) is updated
and refined.

[1,4]

v=0

d=0

[5,8]

v=4

d=0

[1,2]

v=0

d=0

[3,4]

v=4

d=0

[5,8]

v=5

d=0

[1,4]

v=3

d=0

[5,8]

v=5

d=0

(i)

(ii)

(iii)

Obviously, a direct implementation of CI,λ,κ uses too much space. We now extend a technique of
Misra and Gries [14] to reduce the space requirement. For any Qa

I,λ, we say that Qa
I,λ is trivial if the

queue contains only a single node N with (i) i(N) = I , and (ii) v(N) = d(N) = 0. Every queue in
CI,λ,κ is trivial initially. The key for reducing the space complexity of CI,λ,κ is to maintain the following
invariant throughout the execution:

(∗) There are at most κ non-trivial queues in CI,λ,κ.

We call κ the capacity of CI,λ,κ. The invariant helps us save space because we do not need to store trivial
queues physically in memory. To maintain (∗), each queueQa

I,λ supports the following procedure, which
is called only when v(Qa

I,λ), the total values of the nodes inQa
I,λ, is strictly greater than d(Qa

I,λ), the total
debits of the nodes in Qa

I,λ.

Qa
I,λ.Debit()

1: if (v(Qa
I,λ) ≤ d(Qa

I,λ)) then
2: return error;
3: else
4: find an arbitrary node N of Qa

I,λ with v(N) > d(N);
5: /∗ such a node must exist because v(Qa

I,λ) > d(Qa
I,λ) ∗/

6: d(N) = d(N) + 1;
7: end if

Note from the implementation of Debit() that v(Qa
I,λ) is always no smaller than d(Qa

I,λ), and for each
node N of Qa

I,λ, v(N) ≥ d(N). Furthermore, if v(Qa
I,λ) = d(Qa

I,λ), then v(N) = d(N) for every node
N in Qa

I,λ. To maintain (∗), CI,λ,κ processes a newly arrived item (a, u) with u ∈ I as follows.

Algorithms 2011, 3 208

CI,λ,κ.Process((a, u))

1: update Qa
I,λ by calling Qa

I,λ.Update((a, u));
2: if (after the update the number of non-trivial queues becomes κ) then
3: for each Qx

I,λ with v(Qx
I,λ) > d(Qx

I,λ) do Qx
I,λ.Debit();

4: for each non-trivial queues Qx
I,λ with v(Qx

I,λ) = d(Qx
I,λ) do

5: delete all nodes of Qx
I,λ and make it a trivial queue;

6: /∗ Note that each deleted node N satisfies v(N) = d(N). ∗/
7: end if

It is easy to see that Invariant (∗) always holds: Initially the number m of non-trivial queues is zero,
and m increases only when Process((a, u)) is on some trivial Qa

I,λ; in such case v(Qa
I,λ) becomes 1 and

d(Qa
I,λ) remains 0. If m becomes κ after this increase, we will debit, among other queues, Qa

I,λ and its
d(Qa

I,λ) becomes 1 too. It follows that v(Qa
I,λ) = d(Qa

I,λ), and Lines 4–5 will make Qa
I,λ trivial and m

becomes less than κ again.
We are now ready to define CI,λ,κ’s estimate f̂a([t, rI]) of fa([t, rI]) and analyze its accuracy. We need

some definitions. For any interval J = [p, q] and any t ∈ I , we say that J covers t if t ∈ [p, q], is to
the right of t if t < p, and is to the left of t otherwise. For any item a and any t ∈ I = [`I , rI], CI,λ,κ’s
estimate of fa([t, rI]) is

f̂a([t, rI]) = the value sum of the nodes N currently in Qa
I,λ whose i(N) covers or is to the

right of t.

For example, in Figure 1, after the update of the last item (a, 1), we can obtain the estimate
f̂a([2, 8]) = 0 + 4 + 5 = 9.

Given any node N of Qa
I,λ, we say that N is monitoring a over J , or simply N is monitoring J if

i(N) = J . Note that a node may monitor different intervals during different periods of execution, and
the size of these intervals are monotonically decreasing. Observe that although there are about W 2/2

possible sub-intervals of size-W interval I , there are only about 2W of them that would be monitored by
some nodes: there is only one such interval of size W , namely I = [`I , rI], which gives birth to two such
intervals of size W/2, namely [`I ,m] and [m+ 1, rI] where m = b(`I + rI)/2c, and so on. We call these
O(W) intervals interesting intervals. For any two interesting intervals J and H such that J ⊂ H , we
say that J is a descendant of H , and H is an ancestor of J . Figure 2 shows all the interesting intervals
for I = [1, 8], as well as their ancestor-descendant relationship. The following important fact is easy to
verify by induction.

Fact 1 Any two interesting intervals J andH do not cross, although one can contain another, i.e., either
J ⊂ H , or H ⊂ J , or J ∩H = ∅. Furthermore, any interesting interval has at most logW ancestors.

Algorithms 2011, 3 209

Figure 2. Interesting intervals for I = [1, 8].

[5,8][1,4]

[1,2] [3,4] [5,6] [7,8]

[2,2] [3,3] [4,4] [5,5] [8,8][7,7][6,6][1,1]

[1,8]

For any node N , let I(N) be the set of intervals that have been monitored by N so far. The following
fact can be verified from the update procedure.

Fact 2 Consider a node N in Qa
I,λ, where i(N) = J .

• If J covers or is to the right of t, then all intervals in I(N) cover or are to the right of t.
• If J is to the left of t, then all intervals in I(N) are to the left of t.

We say that N covers or is to the right of t if the intervals in I(N) cover or are to the right of t;
otherwise, N is to the left of t. For any queue Qa

I,λ, let alive(Qa
I,λ) be the set of nodes currently in Qa

I,λ,
dead(Qa

I,λ) be those nodes of Qa
I,λ that have already been deleted (because of Line 5 of the procedure

Process()), and node(Qa
I,λ) = alive(Qa

I,λ) ∪ dead(Qa
I,λ). Note that the estimate f̂a([t, rI]) is the value

sum of the nodes in alive(Qa
I,λ) that cover or are to the right of t. For simplicity, we need to express it

more succinctly. Let
alive(CI,λ,κ) =

⋃{
alive(Qa

I,λ) | Qa
I,λ ∈ CI,λ,κ

}
be the set of nodes currently in CI,λ,κ. Define dead(CI,λ,κ) and node(CI,λ,κ) similarly. For any item a

and any subset X ⊆ node(CI,λ,κ), let Xa be the set of nodes in X that are monitoring a (and thus are
the nodes from Qa

I,λ). For any t ∈ I , let X≥t denote the set of nodes in X that cover or are to the right of
t. Define v(X) =

∑
N∈X v(N) and d(X) =

∑
N∈X d(N). Then, f̂a([t, rI]) can be expressed as follows:

f̂a([t, rI]) = v(alive(Qa
I,λ)≥t) = v(alive(CI,λ,κ)a≥t)

The following theorem analyzes its accuracy, as well as gives the size of CI,λ,κ.

Lemma 3 For any t ∈ I , fa([t, rI])− 1
κ
f∗(I) ≤ f̂a([t, rI]) ≤ fa([t, rI]) + λ logW . Furthermore, CI,λ,κ

has size O(f∗(I)/λ+ κ) words.

Proof Recall that f̂a([t, rI]) = v(alive(Qa
I,λ)≥t). Consider any node N ∈ alive(Qa

I,λ)≥t. Note that
v(N) =

∑
J∈I(N) vadd(N, J) where vadd(N, J) is the value added to v(N) during the period when

i(N) = J . By Fact 2, we can divide it as v(N) =
∑
{vadd(N, J) | J covers t} +

∑
{vadd(N, J) |

J is to the right of t}. It follows that

v(alive(Qa
I,λ)≥t) =

∑
N∈alive(QaI,λ)≥t

v(N)

=
∑

N∈alive(QaI,λ)≥t

∑
{vadd(N, J) | J covers t}+∑

N∈alive(QaI,λ)≥t

∑
{vadd(N, J) | J is to the right of t} (5)

Algorithms 2011, 3 210

Note that
∑

N∈alive(QaI,λ)≥t

∑{
vadd(N, J) | J is to the right of t

}
≤ fa([t, rI]), because if an arrived

item (a, u) causes an increase of vadd(N, J) for some J that is to the right of t, then u must be
in [t, rI]. By Equation (5), to show the second inequality of the lemma, it suffices to show that
So =

∑
N∈alive(QaI,λ)≥t

∑{
vadd(N, J) | J covers t} = vadd(N1, J1) + vadd(N2, J2) + · · · + vadd(Nk, Jk)

is no greater than λ logW , as follows.
Without loss of generality, suppose |J1| ≥ |J2| ≥ · · · ≥ |Jk|. It can be verified that once an interval

J is assigned to a node, it will not be assigned to other nodes; thus the Ji’s are distinct. Furthermore,
note that for 1 ≤ i < k, Jk ⊂ Ji because (i) t is in both Ji and Jk; (ii) Jk is the smallest interval; and
(iii) interesting intervals do not cross; thus Jk is a descendant of Ji, and together with Fact 1, k ≤ logW .
By Line 3 of the procedure Update(), vadd(Ni, Ji) ≤ λ for 1 ≤ i ≤ k. It follows that So ≤ λ logW .

For the first inequality of the lemma, it is clearer to use f̂a([t, rI]) = v(alive(CI,λ,κ)a≥t). Note that
every arrived item (a, u) with u ∈ [t, rI] increments the value of some node in node(CI,λ,κ)a≥t; thus
fa([t, rI]) ≤ v(node(CI,λ,κ)a≥t) and

fa([t, rI])− v(alive(CI,λ,κ)a≥t) ≤ v(node(CI,λ,κ)a≥t)− v(alive(CI,λ,κ)a≥t) = v(dead(CI,λ,κ)a≥t)

From Lines 4–6 of the procedure Process(), when we delete a node N , v(N) = d(N). Hence,
v(dead(CI,λ,κ)a≥t) = d(dead(CI,λ,κ)a≥t), which is equal to the total number of debit operations made
to these dead nodes. Since whenever we make a debit operation to Qa

I,λ, we will make a debit operation
to κ− 1 other queues,

κ · d(dead(CI,λ,κ)a≥t) ≤ d(node(CI,λ,κ)) ≤ v(node(CI,λ,κ)) = f∗(I) (6)

In summary, we have fa([t, rI]) − f̂a([t, rI]) = fa([t, rI]) − v(alive(CI,λ,κ)a≥t) ≤ v(dead(CI,λ,κ)a≥t) =

d(dead(CI,λ,κ)a≥t) ≤ f∗(I)/κ, and the first inequality of the lemma follows.
For the space, we say that a node is born-rich if it is created because of Line 5 of the procedure

Update() (and thus has λ items under its belt); otherwise it is born-poor. Obviously, there are at most
f∗(I)/λ born-rich nodes. For born-poor nodes, we need to store at most κ of them because every queue
has one born-poor node (the rightmost one), and we only need to store at most κ non-trivial queues; the
space bound follows.

If we set λ = λi = ε2i/ logW and κ = 1
ε
, then Lemma 3 asserts that CI,λ,κ = CI,λi, 1ε is an

O(f∗(I)
ε2i

logW + 1
ε
)-space data structure that enables us to obtain, for any item a ∈ U and any timestamp

t ∈ I , an estimate f̂a([t, rI]) that satisfies

fa([t, rI])− εf∗(I) ≤ f̂a([t, rI]) ≤ fa([t, rI]) + ε2i

If f∗(I) does not vary too much, we can determine the i such that f∗(I) ≈ 2i, and CI,λi, 1ε is anO(1
ε

logW)

space data structure that guarantees an error bound of O(εf∗(I)). However, this approach has two
obvious shortcomings:

(1) f∗(I) may vary from some small value to a value as large as B, the maximum number of items
falling in a window of sizeW ; hence, there may not be any fixed i that always satisfies f∗(I) ≈ 2i.

(2) To estimate fa([t, rI]), we need an error bound of εf∗([t, rI]), not εf∗(I).

We will explain how to overcome these two shortcomings in the next section.

Algorithms 2011, 3 211

4. Our Data Structure for ε-Approximate Counting

The first shortcoming of the approach given in Section 3 is easy to overcome: a natural idea is to
maintain CI,λi, 1ε for different λi to handle different possible values of f∗(I). The second shortcoming
is more fundamental. To overcome it, we need to modify CI,λ,κ substantially. The result is a new
and complicated data structure DYI,ε, where Y is an integer determining the accuracy. As asserted in
Theorem 7 below, this data structure uses O(1

ε
logW log logW) space, supports O(log 1

ε
+ log logW)

update time, and for any t ∈ I , it offers the following special guarantee:

• When f∗([t, rI]) ≤ Y , DYI,ε can return, for any item a, an estimate f̂a([t, rI]) of fa([t, rI]) such that
|f̂a([t, rI])− fa([t, rI])| ≤ εY.

• When f∗([t, rI]) > Y , DYI,ε does not have any error bound on its estimate f̂a([t, rI]).

Before giving the details of DYI,ε, let us explain how to use it to build the data structure DI,ε
mentioned in Section 2 for the ε-approximate counting problem. To build DI,ε, we need another
O(1

ε
logW log εB

logW
)-space data structure BI,ε, which is a simple adaption of the data structure Bε of

Cormode et al. [1] for the ε-approximate basic counting problem; BI,ε enables us to find, for any t ∈ I ,
an estimate f̂∗([t, rI]) of f∗([t, rI]) such that

f∗([t, rI]) ≤ f̂∗([t, rI]) ≤ (1 + ε)f∗([t, rI]) (7)

BI,ε is implemented as follows. During execution, we maintain the data structure Bε/4 of Cormode
et al. to count the items in the sliding window. When τcur = rI , we duplicate Bε/4 and get B′. Then, B′ is
updated as if τcur was fixed at rI . To get the estimate f̂∗([t, rI]), we first obtain an estimate f ′ of f∗([t, rI])
from B′, which satisfies |f ′ − f∗([t, rI])| ≤ ε

4
f∗([t, rI]). Then, f̂∗([t, rI]) = 1

1−ε/4f
′. It can be verified

that f̂∗([t, rI]) satisfies Equation (7). Our data structure DI,ε is composed of (i) BI,ε, and (ii) D2i

I,ε/4 for
each integer i from log(1

ε
logW) + 1 to logB. It also maintains a brute-force O(1

ε
logW)-space data

structure for remembering the 1
ε

logW items (a, u) with the largest u ∈ I; this brute-force data structure
will be used for finding f̂a([t, rI]) only when f∗([t, rI]) ≤ 1

ε
logW .

Theorem 4

(i) The data structure DI,ε has size O
(

1
ε
(log logW)(logW) log(εB

logW
)
)

words, and supports
O
(
(log 1

ε
+ log logW) log(εB

logW
)
)

update time.
(ii) Given DI,ε, we can find, for any a ∈ Σ and t ∈ I , an estimate of f̂a([t, rI]) of fa([t, rI]) such that
|f̂a([t, rI])− fa([t, rI])| ≤ εf∗([t, rI]).

Proof Statement (i) is straightforward because there are logB − log(1
ε

logW) different DYI,ε, each has
size O(1

ε
(log logW) logW) and takes O(log 1

ε
+ log logW) time for an update. For Statement (ii), we

describe how to get the estimate and analyze its accuracy.
First, we use BI,ε to get the estimate f̂∗([t, rI]). If f̂∗([t, rI]) ≤ 1

ε
logW , then f∗([t, rI]) ≤ f̂∗([t, rI]) ≤

1
ε

logW and we can use the brute-force data structure to find fa([t, rI]) exactly. Otherwise, we determine
the i with 2i−1 < f̂∗([t, rI]) ≤ 2i. Note that

• i ≥ log(1
ε

logW) + 1 and we have the data structure D2i

I, ε
4
, and

Algorithms 2011, 3 212

• f∗([t, rI]) ≤ f̂∗([t, rI]) ≤ 2i.

We use D2i

I, ε
4

to obtain an estimate f̂a([t, rI]) with |f̂a([t, rI]) − fa([t, rI])| ≤ (ε
4
)2i. By Equation (7),

2i−1 < f̂∗([t, rI]) ≤ (1 + ε)f∗([t, rI]). Combining the two inequalities we have

|f̂a([t, rI])− fa([t, rI])| ≤ 2(ε
4
)(2i−1) < 2(ε

4
)(1 + ε)f∗([t, rI]) ≤ εf∗([t, rI])

We now describe the construction of DYI,ε. First, we describe an O(1
ε
(logW)2)-space version of the

data structure. Then, we show in the next section how to reduce the space to O(1
ε

log logW logW). In
our discussion, we fix λ = εY/ logW and κ = 4

ε
logW .

Initially, DYI,ε is just the data structure CI,λ,κ. By Lemma 3, we know that its size is O(f∗(I)
λ

+ κ) =

O(f∗(I)
εY

logW + 1
ε

logW), which is O(1
ε

logW) when f∗(I) ≤ Y . However, it is much larger than
1
ε

logW when f∗(I) � Y , and to maintain small space usage in such case, we trim CI,λ,κ by throwing
away a significant number of nodes. This is acceptable because CI,λ,κ only guarantees good estimates
for those t ∈ I with f∗([t, rI]) ≤ Y . The trimming process is rather tricky. The natural idea of throwing
away all the nodes to the left of t when we find f∗([t, rI]) > Y does not work because the resulting data
structure may return estimates with error larger than the required εY bound. For example, let I = [1,W].
For each item ai ∈ {a1, a2, . . . , aκ−1}, there are m = Y/κ copies of (ai, t + 1) arrive at time W + t for
every t ∈ [0,W − 1]. Also, there are m copies of (a,W) arrive at time W + t for every t ∈ [0,W − 1].
Hence, at each time W + t, there are mκ = Y items with timestamps in [t,W] arrives, m items for each
of the κ item name in {a, a1, . . . , aκ−1}. We are interested in the accuracy of the estimate f̂a([W,W]). It
can be verified that at each time W + t, Lines 4–5 of the procedure Process() will eventually trivialize
Qa
I,λ and thus f̂a([W,W]) = 0. Since fa([W,W]) = (t+ 1)m, |f̂a([W,W])− fa([W,W])| = (t+ 1)m.

When t = 2εY/m− 1, the absolute error is 2εY which is larger than the required error bound εY .
To describe the right trimming procedure, we need some basic operations. Consider any CJ,λ,κ where

J = [p, q]. The following operation splits CJ,λ,κ into two smaller data structures CJ`,λ,κ and CJr,λ,κ where
J` = [p,m] and Jr = [m+ 1, q] with m = b(p+ q)/2c.

DYI,ε.Split(CJ,λ,κ)

1: for each non-trivial queue QaJ,λ ∈ CJ,λ,κ do
2: if (QaJ,λ has only one node N monitoring the whole interval J) then
3: /∗ refine J ∗/
4: insert a new node N ′ immediately to the left of N with v(N ′) = d(N ′) = 0;
5: i(N ′) = J`, and i(N) = Jr;
6: end if
7: divide QaJ,λ into two sub-queues QaJ`,λ and QaJr,λ where
8: QaJ`,λ contains the nodes monitoring some sub-intervals of J`, and
9: QaJr,λ contains those monitoring some sub-intervals of Jr;

10: put QaJ`,λ in CJ`,λ,κ and QaJr,λ in CJr,λ,κ.
11: end for
12: /∗ For a trivial QaJ,λ, its two children in CJ`,λ,κ and CJr,λ,κ are also trivial. ∗/

We say that CJ`,λ,κ and CJr,λ,κ are the left and right child of CJ,λ,κ, respectively. Figure 3 gives
an example of Split(C[1,8],λ,κ), the split of C[1,8],λ,κ, which has three non-trivial queues Qa

I,λ, Q
b
I,λ and

Algorithms 2011, 3 213

Qc
I,λ, into C[1,4],λ,κ and C[5,8],λ,κ. Note that the queues for b and c in C[1,4],λ,κ are trivial and we have not

stored them.

Figure 3. Split of C[1,8],λ,κ.

[1,2]

v=3

d=3

[3,4]

v=1

d=0

[1,8]

v=3

d=0

[1,4]

v=0

d=0

[5,8]

v=3

d=2

[5,8]

v=2

d=1

a:

b:

c:

[1,2]

v=3

d=3

[3,4]

v=1

d=0

a:

[5,8]

v=3

d=0

[5,8]

v=3

d=2

[5,8]

v=2

d=1
a:

b:

c:

Using Split(), we can trim, for example, C[p,p+1],λ,κ into C[p+1,p+1],λ,κ as follows: Split C[p,p+1],λ,κ into
C[p,p],λ,κ and C[p+1,p+1],λ,κ, and throw away C[p,p],λ,κ. The following recursive procedure LeftRefine()

generalizes this idea for larger J : Given CJ,λ,κ = C[p,q],λ,κ, it returns a list 〈CJ0,λ,κ, CJ1,λ,κ, . . . , CJm,λ,κ〉
where the Ji’s form a partition of [p, q], and J0 = [p, p]. Throwing away CJ0,λ,κ, and the remaining
CJi,λ,κ’s all together monitor [p+ 1, q].

DYI,ε.LeftRefine (C[p,q],λ,κ)

1: if (|[p, q]| = |[p, p]| = 1) then
2: return 〈C[p,p],λ,κ〉;
3: else
4: split C[p,q],λ,κ into its left child C[p,m],λ,κ and right child C[m+1,q],λ,κ

5: /∗ where m = b(p+ q)/2c ∗/;
6: L = LeftRefine(C[p,m],λ,κ);

7: suppose L = 〈CJ0,λ,κ, CJ1,λ,κ, . . . , CJk,λ,κ〉;
8: return 〈CJ0,λ,κ, . . . , CJk,λ,κ, C[m+1,q],λ,κ〉;
9: end if

For example, LeftRefine(C[1,8],λ,κ) gives us the list 〈C[1,1],λ,κ, C[2,2],λ,κ, C[3,4],λ,κ, C[5,8],λ,κ〉. Note that
J0 = [p, p] because the recursion stops only when |[p, q]| = 1. The list returned by LeftRefine(C[p,q],λ,κ)
has another useful property, which we describe below.

Algorithms 2011, 3 214

Given L = 〈CZ1,λ,κ, . . . , CZk,λ,κ〉, we say that L is an interesting-partition covering the interval J if
(i) the Zi’s are all interesting intervals and form a partition of J ; and (ii) for 1 ≤ i < k, Zi is to the left of
Zi+1, and |Zi| ≤ 1

2
|Zi+1|. The fact below can be verified by induction on the length of the list returned

by LeftRefine().

Fact 3 Let J be an interesting interval, and L = 〈CJ0,λ,κ, . . . , CJm,λ,κ〉 be the list returned by
LeftRefine(CJ,λ,κ). Then, the list 〈CJ1,λ,κ, . . . , CJm,λ,κ〉 (i.e., the list obtained by throwing away the head
CJ0,λ,κ of L) is an interesting-partition covering [p+ 1, q].

For example, if [1, 8] is an interesting interval, then the list 〈C[2,2],λ,κC[3,4],λ,κ, C[5,8],λ,κ〉 obtained
by throwing away the first element C[1,1],λ,κ from LeftRefine(C[1,8],λ,κ) is an interesting-partition
covering [2, 8].

We now give details ofDYI,ε. Initially, it is the interesting-partition 〈CI,λ,κ〉 covering the whole interval
I = [`I , rI]. Throughout the execution, we maintain the following invariant:

(∗∗) DYI,ε is an interesting-partition covering some [p, rI] ⊆ I .

When DYI,ε = 〈CJ1,λ,κ, . . . , CJm,λ,κ〉 is covering [p, rI], it only guarantees good estimates of fa([t, rI]) for
t ∈ [p, rI], and this estimate is obtained by

f̂a([t, rI]) = v(alive(CJh,λ,κ)a≥t) +
∑

h+1≤i≤m v(alive(CJi,λ,κ)a)

(or equivalently, f̂a([t, rI]) = v(alive(Qa
Jh,λ

)≥t) +
∑

h+1≤i≤m v(alive(Qa
Ji,λ

)), where Jh is the interval in
{J1, J2, . . . , Jm} that covers t. When an item (a, u) with u ∈ [p, rI] arrives, we find the unique CJi,λ,κ in
DYI,ε where u ∈ Ji, update it by calling CJi,λ,κ.Process((a, u)). Note that this update has no effect on the
other CJ,λ,κ in DYI,ε.

During execution, we also keep track of the largest timestamp pmax ∈ I such that the estimate
f̂∗([pmax, rI]) given by BI,ε is greater than (1 + ε)Y (which implies f∗([pmax, rI]) > Y because of
Equation (7)). As soon as pmax falls in the interval covered by DYI,ε, we use the following procedure
to trim DYI,ε to cover the smaller interval [pmax + 1, rI].

Suppose that L = 〈CJ1,λ,κ, . . . , CJm,λ,κ〉 is an interesting-partition covering [p, rI], and t ∈ [p, rI].
Trim(L, t) constructs an interesting-partition covering [t+ 1, rI] recursively as follows.

DYI,ε.Trim(L, t)

1: find the unique CJi,λ,κ in L such that t ∈ Ji;
2: L′ =LeftRefine(CJi,λ,κ);
3: suppose L′ = 〈CK0,λ,κ, CK1,λ,κ, . . . , CK`,λ,κ〉;
4: if (K0 = [t, t]) then
5: return 〈CK1,λ,κ, . . . , CK`,λ,κ, CJi+1,λ,κ, . . . , CJm,λ,κ〉;
6: /∗ i.e., throw away CJ1,λ,κ, . . . , CJi−1,λ,κ and CK0,λ,κ, ∗/
7: /∗ and return an interesting-partition covering [t+ 1, rI]. ∗/
8: else
9: return Trim(〈CK1,λ,κ, . . . , CK`,λ,κ, CJi+1,λ,κ, . . . , CJm,λ,κ〉, t).

10: /∗ throw away CJ1,λ,κ, . . . , CJi−1,λ,κ and CK0,λ,κ. ∗/
11: end if

Algorithms 2011, 3 215

For example, Figure 4 shows that when DYI,ε = 〈C[2,2],λ,κ, C[3,4],λ,κ, C[5,8],λ,κ〉, Trim(DYI,ε, 3) return
〈C[4,4],λ,κ, C[5,8],λ,κ〉. Based on Fact 3, it can be verified inductively that after DYI,ε ← Trim(DYI,ε, pmax),
the new DYI,ε is an interesting-partition covering [pmax + 1, rI]; Invariant (∗∗) is preserved. In the rest of
this section, we analyze the size of DYI,ε and the accuracy of its estimates.

Figure 4. Trim(〈C[2,2],λ,κ, C[3,4],λ,κ, C[5,8],λ,κ〉, 3).

[5,8][1,4]

[1,2] [3,4] [5,6] [7,8]

[2,2] [3,3] [4,4] [5,5] [8,8][7,7][6,6][1,1]

[1,8]

Before trimming

[5,8][1,4]

[1,2] [3,4] [5,6] [7,8]

[2,2] [3,3] [4,4] [5,5] [8,8][7,7][6,6][1,1]

[1,8]

After trimming

Let ALL be the set of all CJ,λ,κ’s that ever exist, i.e., if CJ,λ,κ ∈ ALL, then either (i) it is currently
in DYI,ε; or (ii) it has been in DYI,ε some time earlier in the execution, but is thrown away during some
trimming of DYI,ε. For any p ∈ I , define

ALL≥p =
{
CJ,λ,κ | CJ,λ,κ ∈ ALL, and J covers or is to the right of p

}
Let vadd(CJ,λ,κ) be the total value added to the nodes of CJ,λ,κ during its lifespan. We now derive an upper
bound on

∑
CJ,λ,κ∈ALL≥p

vadd(CJ,λ,κ), which is crucial for getting a tight error bound on the accuracy of
DYI,ε’s estimates.

Recall that initially DYI,ε = 〈CI,λ,κ〉 and thus CI,λ,κ ∈ ALL. For any other CJ,λ,κ ∈ ALL, CJ,λ,κ must
be a child of some CH,λ,κ ∈ ALL (i.e., CJ,λ,κ is obtained from Split(CH,λ,κ)). Given CJ,λ,κ and CH,λ,κ, we
say that CJ,λ,κ is a descendant of CH,λ,κ, and CH,λ,κ is an ancestor of CJ,λ,κ, if either (i) CJ,λ,κ is a child of
CH,λ,κ, or (ii) it is a child of some of CH,λ,κ’s descendants. Note that the original CI,λ,κ is an ancestor of
every CJ,λ,κ ∈ ALL, and in general, any CH,λ,κ ∈ ALL is an ancestor of every CJ,λ,κ ∈ ALL with J ⊂ H .
We have the following lemma. (Note that we are abusing the notation here and regard DYI,ε as a set.)

Lemma 5 Suppose that DYI,ε = 〈CJ1,λ,κ, . . . , CJm,λ,κ〉 is covering [p, rI]. Let anc(DYI,ε) =

anc(〈CJ1,λ,κ, . . . , CJm,λ,κ〉) be the set
{
CH,λ,κ | CH,λ,κ is an ancestor of some CJi,λ,κ ∈ DYI,ε

}
. Then,

(1) ALL≥p ⊆ DYI,ε ∪ anc(DYI,ε),

Algorithms 2011, 3 216

(2) vadd(CJ,λ,κ) ≤ (1 + ε)Y for any CJ,λ,κ ∈ ALL, and
(3) |DYI,ε ∪ anc(DYI,ε)| ≤ 2 logW .

Therefore,
∑
{vadd(CJ,λ,κ) | CJ,λ,κ ∈ ALL≥p} ≤ 2(1 + ε)Y logW .

Proof For (1), it suffices to prove that for any CJ,λ,κ ∈ ALL≥p, CJ,λ,κ ∈ DYI,ε ∪ anc(DYI,ε). By definition,
J covers or is to the right of p; thus J ∩ (J1 ∪ · · · ∪ Jm) = J ∩ [p, rI] 6= ∅. Since the intervals are
interesting and do not cross, there is an 1 ≤ i ≤ m such that either (i) J = Ji, and thus CJ,λ,κ ∈ DYI,ε,
or (ii) Ji ⊂ J , which implies CJ,λ,κ is an ancestor of CJi,λ,κ, i.e., CJ,λ,κ ∈ anc(DYI,ε). (It is not possible
that J ⊂ Ji; otherwise CJi,λ,κ would have been split and should not be in the current DYI,ε. Hence,
CJ,λ,κ ∈ DYI,ε ∪ anc(DYI,ε).

To prove (2), suppose that J = [x, y] and vadd(CJ,λ,κ) has just reached (1 + ε)Y . This implies
f∗([x, rI]) ≥ (1 + ε)Y , and so does its estimate f̂∗([x, rI]) given by BI,ε (as f∗([x, rI]) ≤ f̂∗([x, rI]),
by Equation (7)). Then, the procedure Trim() will be called and CJ,λ,κ will be either thrown away or
split, and no more value can be added to CJ,λ,κ. It follows that vadd(CJ,λ,κ) ≤ (1 + ε)Y .

For (3), recall that DYI,ε = 〈CJ1,λ,κ, CJ2,λ,κ, . . . CJm,λ,κ〉. Among the intervals J1, . . . , Jm, interval
J1 is the leftmost interval and its left boundary `J1 = p. We now prove that DYI,ε ∪ anc(DYI,ε) =

DYI,ε ∪ anc(CJ1,λ,κ) where anc(CJ1,λ,κ) is the set of ancestors of CJ1,λ,κ. Then, together with the facts that
|DYI,ε| ≤ logW (by Property (ii) of interesting-partition) and |anc(CJ1,λ,κ)| ≤ logW (as each Split
operation would reduce the size of interval by half), we have

|DYI,ε ∪ anc(DYI,ε)| = |DYI,ε ∪ anc(CJ1,λ,κ)| ≤ |DYI,ε|+ |anc(CJ1,λ,κ)| ≤ 2 logW

To show DYI,ε ∪ anc(DYI,ε) = DYI,ε ∪ anc(CJ1,λ,κ), it suffices to show that for any CH,λ,κ ∈ anc(DYI,ε),
CH,λ,κ ∈ anc(CJ1,λ,κ). Since CH,λ,κ ∈ anc(DYI,ε), it is the ancestor of some CJi,λ,κ ∈ DYI,ε. Thus
Ji = [`Ji , rJi] ⊂ H = [`H , rH]. Since CH,λ,κ is already an ancestor, it no longer exists, and all the
CJ,λ,κ to its left have been thrown away. Thus, DYI,ε has no CJ,λ,κ where J is to the right of `H . This
implies `H ≤ p = `J1 and `H ≤ `J1 ≤ rJ1 ≤ rJi ≤ rH . It follows that J1 ⊂ H and CH,λ,κ is an ancestor
of CJ1,λ,κ, i.e., CH,λ,κ ∈ anc(CJ1,λ,κ).

We are now ready to analyze the accuracy of DYI,ε’s estimates.

Theorem 6 Suppose that DYI,ε is covering [p, rI]. For any item a and any t ∈ [p, rI], the estimate
f̂a([t, rI]) of fa([t, rI]) obtained by DYI,ε satisfies |f̂a([t, rI])− fa([t, rI])| ≤ εY . Furthermore, DYI,ε uses
O(1

ε
(logW)2) space.

Proof Let alive(DYI,ε) be the set of nodes currently in DYI,ε, dead(DYI,ε) the set of those that were in DYI,ε
earlier in the execution but have been deleted, and node(DYI,ε) = alive(DYI,ε) ∪ dead(DYI,ε). It can be
verified that f̂a([t, rI]) = v(alive(DYI,ε)a≥t). Below, we prove that

fa([t, rI])− 2(1+ε)Y
κ

logW ≤ v(alive(DYI,ε)a≥t) ≤ fa([t, rI]) + λ logW (8)

Recall that we fix λ = εY/ logW and κ = 4
ε

logW ; the εY error bound follows.
The proof of the second inequality of Equation (8) is identical to that of Lemma 3, except that we

replace all occurrences of CI,λ,κ by DYI,ε. The proof of the first inequality is also similar. We still have

fa([t, rI])− v(alive(DYI,ε)a≥t) ≤ v(node(DYI,ε)a≥t)− v(alive(DYI,ε)a≥t) = v(dead(DYI,ε)a≥t)

Algorithms 2011, 3 217

which equals d(dead(DYI,ε)a≥t). As in Lemma 3, we can derive the bound d(dead(DYI,ε)a≥t) ≤
1
κ
v(node(DYI,ε)) = 1

κ
f∗(I), but we can do better here.

Observe that for any node N ∈ dead((DYI,ε)a≥t), N can only be in those CJ,λ,κ ∈ ALL≥p (because
t ∈ [p, rI]), and when we debit N , if it is in CJ,λ,κ, then we debit κ − 1 other nodes in CJ,λ,κ monitoring
κ − 1 items other than a. Thus, κ · d(dead((DYI,ε)a≥t)) is no more than the total value available in the
CJ,λ,κ ∈ ALL≥p, which is

∑
{vadd(CJ,λ,κ) | CJ,λ,κ ∈ ALL≥p}. Together with Lemma 5 we conclude

κ · d(dead(DYI,ε)a≥p) ≤
∑
{vadd(CJ,λ,κ) | CJ,λ,κ ∈ ALL≥p} ≤ 2(1 + ε)Y logW

and the first inequality of Equation (8) follows.
For the size ofDYI,ε, similar to the proof of Lemma 3, we can argue that the number of born-rich nodes

is only O(Y/λ) = O(1
ε

logW), but the number of born-poor nodes can be much larger. A born-poor
node of a non-trivial queue is created either when we increase the value of a trivial queue, or when
we execute Lines 2–6 of procedure Split. It can be verified that every queue Qa

I,λ has at most one
born-poor node, which is the rightmost node in Qa

I,λ. Since there are O(logW) CJ,λ,κ’s in DYI,ε and
each has at most κ non-trivial queues, the number of born-poor nodes, and hence the size of DYI,ε, is
O(κ logW) = O(1

ε
(logW)2).

To reduce DYI,ε’s size from O(1
ε
(logW)2) to O(1

ε
log logW logW), we need to reduce the number

of born-poor nodes; or equivalently, the number of non-trivial queues in DYI,ε. In the next section,
we give a simple idea to reduce the number of non-trivial queues and hence the size of DYI,ε to
O(1

ε
log logW logW). In Section 6, we show how to further reduce the size by taking advantage of

the tardiness of the data stream.

5. Reducing the Size of DYI,ε

Our idea for reducing the size is simple; for every CJ,λ,κ ∈ DYI,ε, its capacity is no longer fixed at
κ = 4

ε
logW ; instead, we start with a much smaller capacity, namely 4

ε
log logW , which is allowed to

increase gradually during execution. To determine CJ,λ,κ’s capacity, we use a variable to keep track of
the number f̄∗(J) of items (a, u) with u ∈ J that have arrived since CJ,λ,κ’s creation. Let vJ be the total
value of the nodes in CJ,λ,κ when it is created (vJ may not be zero if CJ,λ,κ is resulted from the splitting
of its parent). The capacity of CJ,λ,κ is determined as follows.

When (c−1)Y
logW

≤ vJ + f̄∗(J) < cY
logW

for some integer c ≥ 1, the capacity of CJ,λ,κ is
κ(c) = 4c

ε
log logW , i.e., set κ = κ(c) and allow κ(c) non-trivial queues in CJ,λ,κ.

Note that when we increase the capacity of CJ,λ,κ to κ(c), we do not need to do anything, except that we
allow more non-trivial queues (up to κ(c)) in the data structure. Also note that when CJ,λ,κ is created
during the trimming process, its inherited capacity may be larger than the supposed capacity κ(c); in
such case, we simply debit every non-trivial queue until some queue Qx

J,λ has v(Qx
J,λ) = d(Qx

J,λ) and we
execute Lines 4 and 5 of the procedure Process() to make this queue trivial. We repeat the process until
the number of non-trivial queues is at most κ(c). The following theorem asserts that DYI,ε maintains the
accuracy of its estimates under this new implementation. It gives the revised size and the update time.

Theorem 7

Algorithms 2011, 3 218

(1) Suppose that DYI,ε is currently covering [p, rI]. For any item a ∈ Σ and any timestamp t ∈ [p, rI],
the estimate f̂a([t, rI]) of fa([t, rI]) obtained by the newDYI,ε satisfies |f̂a([t, rI])−fa([t, rI])| ≤ εY .

(2) DYI,ε has size O(1
ε
(log logW) logW), and supports O(log 1

ε
+ log logW) update time.

Proof Suppose that DYI,ε = 〈CJ1,λ,κ(c1), . . . , CJm,λ,κ(cm)〉. From the fact that we are using CJi,λ,κ(ci) to
monitor Ji we conclude (ci−1)Y

logW
≤ vJi + f̄∗(Ji). It follows that

∑
1≤i≤m

ciY
logW

≤
∑

1≤i≤m(vJi + f̄∗(Ji)) +∑
1≤i≤m

Y
logW

, which is O(Y) because (i) |DYI,ε| = m = O(logW) and (ii)
∑

1≤i≤m(vJi + f̄∗(Ji)) =

O(Y) (otherwise DYI,ε would have been trimmed). Thus,∑
1≤i≤m ci = O(logW) (9)

For Statement (1), the analysis of the accuracy of f̂a([t, rI]) is very similar to that of Theorem 6, except
for the following difference: In the proof of Theorem 6, we show that d(dead(DYI,ε)a≥p) ≤

2(1+ε)Y
κ

logW ,
and since κ is fixed at 4

ε
logW , d(dead(DYI,ε)a≥p) ≤ εY . Here, we also prove that d(dead(DYI,ε)a≥p) ≤ εY ,

but we have to prove it differently because the capacities are no longer fixed.
As argued previously, any node in dead(DYI,ε)≥p is in some CJ,λ,κ ∈ ALL≥p. Below, we show that for

any CJ,λ,κ ∈ ALL≥p, we can make at most εY
2 logW

debit operations to the queue Qa
J,λ of CJ,λ,κ during its

lifespan. Together with the fact that |ALL≥p| ≤ 2 logW , we have d(dead(DYI,ε)a≥p) ≤ εY .
Consider any CJ,λ,κ ∈ ALL≥p. Note that the smaller its capacity, the larger the number of debit

operations can be made to the queue Qa
J,λ of CJ,λ,κ. To maximize the number of debit operations made

to Qa
J,λ, suppose that vJ = 0 and thus CJ,λ,κ has the smallest capacity κ(1) when it is created. Before

increasing its capacity to κ(2), CJ,λ,κ can make at most 1
κ(1)
· Y

logW
debit operations to Qa

J,λ. Then,
during the next Y

logW
arrivals of items (a, u) with u ∈ J , Y

logW
≤ vJ + f̄∗(J) < 2Y

logW
, the capacity is

κ(2), and at most 1
κ(2)
· Y

logW
debit operations can be made to Qa

J,λ. In general, during the period when
(c−1)Y
logW

≤ vJ + f̄∗(J) < cY
logW

, at most 1
κ(c)
· Y

logW
debit operations can be made to Qa

J,λ. If the largest
capacity is κ(cmax), the total number of debit operations made to Qa

J,λ is at most

Y
logW

(1
κ(1)

+ · · ·+ 1
κ(cmax)

) = εY
4(log logW) logW

(1 + 1
2

+ · · ·+ 1
cmax

) ≤ εY (ln(cmax)+1)
4(log logW) logW

which is smaller than εY
2 logW

because by Equation (9), cmax = O(logW), which implies
ln(cmax) + 1 ≤ 2 log logW (suppose that W is larger than some constant).

We now prove (2). Note that the total number of non-trivial queues in DYI,ε, and hence the number
of born-poor nodes, is at most

∑
1≤i≤m κ(ci) =

∑
1≤i≤m

4ci
ε

log logW . By Equation (9),
∑

1≤i≤m ci =

O(logW), and it follows that the size of DYI,ε is O(1
ε

log logW logW).
For the update time, suppose that an item (a, u) arrives. We can find the CJi,λ,κ in DYI,ε =

〈CJ1,λ,κ, . . . , CJm,λ,κ〉 with u ∈ Ji using O(logm) = O(log logW) time by querying a balanced search
tree storing the Ji’s. By hashing (e.g., Cuckoo hashing [15], which supports constant update and query
time) we can locate the queue Qa

Ji,λ
∈ CJi,λ,κ in constant time. Then, by consulting an auxiliary balanced

search tree on the intervals monitored by the nodes of Qa
Ji,λ

, we can find and update the node N of Qa
Ji,λ

with u ∈ i(N) using O(log(Y/λ)) = O(log 1
ε

+ log logW) time. At times we may also need to execute
Lines 3 and 4 of the procedure Process(), which debits all the non-trivial queues in CJi,λ,κ. Using the
de-amortizing technique given in [16], this step takes constant time.

Note that occasionally, we may also need to clean up DYI,ε by calling Trim(); this step takes time
linear to the size of DYI,ε, which is O(1

ε
log logW logW).

Algorithms 2011, 3 219

6. Further Reducing the Size of DYI,ε for Streams with Small Tardiness

Recall that in an out-of-order data stream with tardiness dmax ∈ [0,W], any item (a, u) arriving at
time τcur satisfies u ≥ τcur−dmax; in other words, the delay of any item is guaranteed to be at most dmax.
This section extends DYI,ε to a data structure EYI,ε that takes advantage of this maximum delay guarantee
to reduce the space usage. The idea is as follows. Since there is no new item with stamps smaller than
τcur − dmax, we will not make any further change to those nodes to the of left τcur − dmax and hence
can consolidate these nodes to reduce space substantially. To handle those nodes with timestamps in
[τcur − dmax, τcur], we use the data structure given in Section 5; since it is monitoring an interval of dmax

instead of W , its size is O(1
ε
(log log dmax) log dmax) instead of O(1

ε
(log logW) logW).

To implement EYI,ε, we need a new operation called consolidate. Consider any list of queues
〈Qa

J1,λ
, Qa

J2,λ
, . . . , Qa

Jm,λ
〉, where J1, J2, . . . , Jm are ordered from left to right and form a partition of

the interval J1..m = J1 ∪ · · · ∪ Jm. We consolidate them into a single queue Qa
J1..m,λ

as follows:

(1) Concatenate the queues into a single queue, in which the nodes preserve the left-right order.
(2) Starting from the leftmost node, check from left to right every node N in the queue, if N is not

the rightmost node and v(N) < λ, merge it with the node N ′ immediately to its right, i.e., delete
N , set v(N ′) = v(N) + v(N ′), d(N ′) = d(N) + d(N ′) and I(N ′) = I(N) ∪ I(N ′).

Note that after the consolidation, the resulting queue Qa
J1..m,λ

has at most one node (the rightmost one)
with value smaller than λ.

Given the list 〈CJ1,λ,κ(c1), . . . , CJm,λ,κ(cm)〉, we consolidate them into CJ1..m,λ,
1
ε

by first consolidating,
for each item a, the queues Qa

J1,λ
, . . . , Qa

Jm,λ
in CJ1,λ,κ(c1), . . . , CJm,λ,κ(cm) into the queue Qa

J1..m,λ
and put

it in CJ1..m,λ,
1
ε
. Then, we apply Lines 3–5 of procedure Process() repeatedly to reduce the number of

non-trivial queues in the data structure to 1
ε
.

We are now ready to describe how to extend DYI,ε to EYI,ε. In our discussion, we fix λ = εY
log dmax

, and
without loss of generality, we assume that I = [1,W]. Recall that pmax denotes the largest timestamp in I
such that f̂∗([pmax, rI]) > (1 + ε)Y (which implies f∗([pmax, rI]) > Y). We partition I into sub-windows
I1, I2, . . . , Im, each of size dmax (i.e., Ii = [(i − 1)dmax, idmax]). We divide the execution into different
periods according to τcur, the current time.

• During the 1st period, when τcur ∈ [1, dmax] = I1, EYI,ε simply is DYI1,ε.
• During the 2nd period, when τcur = I2, EYI,ε maintains DYI2,ε in addition to DYI1,ε.
• During the 3rd period, when τcur ∈ I3, EYI,ε maintains DYI3,ε in addition to DYI2,ε. Also, the
DYI1,ε = 〈CJ1,λ,κ(c1), . . . , CJm,λ,κ(cm)〉 is consolidated into CI1,λ, 1ε .
• In general, during the ith period, when τcur ∈ [(i− 1)dmax + 1, idmax] = Ii, EYI,ε maintains DYIi−1,ε

and DYIi,ε, and also CI1..i−2,λ,
1
ε

where I1..i−2 = I1 ∪ I2 ∪ · · · ∪ Ii−2. Observe that in this period, there
is no item (a, u) with u ∈ I1..i−2 arrives (because the tardiness is dmax), and thus we do not need
to update CI1..i−2,λ,

1
ε
. However, we will keep throwing away any node N in CI1..i−2,λ,

1
ε

as soon as
we know i(N) is to the left of pmax + 1.
• When entering the (i + 1)st period, we do the followings: Keep DYIi,ε, create DYIi+1,ε

, merge
CI1..i−2,λ,κ with DYIi−1,ε

= 〈CJ1,λ,κ(c1) . . . , CJm,λ,κ(cm)〉, and then get CI1..i−1,λ,
1
ε

by consolidating
〈CI1..i−2,λ,

1
ε
, CJ1,λ,κ(c1) . . . , CJm,λ,κ(cm)〉.

Algorithms 2011, 3 220

Given any t ∈ [pmax + 1, rI], the estimate of fa([t, rI]) given by EYI,ε is

f̂a([t, rI]) = v(alive(EYI,ε)a≥t)

The following theorem gives the accuracy of f̂a([t, rI]), EYI,ε’s size and its update time.

Theorem 8

1. For any t ∈ [pmax + 1, rI], the estimate f̂a([t, rI]) given by EYI,ε satisfies

fa([t, rI])− 2εY ≤ f̂a([t, rI]) ≤ fa([t, rI]) + 2εY

2. EYI,ε has size O(1
ε
(log log dmax) log dmax), and supports O(log 1

ε
+ log log dmax) update time.

Proof Recall that I is partitioned into sub-intervals I1, I2, . . . , Im. Suppose that t ∈ Ik. Note that if we
had not performed any consolidation,

v(alive(EYI,ε)a≥t) = v(alive(DYIk,ε)
a
≥t) +

∑
k+1≤i≤m v(alive(DYIi,ε)

a)

Note that for k + 1 ≤ i ≤ m, v(alive(DYIi,ε)
a) ≤ fa(Ii), and for v(alive(DYIk,ε)

a
≥t), since |Ik| = dmax,

the same argument used in the proof of Lemma 3 gives us v(alive(DYIk,ε)
a
≥t) ≤ fa([t, rIk]) + λ log dmax.

Hence

v(alive(EYI,ε)a≥t) = v(alive(DYIk,ε)
a
≥t) +

∑
k+1≤i≤m v(alive(DYIi,ε)

a)

≤ fa([t, rIk]) + λ log dmax +
∑

k+1≤i≤m fa(Ii) = fa([t, rI]) + λ log dmax (10)

The consolidation step may add errors to v(alive(EYI,ε)a≥t). To get a bound on them, let N1, N2, . . . be the
nodes for a in EYI,ε, ordered from left to right. Suppose that t ∈ Nh. Note that

• the consolidation step will added at most λ units to v(Nh) before we move on to consider the node
immediately to its right, and
• for node Ni with i ≥ h + 1, any node N that has been merged to Ni must be to the right of

of Nh, and thus is to the right of t; it follows that N is contributing v(N) to v(alive(EYI,ε)a≥t) in
Equation (10) and its merging will not make any change.

In conclusion, the consolidation steps introduce at most λ extra errors, and Equation (10) becomes
v(alive(EYI,ε)a≥t) ≤ fa([t, rI]) + λ logW + λ ≤ fa([t, rI]) + 2εY , which is the second inequality of
the lemma.

To prove the first inequality, suppose that we ask for the estimate f̂a([t, rI]) during the ith
period, when we have CI1..i−2,λ,

1
ε
, DYIi−1,ε

and DYIi,ε. Recall that CI1..i−2,λ,ε comes from consolidating
DYI1,ε,D

Y
I2,ε
, . . . ,DYIi−2,ε

. As in all our previous analyses, we have

fa([t, rI])− v(alive(EYI,ε)a≥t) ≤ v(node(EYI,ε)a≥t)− v(alive(EYI,ε)a≥t) = d(dead(EYI,ε)a≥t)

(Note that the merging of nodes during consolidations would not take away any value). To get a bound
on d(dead(EYI,ε)a≥t), suppose that pmax ∈ Ik. Then, all the nodes to the left of Ik have been thrown away.
Among DYIk,ε,D

Y
Ik+1,ε

, . . . ,DYIm,ε, only DYIk,ε may have been trimmed. Note that

Algorithms 2011, 3 221

• d(dead(EYI,ε)a≥t) ≤ d(dead(DYIk,ε)
a
≥pmax) +

∑
k+1≤`≤m d(dead(DYI`,ε)

a),
• as in the proof of Theorem 7, we can argue that d(dead(DYIk,ε)

a
≥pmax) ≤ εY , and

• for the other DYI`,ε, since their capacity is at least 1
ε∑

k+1≤`≤m d(dead(DYI`,ε)
a) ≤

∑
k+1≤`≤m f∗(I`)/(1/ε) ≤ εf∗([pmax + 1, rI]) ≤ εY

Thus, d(dead(EYI,ε)a≥t)) ≤ 2εY , and the first inequality follows.
For Statement (2), note that bothDYIi−1,ε

andDYIi,ε have sizeO(1
ε

log log dmax log dmax) (by Theorem 7,
and |Ii−1| = |Ii| = dmax), and for CJ1..i−2,λ,

1
ε
, it has sizeO(Y/λ+ 1

ε
) = O(1

ε
log dmax); thus the size of EYI,ε

is O(1
ε

log log dmax log dmax). For the update time, it suffices to note that it is dominated by the update
times of DYIi−1,ε

and DYIi,ε.

Acknowledgements

H.F. Ting is partially supported by the GRF Grant HKU-716307E; T.W. Lam is partially supported
by the GRF Grant HKU-713909E.

References

1. Cormode, G.; Korn, F.; Tirthapura, S. Time-Decaying Aggregates in Out-of-Order Streams. In
Proceedings of the 27th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS’08, Vancouver, Canada, 9–11 June 2008; pp. 89–98.

2. Karp, R.; Shenker, S.; Papadimitriou, C. A simple algorithm for finding frequent elements in streams
and bags. ACM Trans. Database Syst. 2003, 28, 51–55.

3. Demaine, E.; Lopez-Ortiz, A.; Munro, J. Frequency Estimation of Internet Packet Streams with
Limited Space. In Proceedings of the 10th Annual European Symposium, ESA’07, Rome, Italy,
17–21 September 2002; pp. 348–360.

4. Muthukrishnan, S. Data Streams: Algorithms and Applications; Now Publisher Inc.: Boston, MA,
USA, 2005.

5. Babcock, B.; Babu, S.; Datar, M.; Motwani, R.; Widom, J. Models and Issues in Data Stream
Systems. In Proceedings of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, PODS’02, Madison, WI, USA, 3–5 June 2002; pp. 1–16.

6. Arasu, A.; Manku, G. Approximate Counts and Quantiles over Sliding Windows. In Proceedings
of the 23th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS’04, Paris, France, 14–16 June 2004; pp. 286–296.

7. Lee, L.K.; Ting, H.F. A Simpler and More Efficient Deterministic Scheme for Finding Frequent
Items over Sliding Windows. In Proceedings of the PODS, June 26–28, 2006, Chicago, Illinois,
USA; pp. 290–297.

8. Lee, L.K.; Ting, H.F. Maintaining Significant Stream Statistics over Sliding Windows. In
Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’06, Miami,
FL, USA, 22–26 January 2006; pp. 724–732.

9. Datar, M.; Gionis, A.; Indyk, P.; Motwani, R. Maintaining stream statistics over sliding windows.
SIAM J. Comput. 2002, 31, 1794–1813.

Algorithms 2011, 3 222

10. Tirthapura, S.; Xu, B.; Busch, C. Sketching Asynchronous Streams over a Sliding Window. In
Proceedings of the 25th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, PODC’06, Denver, CO, USA, 23–26 July 2006; pp. 82–91.

11. Busch, C.; Tirthapua, S. A Deterministic Algorithm for Summarizing Asynchronous Streams over a
Sliding Window. In Proceedings of the 24th Annual Symposium on Theoretical Aspects of Computer
Science, STACS’07, Aachen, Germany, 22–24 February 2007; pp. 465–475.

12. Cormode, G.; Tirthapura, S.; Xu, B. Time-decaying sketches for robust aggregation of sensor data.
SIAM J. Comput. 2009, 39, 1309–1339.

13. Chan, H.L.; Lam, T.W.; Lee, L.K.; Ting, H.F. Approximating Frequent Items in Asynchronous
Data Stream over a Sliding Window. In Proceedings of the 7th Workshop on Approximation and
Online Algorithms, WAOA’09, Copenhagen, Denmark, 10–11 September 2009; pp. 49–61.

14. Misra, J.; Gries, D. Finding repeated elements. Sci. Comput. Program. 1982, 2, 143–152.
15. Arbitman, Y.; Naor, M.; Segev, G. De-amortized Cuckoo Hashing: Provable Worst-Case

Performance and Experimental Results. In Proceedings of the 36th International Colloquium,
ICALP’09, Rhodes, Greece, 5–12 July 2009; pp. 107–118.

16. Hung, R.S.; Lee, L.K.; Ting, H.F. Finding frequent items over sliding windows with constant update
time. Inf. Process. Lett. 2010, 110, 257–260.

c© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

	Introduction
	Asynchronous Data Stream
	Previous Work on Approximating Frequent Items
	Formal Definition of Approximate Frequent Item Set
	Our Contribution
	Technical Digest

	Preliminaries
	A Simple Data Structure For Frequency Estimation
	Our Data Structure for -Approximate Counting
	Reducing the Size of DI,Y
	Further Reducing the Size of DI,Y for Streams with Small Tardiness

