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Abstract:

 In an asynchronous data stream, the data items may be out of order with respect to their original timestamps. This paper studies the space complexity required by a data structure to maintain such a data stream so that it can approximate the set of frequent items over a sliding time window with sufficient accuracy. Prior to our work, the best solution is given by Cormode et al. [1], who gave an O(1∊logWlog(∊BlogW)min{logW,1∊}log|U|)-space data structure that can approximate the frequent items within an ∊ error bound, where W and B are parameters of the sliding window, and U is the set of all possible item names. We gave a more space-efficient data structure that only requires O(1∊logWlog(∊BlogW)loglogW) space.
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1. Introduction

Identifying frequent items in a massive data stream has many applications in data mining and network monitoring, and the problem has been studied extensively [2-5]. Recent interest has been shifted from the statistics of the whole data stream to that of a sliding window of recent data [6-9]. In most applications, the amount of data in a window is gigantic when compared with the amount of memory available in the processing units. It is impossible to store all the data and then find the exact frequent items. Existing research has focused on designing space-efficient data structures to support finding the approximate frequent items. The key concern is how to minimize the space so as to achieve a required level of accuracy.


1.1. Asynchronous Data Stream

Most of the previous work on data streams assume that items in a data stream are synchronous in the sense that the order of their arrivals is the same as the order of their creations. This synchronous model is however not suitable to applications that are distributed in nature. For example, in a sensor network, the sink collects data transmitted from sensors over a large area, and the data transmitted from different sensors would suffer different delay. It is possible that an item created at time t at a certain sensor may arrive at the sink later than an item created after t at another sensor. From the sink's viewpoint, items in the data stream are out of order with respect to their creation times. Yet the statistics to be computed are usually based on the creation times. More specifically, an asynchronous data stream (a.k.a. out-of-order data stream) [1,10,11] can be considered as a sequence (a1, t1), (a2, t2), (a3, t3), …, where ai is the name of a data item chosen from a fixed universe U, and ti is an integer timestamp recording the creation time of this item. Items arriving at the data stream are in arbitrary order regarding their timestamps, and it is possible that more than one data item has the same timestamp.



1.2. Previous Work on Approximating Frequent Items

Consider a data stream and, in particular, those data items whose timestamps fall into the last W time units (W is the size of the sliding window). An item (or precisely, an item name) is said to be a frequent item if its count (i.e., the number of occurrences) exceeds a certain required threshold of the total item count. Arasu and Manku [6] were the first to study approximating frequent items over a sliding window under the synchronous model, in which data items arrive in non-decreasing order of timestamps. The space complexity of their data structure is [image: there is no content], where ∊ is a user-specified error bound and B is the maximum number of items with timestamps falling into the same sliding window. Their work was later improved by Lee and Ting [7] to [image: there is no content] space. Recently, Cormode et al. [1] initiated the study of frequent items under the asynchronous model, and gave a solution with space complexity O(1∊logWlog(∊BlogW)min{logW,1∊}log|U|), where U is the set of possible item names. Later, Cormode et al. [12] gave a hashing-based randomized solution using [image: there is no content] space. The space complexity is quadratic in [image: there is no content], which is less preferred, but that is a general solution that can solve other problems like finding the sum and quantiles.

The earlier work on asynchronous data stream focused on a relatively simpler problem called ∊-approximate basic counting [10,11]. Cormode et al. [1] improved the space complexity of basic counting to. O(1∊logWlog(∊BlogW)) Notice that under the synchronous model, the best data structure requires [image: there is no content] space [9]. It is believed that there is roughly a gap of logW between the synchronous model to the asynchronous model. Yet, for frequent items, the asynchronous result of Cormode et al. [1] has space complexity way bigger than that of the best synchronous result, which is [image: there is no content] [7]. This motivates us to study more space-efficient solutions for approximating frequent items in the asynchronous model.



1.3. Formal Definition of Approximate Frequent Item Set

For any time interval I and any data item a, let fa(I) denote the frequency of item a in interval I, i.e., the number of arrived items named a with timestamps falling into I. Define f*(I) = Σa∈Ufa(I) to be the total number of all arrived items with timestamps within I.

Given a user-specified error bound ∊ and a window size W, we want to maintain a data structure to answer any ∊-approximate frequent item set query for any sub-window (specified at query time), which is in the form (ϕ, W′) where ϕ ∈ [∊, 1] is the required threshold and W′ ≤ W is the sub-window size. Suppose that τcur is the current time. The answer to such a query is a set S of item names satisfying the following two conditions:


	(C1) S contains every item a whose frequency in interval I = [τcur − W′ + 1, τcur] is at least ϕf*(I), i.e., fa(I) ≥ ϕf*(I).


	(C2) For any item a in S, its frequency in interval I is at least (ϕ − ∊)f*(I),i.e., fa(I) ≥ (ϕ − ∊)f*(I).




The set S is also called an ∊-approximate ϕ-frequent item set. For example, assume ∊ = 1%, then the query (10%, 10, 000) would return all items whose frequencies in the last 10, 000 time units are each at least 10% of the total item count, plus possibly some other items with frequency at least 9% of the total count.



1.4. Our Contribution

This paper gives a more space-efficient data structure for answering any ∊-approximate frequent item set query. Our data structure uses O(1∊logWlog(∊BlogW)loglogW) words, which is significantly smaller than the one given by Cormode et al. [1] (see Table 1). Furthermore, this space complexity is larger than the best synchronous solution by only a factor of O(logW log logW), which is close to the expected gap of O(logW). Similar to existing data structures for this problem, it takes time linear to the data structure's size to answer an ∊-approximate frequent item set query. Furthermore, it takes O(log(∊BlogW)(log1∊+loglogW)) time to modify the data structure for a new data item. Occasionally, we might need to clean up some old data items that are no longer significant to the approximation; in the worst case, this takes time linear to the size of the data structure, and thus is no bigger than the query time. As a remark, the solution of Cormode et al. [1] requires O(log(∊BlogW)logWloglog|U|) time for an update.


Table 1. The space complexity for answering ∊-approximate frequent item set query in a sliding time window. Results from this paper are marked with [†]. Note that we assume [image: there is no content]; otherwise, we can always store all items in the window for exact answer, using [image: there is no content] words. Similarly, for the result with tardiness, we assume [image: there is no content].



	
Space Complexity (words)






	
Synchronous [7]

	
[image: there is no content]




	
Asynchronous [1]

	
O(1∊logWlog(∊BlogW)min{logW,1∊}log|U|)




	
Asynchronous [†]

	
O(1∊logWlog(∊BlogW)loglogW)




	
Asynchronous with tardiness [†]

	
[image: there is no content]









In the asynchronous model, if a data item has a delay more than W time units, it can be discarded immediately when it arrives. In many applications, the delay is usually small. This motivates us to extend the asynchronous model to consider data items that have a bounded delay. We say that an asynchronous data stream has tardiness dmax if a data item created at time t must arrive at the stream no later than time t + dmax. If we set dmax = 0, the model becomes the synchronous model. If we allow dmax ≥ W, this is in essence the asynchronous model studied above. We adapt our data structure to take advantage of small tardiness such that when dmax is small, it uses smaller space (see Table 1) and support faster update time (which is [image: there is no content] In particular, when dmax = Θ(1), the size and update time of our data structure match those of the best data structure for synchronous data stream.


Remark

This paper is a corrected version of a paper with the same title in WAOA 2009 [13]; in particular, the error bound on the estimates was given incorrectly before and is fixed in this version.




1.5. Technical Digest

To solve the frequent item set problem, we need to estimate the frequency of any item with relative error ∊f*(I) where I = [τcur − W + 1, τcur] is the interval covered by the sliding window. To this end, we first propose a simple data structure for estimating the frequency of a fixed item over the sliding window. Then, we adapt a technique of Misra and Gries [14] to extend our data structure to handle any item. The result is an O(f*(I))/λ)-space data structure that allows us to obtain an estimate for any item with an error bound of about λ logW. Here λ is a design parameter. To ensure λ logW to be no greater than ∊f*(I), we should set λ ≤ ∊f*(I)/logW. Since f*(I) can be as small as [image: there is no content] (the case for smaller f*(I) can be handled by brute-force), we need to be conservative and set λ to some constant. But then the size of the data structure can be Θ(B) because f*(I) can be as large as B. To reduce space, we introduce a multi-resolution approach. Instead of using one single data structure, we maintain a collection of O(logB) copies of our data structure, each uses a distinct, carefully chosen parameter λ so that it could estimate the frequent item set with sufficient accuracy when f*(I) is in a particular range. The resulting data structure uses O(1∊logWlogB) space.

Unfortunately, a careful analysis of our data structure reveals that in the worst case, it can only guarantee estimates with an error bound of ∊f*(H ∪ I) where H = [τcur − 2W + 1, τcur − W], not the required ∊f*(I). The reason is that the error of its estimates over I depend on the number of updates made during I, and unlike synchronous data stream, this number for asynchronous data stream can be significantly larger than f*(I). For example, at time τcur − W + 1, there may still be many new items (a, u) with timestamps u ∈ H, for which we must update our data structure to get good estimates when the sliding window is at earlier positions. Indeed, the number of updates during I can be as large as f*(H ∪ I), and this gives an error bound of ∊f*(H ∪ I).

To reduce the error bound to ∊f*(I), we introduce a novel algorithm to split the data structure into independent smaller ones at appropriate times. For example, at time τcur − W + 1, we can split our data structure into two smaller ones DH and DI, and we will only update DH for items (a, u) with u ∈ H and update DI for those with u ∈ I. Then, when we need to find an estimate on I at time τcur, we only need to consult DI, and the number of updates made to it is f*(I). In this paper, we develop sophisticated procedures to decide when and how to split the data structure so as to enable us to get good enough estimates when sliding window moves continuously. The resulting data structure has size [image: there is no content] Then, we further make the data structure adaptive to the input size, allowing us to reduce the space to O(1∊(loglogW)logWlog(∊BlogW)).




2. Preliminaries

Our data structures for the frequent item set problem depends on data structures for the following two related data stream problems. Let 0 < ∊ < 1 be any real number, and τcur be the current time.


	The ∊-approximate basic counting problem asks for data structure that allows us to obtain, for any interval I = [τcur − W′ + 1, τcur] where W′ ≤ W, an estimate f̂*(I) of f*(I) such that |f̂*(I) − f*(I)| ≤ ∊f*(I).


	The ∊-approximate counting problem asks for data structure that allows us to obtain, for any item a and any interval I = [τcur − W′ + 1, τcur] where W′ ≤ W, an estimate f̂a(I) of fa(I) such that | f̂a(I) − fa(I)|≤ ∊f*(I).




As mentioned in Section 1, Cormode et al. [1] gave an O(1∊logWlog(∊BlogW))-space data structure  [image: Algorithms 04 00200i6]∊ for solving the ∊-approximate basic counting problem. In this paper, we give an O(1∊logWlog(∊BlogW)loglogW)-space data structure  [image: Algorithms 04 00200i2]∊ for solving the harder ∊-approximate counting problem. The theorem below shows how to use these two data structures to answer ∊-approximate frequent item set query.


Theorem 1

Let ∊0 = ∊/4. Given  [image: Algorithms 04 00200i6]∊o and  [image: Algorithms 04 00200i2]∊o, we can answer any ∊-approximate frequent item set query. The total space required is O(1∊logWlog(∊BlogW)loglogW).


Proof

The space requirement is obvious. Consider any ∊-approximate frequent item set query (ϕ, W′) where ∊ ≤ ϕ ≤ 1 and W′ ≤ W. Let I = [τcur − W′ + 1, τcur]. Since ∊o = ∊/4, the estimates given by  [image: Algorithms 04 00200i6]∊o satisfy [image: there is no content], and for any item a, the estimates given by  [image: Algorithms 04 00200i2]∊o satisfy [image: there is no content] To answer the query (ϕ, W′), we return the set



[image: there is no content]








which satisfies the required conditions (C1) and (C2) because

	for any item a with fa(I) ≥ ϕf*(I), [image: there is no content], and a ∈ Sϕ; thus (C1) is satisfied, and


	for every a ∈ Sϕ, we have [image: there is no content]; thus (C2) is satisfied.




The building block of  [image: Algorithms 04 00200i2]∊ is a data structure that counts items over some fixed interval (instead of the sliding window). For any interval I = [ℓI, rI] of size W, Theorem 4 in Section 4 gives a data structure  [image: Algorithms 04 00200i2]I,∊ that uses O(1∊logWlog(∊BlogW)loglogW) space, supports O(log(∊BlogW)⋅(log1∊+loglogW)) update time, and enables us to obtain, for any item a and any time t ∈ I, an estimate f̂a([t, rI]) of fa([t, rI]) such that



[image: there is no content]



(1)




Given  [image: Algorithms 04 00200i2]I1,∊,  [image: Algorithms 04 00200i2]I2,∊, … where Ii = [(i − 1)W + 1, iW], we can obtain, for any W′ ≤ W, an estimate f̂a([s, τcur]) of fa([s, τcur]) where s = τcur − W′ + 1 as follows.


	Let Ii and Ii+1 be the intervals such that [s, τcur] ⊂ Ii ∪ Ii+1.


	Use  [image: Algorithms 04 00200i2]Ii,∊ to get an estimate f̂a([s, iW]) of fa([s, iW]), and  [image: Algorithms 04 00200i2]Ii+1,∊ an estimate f̂a([iW + 1, (i + 1)W]) of fa([iW + 1, (i + 1)W]).


	Our estimate f̂a([s, τcur]) = f̂a([s, iW]) + f̂a([iW + 1, (iW + 1)W]).




By Equation (1), we have



[image: there is no content]



(2)




and


[image: there is no content]



(3)




Observe that any item that arrives at or before the current time τcur must have timestamp no greater than τcur; hence fa([iW + 1, (i + 1)W]) = fa([iW + 1, τcur]) and f*([iW + 1, (i + 1)W]) = f*([iW +1, τcur]), and Equation (3) is equivalent to



[image: there is no content]



(4)




Adding Equations (2) and (4), we conclude |f̂a([s, τcur]) − fa([s, τcur])| ≤ ∊f*([s, τcur]), as required.

Our data structure  [image: Algorithms 04 00200i2]∊ is just the collection of  [image: Algorithms 04 00200i2]I1,∊,  [image: Algorithms 04 00200i2]I2,∊, …. Note that we only need to physically store in  [image: Algorithms 04 00200i2]∊ the data structures  [image: Algorithms 04 00200i2]Ii,∊ and  [image: Algorithms 04 00200i2]Ii+1,∊ where [τcur − W + 1,τcur] ⊆ Ii ∪ Ii+1. The intervals of the earlier ones will no longer be covered by the sliding window and the corresponding  [image: Algorithms 04 00200i2]I,∊'s can be thrown away. Together with Theorem 4, we have the following theorem.




Theorem 2

The data structure  [image: Algorithms 04 00200i2]∊ solves the ∊-approximate counting problem. The space usage is O(1∊logWlog(∊BlogW)loglogW) and it supports O(log(∊BlogW)⋅(log1∊+loglogW)) update time.




3. A Simple Data Structure For Frequency Estimation

Let I = [ℓI, rI] be any interval of size W. To simplify notation, we assume that W is a power of 2, so that logW is an integer and we can avoid the floor or the ceiling functions. In this section, we describe a simple data structure  [image: Algorithms 04 00200i1]I,λ,κ that enables us to obtain, for any item a, a good estimate of a's frequency over I. The parameters λ and κ determine its accuracy and space usage. However, its accuracy is not enough for answering any ∊-approximate frequent item set query. We will explain how to improve the accuracy in the next section.

Roughly speaking,  [image: Algorithms 04 00200i1]I,λ,κ is a set of queues [image: there is no content] i.e., [image: there is no content]. For an item a, the queue [image: there is no content] keeps track of the occurrences of a in I. Each node N in [image: there is no content] is associated with an interval i(N), a value v(N), and a debit d(N); v(N) counts the number of arrived items (a, u) with u ∈ i(N), and d(N) is for implementing a space reduction technique. Initially, [image: there is no content] has only one node N with i(N) = I, and v(N) = d(N) = 0. In general, [image: there is no content] is a queue 〈N1, N2, …, Nk〉 of nodes whose intervals form a partition of I, i.e.,



[image: there is no content]








where qi−1 + 1 = pi ≤ qi and ∪1≤i≤k[pi, qi] = I. When an item (a, u) with u ∈ I arrives, we update [image: there is no content] as follows.



	






	
[image: there is no content].Debit( )




	






	
1:

	
find the unique node N in [image: there is no content] with u ∈ i(N) = J = [p, q],




	
2:

	
increase the value of N by 1, i.e., v(N) = v(N) + 1;




	
3:

	
if (|J| > 1 and λ units have been added to v(N) since J is assigned to i(N)) then




	
4:

	
 /* refine J */




	
5:

	
 create a new node N′ and insert it to the left of N;




	
6:

	
 let i(N′) = [p, m], i(N) = [m + 1, q] where m = ⌊(p + q)/2⌋;




	
7:

	
 let v(N′) = 0 and d(N′) = 0;




	
8:

	
 /* we make no change to v(N) and d(N) */




	
9:

	
end if




	








Figure 1 gives an example on how [image: there is no content] is updated using the procedure.

Figure 1. Suppose that λ = 4. (i) shows the queue [image: there is no content] before the arrivals of items (a, 1), (a, 2), (a, 3), (a, 8); (ii) is the resulting queue after the updates for these items; (iii) shows that after the arrival of another item (a, 1), the first node in (ii) is updated and refined.



[image: Algorithms 04 00200f1 1024]





Obviously, a direct implementation of  [image: Algorithms 04 00200i1]I,λ,κ uses too much space. We now extend a technique of Misra and Gries [14] to reduce the space requirement. For any [image: there is no content], we say that [image: there is no content] is trivial if the queue contains only a single node N with (i) i(N) = I, and (ii) v(N) = d(N) = 0. Every queue in  [image: Algorithms 04 00200i1]I,λ,κ is trivial initially. The key for reducing the space complexity of  [image: Algorithms 04 00200i1]I,λ,κ is to maintain the following invariant throughout the execution:


	(*) There are at most κ non-trivial queues in  [image: Algorithms 04 00200i1]I,λ,κ.




We call κ the capacity of  [image: Algorithms 04 00200i1]I,λ,κ. The invariant helps us save space because we do not need to store trivial queues physically in memory. To maintain (*), each queue [image: there is no content] supports the following procedure, which is called only when [image: there is no content], the total values of the nodes in [image: there is no content], is strictly greater than [image: there is no content], the total debits of the nodes in [image: there is no content].




	






	
[image: there is no content].Debit( )




	






	
1:

	
if ( [image: there is no content]) then




	
2:

	
 return error;




	
3:

	
else




	
4:

	
 find an arbitrary node N of [image: there is no content] with v(N) > d(N);




	
5:

	
 /* such a node must exist because [image: there is no content] */




	
6:

	
d(N) = d(N) + 1;




	
7:

	
end if




	








Note from the implementation of Debit( ) that [image: there is no content] is always no smaller than [image: there is no content], and for each node N of [image: there is no content]. Furthermore, if [image: there is no content], then v(N) = d(N) for every node N in [image: there is no content]. To maintain (*),  [image: Algorithms 04 00200i1]I,λ,κ processes a newly arrived item (a, u) with u ∈ I as follows.




	






	
 [image: Algorithms 04 00200i1]I,λ,κ.Process((a, u))




	






	
1:

	
update [image: there is no content] by calling .Update((a, u));




	
2:

	
if (after the update the number of non-trivial queues becomes κ) then




	
3:

	
 for each[image: there is no content] with do.Debit( );




	
4:

	
 for each non-trivial queues [image: there is no content] with do




	
5:

	
  delete all nodes of [image: there is no content] and make it a trivial queue;




	
6:

	
 /* Note that each deleted node N satisfies v(N) = d(N). */




	
7:

	
end if




	








It is easy to see that Invariant (*) always holds: Initially the number m of non-trivial queues is zero, and m increases only when Process((a, u)) is on some trivial [image: there is no content]; in such case [image: there is no content] becomes 1 and [image: there is no content] remains 0. If m becomes κ after this increase, we will debit, among other queues, [image: there is no content] and its [image: there is no content] becomes 1 too. It follows that [image: there is no content], and Lines 4–5 will make [image: there is no content] trivial and m becomes less than κ again.

We are now ready to define  [image: Algorithms 04 00200i1]I,λ,κ's estimate f̂a([t, rI]) of fa([t, rI]) and analyze its accuracy. We need some definitions. For any interval J = [p, q] and any t ∈ I, we say that J covers t if t ∈ [p, q], is to the right of t if t < p, and is to the left of t otherwise. For any item a and any t ∈ I = [ℓI, rI],  [image: Algorithms 04 00200i1]I,λ,κ's estimate of fa([t, rI]) is


	f̂a([t, rI]) = the value sum of the nodes N currently in [image: there is no content] whose i(N) covers or is to the right of t.




For example, in Figure 1, after the update of the last item (a, 1), we can obtain the estimate f̂a([2, 8]) = 0 + 4 + 5 = 9.

Given any node N of [image: there is no content], we say that N is monitoring a over J, or simply N is monitoring J if i(N) = J. Note that a node may monitor different intervals during different periods of execution, and the size of these intervals are monotonically decreasing. Observe that although there are about W2/2 possible sub-intervals of size-W interval I, there are only about 2W of them that would be monitored by some nodes: there is only one such interval of size W, namely I = [ℓI, rI], which gives birth to two such intervals of size W/2, namely [ℓI, m] and [m + 1, rI] where m = ⌊(ℓI + rI)/2⌋, and so on. We call these O(W) intervals interesting intervals. For any two interesting intervals J and H such that J ⊂ H, we say that J is a descendant of H, and H is an ancestor of J. Figure 2 shows all the interesting intervals for I = [1, 8], as well as their ancestor-descendant relationship. The following important fact is easy to verify by induction.

Figure 2. Interesting intervals for I = [1, 8].



[image: Algorithms 04 00200f2 1024]






Fact 1

Any two interesting intervals J and H do not cross, although one can contain another, i.e., either J ⊂ H, or H ⊂ J, or J ∩ H = ∅. Furthermore, any interesting interval has at most logW ancestors.

For any node N, let  [image: Algorithms 04 00200i4](N) be the set of intervals that have been monitored by N so far. The following fact can be verified from the update procedure.



Fact 2

Consider a node N in [image: there is no content], where i(N) = J.


	If J covers or is to the right of t, then all intervals in  [image: Algorithms 04 00200i4](N) cover or are to the right of t.


	If J is to the left of t, then all intervals in  [image: Algorithms 04 00200i4](N) are to the left of t.




We say that N covers or is to the right of t if the intervals in  [image: Algorithms 04 00200i4](N) cover or are to the right of t; otherwise, N is to the left of t. For any queue [image: there is no content], let alive [image: there is no content] be the set of nodes currently in [image: there is no content], dead [image: there is no content] be those nodes of [image: there is no content] that have already been deleted (because of Line 5 of the procedure Process( )), and node [image: there is no content]. Note that the estimate f̂a([t, ri]) is the value sum of the nodes in alive [image: there is no content] that cover or are to the right of t. For simplicity, we need to express it more succinctly. Let



[image: there is no content]








be the set of nodes currently in  [image: Algorithms 04 00200i1]I,λ,κ. Define dead(  [image: Algorithms 04 00200i1]I,λ,κ) and node(  [image: Algorithms 04 00200i1]I,λ,κ) similarly. For any item a and any subset X ⊆ node(  [image: Algorithms 04 00200i1]I,λ,κ), let Xa be the set of nodes in X that are monitoring a (and thus are the nodes from [image: there is no content]). For any t ∈ I, let X≥t denote the set of nodes in X that cover or are to the right of t. Define v(X) = ΣN∈Xv(N) and d(X) = ΣN∈Xd(N). Then, f̂a([t, rI]) can be expressed as follows:


[image: there is no content]








The following theorem analyzes its accuracy, as well as gives the size of  [image: Algorithms 04 00200i1]I,λ,κ.



Lemma 3

For any t ∈ I, fa([t, rI]) − [image: there is no content]f*(I) ≤ f̂a([t, rI]) ≤ fa([t, rI]) + λ logW. Furthermore,  [image: Algorithms 04 00200i1]I,λ,κ has size O(f*(I)/λ + κ) words.


Proof

Recall that [image: there is no content]. Consider any node N ∈ alive [image: there is no content]. Note that v(N) = ΣJ∈  [image: Algorithms 04 00200i5](N)vadd(N, J) where vadd(N, J) is the value added to v(N) during the period when i(N) = J. By Fact 2, we can divide it as v(N) = Σ{vadd(N, J) | J covers t} + Σ {vadd(N, J) | J is to the right of t}. It follows that



v(alive(QI,λa)≥t)=∑N∈alive(QI,λa)≥tv(N)=∑N∈alive(QI,λa)≥t∑{vadd(N,J)∣Jcoverst}+∑N∈alive(QI,λa)≥t∑{vadd(N,J)∣Jis to the right oft}



(5)




Note that ∑N∈alive(QI,λa)≥t∑{vadd(N,J)∣Jis to the right oft}≤fa([t,rI]), because if an arrived item (a, u) causes an increase of vadd(N, J) for some J that is to the right of t, then u must be in [t, rI]. By Equation (5), to show the second inequality of the lemma, it suffices to show that So=∑N∈alive(QI,λa)≥t∑{vadd(N,J)∣Jcoverst}=vadd(N1,J1)+vadd(N2,J2)+⋯+vadd(Nκ,Jκ) is no greater than λ logW, as follows.

Without loss of generality, suppose |J1| ≥ |J2| ≥ ⋯≥ |Jκ|. It can be verified that once an interval J is assigned to a node, it will not be assigned to other nodes; thus the Ji's are distinct. Furthermore, note that for 1 ≤ i < k, Jκ ⊂ Ji because (i) t is in both Ji and Jκ; (ii) Jκ is the smallest interval; and (iii) interesting intervals do not cross; thus Jκ is a descendant of Ji, and together with Fact 1, k ≤ logW. By Line 3 of the procedure Update( ), vadd(Ni, Ji) ≤ λ for 1 ≤ i ≤ k. It follows that So ≤ λ logW.

For the first inequality of the lemma, it is clearer to use [image: there is no content]. Note that every arrived item (a, u) with u ∈ [t, rI] increments the value of some node in node [image: there is no content]; thus [image: there is no content] and



[image: there is no content]








From Lines 4–6 of the procedure Process( ), when we delete a node N, v(N) = d(N). Hence, [image: there is no content], which is equal to the total number of debit operations made to these dead nodes. Since whenever we make a debit operation to [image: there is no content], we will make a debit operation to κ − 1 other queues,



[image: there is no content]



(6)




In summary, we have [image: there is no content], and the first inequality of the lemma follows.

For the space, we say that a node is born-rich if it is created because of Line 5 of the procedure Update( ) (and thus has λ items under its belt); otherwise it is born-poor. Obviously, there are at most f*(I)/λ born-rich nodes. For born-poor nodes, we need to store at most κ of them because every queue has one born-poor node (the rightmost one), and we only need to store at most κ non-trivial queues; the space bound follows.

If we set λ = λi = ∊2i/logW and [image: there is no content], then Lemma 3 asserts that [image: there is no content] is an [image: there is no content]-space data structure that enables us to obtain, for any item a ∈ U and any timestamp t ∈ I, an estimate f̂a([t, rI]) that satisfies



[image: there is no content]








If f*(I) does not vary too much, we can determine the i such that f* (I) ≈ 2i, and [image: there is no content] is an [image: there is no content] space data structure that guarantees an error bound of O(∊f*(I)). However, this approach has two obvious shortcomings:


	f*(I) may vary from some small value to a value as large as B, the maximum number of items falling in a window of size W; hence, there may not be any fixed i that always satisfies f* (I) ≈ 2i


	To estimate fa([t, rI]), we need an error bound of ∊f*([t, rI]), not ∊f*(I).




We will explain how to overcome these two shortcomings in the next section.





4. Our Data Structure for ∊-approximate Counting

The first shortcoming of the approach given in Section 3 is easy to overcome: a natural idea is to maintain [image: there is no content] for different λi to handle different possible values of f*(I). The second shortcoming is more fundamental. To overcome it, we need to modify  [image: Algorithms 04 00200i1]I,λ,κ substantially The result is a new and complicated data structure [image: there is no content], where Y is an integer determining the accuracy As asserted in Theorem 7 below, this data structure uses O(1∊logWloglogW) space, supports O(log1∊+loglogW) update time, and for any t ∈ I, it offers the following special guarantee:


	When [image: there is no content] can return, for any item a, an estimate f̂a([t, rI]) of fa([t, rI]) such that |f̂a([t, rI])−fa([t, rI])|≤∊Y.


	When [image: there is no content] does not have any error bound on its estimate f̂a([t, rI]).




Before giving the details of [image: there is no content], let us explain how to use it to build the data structure  [image: Algorithms 04 00200i2]I,∊ mentioned in Section 2 for the ∊-approximate counting problem. To build  [image: Algorithms 04 00200i2]I,∊, we need another O(1∊logWlog∊BlogW)-space data structure  [image: Algorithms 04 00200i6]I,∊, which is a simple adaption of the data structure  [image: Algorithms 04 00200i6]∊ of Cormode et al. [1] for the ∊-approximate basic counting problem;  [image: Algorithms 04 00200i6]I,∊ enables us to find, for any t ∈ I, an estimate f̂*([t, rI]) of f*([t, rI]) such that



[image: there is no content]



(7)




 [image: Algorithms 04 00200i6]I,∊ is implemented as follows. During execution, we maintain the data structure  [image: Algorithms 04 00200i6]∊/4 of Cormode et al. to count the items in the sliding window. When τcur = rI, we duplicate  [image: Algorithms 04 00200i6]∊/4 and get  [image: Algorithms 04 00200i6]′. Then,  [image: Algorithms 04 00200i6]′ is updated as if τcur was fixed at rI. To get the estimate f̂*([t, rI]), we first obtain an estimate f′ of f*([t, rI]) from  [image: Algorithms 04 00200i6]′, which satisfies [image: there is no content]. Then, [image: there is no content]. It can be verified that f̂*([t, rI]) satisfies Equation (7). Our data structure  [image: Algorithms 04 00200i2]I,∊ is composed of (i)  [image: Algorithms 04 00200i6]I,∊, and (ii) [image: there is no content] for each integer i from log(1∊logW)+1tologB. It also maintains a brute-force [image: there is no content]-space data structure for remembering the [image: there is no content] items (a, u) with the largest u ∈ I; this brute-force data structure will be used for finding f̂a([t, rI]) only when [image: there is no content].


Theorem 4


	The data structure  [image: Algorithms 04 00200i2]I,∊ has size O(1∊(loglogW)(logW)log(∊BlogW)) words, and supports O((log1∊+loglogW)log(∊BlogW)) update time.


	Given  [image: Algorithms 04 00200i2]I,∊, we can find, for any a ∈ Σ and t ∈ I, an estimate of f̂a([t, rI]) of fa([t, rI]) such that |f̂a([t, rI]) − fa([t, rI])| ≤ ∊f*([t, rI]).





Proof

Statement (i) is straightforward because there are [image: there is no content] different [image: there is no content], each has size O(1∊(loglogW)logW) and takes O(log1∊+loglogW) time for an update. For Statement (ii), we describe how to get the estimate and analyze its accuracy.

First, we use  [image: Algorithms 04 00200i6]I,∊ to get the estimate f̂*([t, rI]). If [image: there is no content], then [image: there is no content] and we can use the brute-force data structure to find fa([t, rI]) exactly. Otherwise, we determine the i with 2i−1 < f̂*([t, rI]) ≤ 2i. Note that


	[image: there is no content] and we have the data structure [image: there is no content], and


	f*([t, rI]) ≤ f̂*([t, rI]) ≤ 2i.




We use [image: there is no content] to obtain an estimate f̂a([t, rI]) with [image: there is no content]. By Equation (7), 2i−1 < f̂*([t, rI]) ≤ (1 + ∊)f*([t, rI]). Combining the two inequalities we have



[image: there is no content]








We now describe the construction of [image: there is no content]. First, we describe an [image: there is no content]-space version of the data structure. Then, we show in the next section how to reduce the space to O(1∊loglogWlogW). In our discussion, we fix λ = ∊Y/logW and [image: there is no content].

Initially, [image: there is no content] is just the data structure  [image: Algorithms 04 00200i1]I,λ,κ. By Lemma 3, we know that its size is [image: there is no content], which is [image: there is no content] when f*(I) ≤ Y. However, it is much larger than [image: there is no content] when f*(I) ≫ Y, and to maintain small space usage in such case, we trim  [image: Algorithms 04 00200i1]I,λ,κ by throwing away a significant number of nodes. This is acceptable because  [image: Algorithms 04 00200i1]I,λ,κ only guarantees good estimates for those t ∈ I with f*([t, rI]) ≤ Y. The trimming process is rather tricky. The natural idea of throwing away all the nodes to the left of t when we find f*([t, rI]) > Y does not work because the resulting data structure may return estimates with error larger than the required ∊Y bound. For example, let I = [1, W]. For each item ai ∈ {a1, a2, …, aκ−1}, there are m = Y/κ copies of (ai, t + 1) arrive at time W + t for every t ∈ [0, W − 1]. Also, there are m copies of (a, W) arrive at time W + t for every t ∈ [0, W − 1]. Hence, at each time W + t, there are mκ = Y items with timestamps in [t, W] arrives, m items for each of the κ item name in {a, a1, …, aκ−1}. We are interested in the accuracy of the estimate f̂a([W, W]). It can be verified that at each time W + t, Lines 4–5 of the procedure Process( ) will eventually trivialize [image: there is no content] and thus f̂a([W, W]) = 0. Since fa([W, W]) = (t + 1)m, |f̂a([W, W]) − fa([W, W])| = (t + 1)m. When t = 2∊Y/m − 1, the absolute error is 2∊Y which is larger than the required error bound ∊Y.

To describe the right trimming procedure, we need some basic operations. Consider any  [image: Algorithms 04 00200i1]J,λ,κ where J = [p, q]. The following operation splits  [image: Algorithms 04 00200i1]J,λ,κ into two smaller data structures  [image: Algorithms 04 00200i1]Jℓ,λ,κ and  [image: Algorithms 04 00200i1]Jr,λ,κ where Jt = [p, m] and Jr = [m+ 1, q] with m = ⌊(p + q)/2⌋.




	






	
[image: there is no content].Split(  [image: Algorithms 04 00200i1]J,λ,κ)




	






	
1:

	
for each non-trivial queue [image: there is no content]do




	
2:

	
 if ( [image: there is no content] has only one node N monitoring the whole interval J) then




	
3:

	
  /* refine J */




	
4:

	
  insert a new node N′ immediately to the left of N with v(N′) = d(N′) = 0;




	
5:

	
  i(N′) = Jℓ, and i(N) = Jr;




	
6:

	
 end if




	
7:

	
 divide [image: there is no content] into two sub-queues and where




	
8:

	
   [image: there is no content] contains the nodes monitoring some sub-intervals of Jℓ, and




	
9:

	
   [image: there is no content] contains those monitoring some sub-intervals of Jr;




	
10:

	
 put [image: there is no content] in  [image: Algorithms 04 00200i1]Jℓ,λ,κ and in  [image: Algorithms 04 00200i1]Jr,λ,κ.




	
11:

	
end for




	
12:

	
/* For a trivial [image: there is no content], its two children in  [image: Algorithms 04 00200i1]Jℓ,λ,κ and  [image: Algorithms 04 00200i1]Jr,λ,κ are also trivial. */




	








We say that  [image: Algorithms 04 00200i1]Jℓ,λ,κ and  [image: Algorithms 04 00200i1]Jr,λ,κ are the left and right child of  [image: Algorithms 04 00200i1]Jr,λ,κ, respectively. Figure 3 gives an example of Split(  [image: Algorithms 04 00200i1][1,8],λ,κ), the split of  [image: Algorithms 04 00200i1][1,8],λ,κ, which has three non-trivial queues [image: there is no content], [image: there is no content] and [image: there is no content], into  [image: Algorithms 04 00200i1][1, 4],λ,κ and  [image: Algorithms 04 00200i1][5, 8],λ,κ. Note that the queues for b and c in  [image: Algorithms 04 00200i1][1, 4],λ,κ are trivial and we have not stored them.

Figure 3. Split of  [image: Algorithms 04 00200i1][1, 8], λ,κ.
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Using Split( ), we can trim, for example,  [image: Algorithms 04 00200i1][p,p+1],λ,κ into  [image: Algorithms 04 00200i1][p+1,p+1],λ,κ as follows: Split  [image: Algorithms 04 00200i1][p,p+1],λ,κ into  [image: Algorithms 04 00200i1][p,p],λ,κ and  [image: Algorithms 04 00200i1][p+1,p+1],λ,κ, and throw away  [image: Algorithms 04 00200i1][p, p],λ,κ. The following recursive procedure LeftRefine( ) generalizes this idea for larger J: Given  [image: Algorithms 04 00200i1]J,λ,κ =  [image: Algorithms 04 00200i1][p, q],λ,κ, it returns a list 〈  [image: Algorithms 04 00200i1]J0,λ,κ,  [image: Algorithms 04 00200i1]J1,λ,κ, …,  [image: Algorithms 04 00200i1]Jm,λ,κ〉 where the Ji's form a partition of [p, q], and J0 = [p, p]. Throwing away  [image: Algorithms 04 00200i1]J0,λ,κ, and the remaining  [image: Algorithms 04 00200i1]Ji,λ,κ's all together monitor [p + 1, q].




	






	
[image: there is no content].LeftRefine (  [image: Algorithms 04 00200i1][p,q],λ,κ)




	






	
1:

	
if (|[p, q]| = |[p, p]| = 1) then




	
2:

	
 return 〈  [image: Algorithms 04 00200i1][p,p],λ,κ〉;




	
3:

	
else




	
4:

	
 split  [image: Algorithms 04 00200i1][p,q],λ,κ into its left child  [image: Algorithms 04 00200i1][p, m],λ,κ and right child  [image: Algorithms 04 00200i1][m+1,q],λ,κ




	
5:

	
 /* where m = ⌊(p + q)/2⌋ */;




	
6:

	
 L = LeftRefine(  [image: Algorithms 04 00200i1][p, m],λ,κ);




	
7:

	
 suppose L = 〈  [image: Algorithms 04 00200i1]J0,λ,κ,  [image: Algorithms 04 00200i1]J1,λ,κ, …,  [image: Algorithms 04 00200i1]Jk,λ,κ〉;




	
8:

	
 return 〈  [image: Algorithms 04 00200i1]J0,λ,κ, …,  [image: Algorithms 04 00200i1]Jk,λ,κ  [image: Algorithms 04 00200i1][m+1,q],λ,κ〉;




	
9:

	
end if




	








For example, LeftRefine(  [image: Algorithms 04 00200i1][1,8],λ,κ) gives us the list 〈  [image: Algorithms 04 00200i1][1,1],λ,κ,  [image: Algorithms 04 00200i1][2, 2],λ,κ,  [image: Algorithms 04 00200i1][3, 4],λ,κ,  [image: Algorithms 04 00200i1][5,8],λ,κ〉. Note that J0 = [p, p] because the recursion stops only when |[p, q]| = 1. The list returned by LeftRefine(  [image: Algorithms 04 00200i1][p, q],λ,κ) has another useful property, which we describe below.

Given L = 〈  [image: Algorithms 04 00200i1]Z1,λ,κ, …,  [image: Algorithms 04 00200i1]Zk,λ,κ), we say that L is an interesting-partition covering the interval J if (i) the Zi's are all interesting intervals and form a partition of J; and (ii) for 1 ≤ i < k, Zi is to the left of Zi+1, and [image: there is no content]. The fact below can be verified by induction on the length of the list returned by LeftRefine( ).




Fact 3

Let J be an interesting interval, and L = 〈  [image: Algorithms 04 00200i1]J0,λ,κ, …,  [image: Algorithms 04 00200i1]Jm,λ,κ〉 be the list returned by LeftRefine(  [image: Algorithms 04 00200i1]J,λ,κ). Then, the list 〈  [image: Algorithms 04 00200i1]J1,λ,κ, …,  [image: Algorithms 04 00200i1]Jm,λ,κ 〉 (i.e., the list obtained by throwing away the head  [image: Algorithms 04 00200i1]J0,λ,κ of L) is an interesting-partition covering [p + 1, q].

For example, if [1, 8] is an interesting interval, then the list 〈  [image: Algorithms 04 00200i1][2,2],λ,κ [image: Algorithms 04 00200i1][3,4],λ,κ [image: Algorithms 04 00200i1][5,8],λ,κ〉 obtained by throwing away the first element  [image: Algorithms 04 00200i1][1,1],λ,κ from LeftRefine(  [image: Algorithms 04 00200i1][1,8],λ,κ) is an interesting-partition covering [2, 8].

We now give details of [image: there is no content]. Initially, it is the interesting-partition 〈CI,λ,κ 〉 covering the whole interval I = [ℓI, rI]. Throughout the execution, we maintain the following invariant:


	(**) [image: there is no content] is an interesting-partition covering some [p, rI] ⊆ I.




When [image: there is no content] is covering [p, rI], it only guarantees good estimates of fa([t, rI]) for t ∈ [p, rI], and this estimate is obtained by



[image: there is no content]








(or equivalently, [image: there is no content], where Jh is the interval in {J1, J2, …, Jm} that covers t. When an item (a, u) with u ∈ [p, rI] arrives, we find the unique  [image: Algorithms 04 00200i1]Ji,λ,κ in [image: there is no content] where u ∈ Ji, update it by calling  [image: Algorithms 04 00200i1]Ji,λ,κ. Process((a, u)). Note that this update has no effect on the other  [image: Algorithms 04 00200i1]J,λ,κ in [image: there is no content].
During execution, we also keep track of the largest timestamp pmax ∈ I such that the estimate f̂*(pmax,rI]) given by  [image: Algorithms 04 00200i6]I,∊ is greater than (1 + ∊)Y (which implies f*([pmax,rI]) > Y because of Equation (7)). As soon as pmax falls in the interval covered by [image: there is no content], we use the following procedure to trim [image: there is no content] to cover the smaller interval [pmax + 1, rI].

Suppose that L = 〈  [image: Algorithms 04 00200i1]J1,λ,κ, …,  [image: Algorithms 04 00200i1]Ji,λ,κ) is an interesting-partition covering [p, rI], and t ∈ [p, rI]. Trim(L, t) constructs an interesting-partition covering [t + 1, rI] recursively as follows.




	






	
[image: there is no content].Trim(L, t)




	






	
1:

	
find the unique  [image: Algorithms 04 00200i1]Ji,λ,κ in L such that t ∈ Ji;




	
2:

	
L′ =LeftRefine(  [image: Algorithms 04 00200i1]Ji,λ,κ);




	
3:

	
suppose L′ = 〈  [image: Algorithms 04 00200i1]K0,λ,κ, …,  [image: Algorithms 04 00200i1]K1,λ,κ,  [image: Algorithms 04 00200i1]Kℓ,λ,κ〉;




	
4:

	
if (K0 = [t, t]) then




	
5:

	
 return 〈  [image: Algorithms 04 00200i1]K1,λ,κ, …,  [image: Algorithms 04 00200i1]Kℓ,λ,κ,  [image: Algorithms 04 00200i1]Ji+1,λ,κ,  [image: Algorithms 04 00200i1]Jm,λ,κ 〉;




	
6:

	
 /* i.e., throw away  [image: Algorithms 04 00200i1]J1,λ,κ, …,  [image: Algorithms 04 00200i1]Ji−1,λ,κ, and  [image: Algorithms 04 00200i1]K0,λ,κ, */




	
7:

	
 /* and return an interesting-partition covering [t + 1, rI]. */




	
8:

	
else




	
9:

	
 return Trim(〈  [image: Algorithms 04 00200i1]K1,λ,κ, …,  [image: Algorithms 04 00200i1]Kℓ,λ,κ,  [image: Algorithms 04 00200i1]Ji+1,λ,κ,  [image: Algorithms 04 00200i1]Jm,λ,κ 〉, t).




	
10:

	
 /* throw away  [image: Algorithms 04 00200i1]J1,λ,κ, …,  [image: Algorithms 04 00200i1]Ji−1,λ,κ and  [image: Algorithms 04 00200i1]K0,λ,κ */




	
11:

	
end if




	








For example, Figure 4 shows that when [image: there is no content], [image: there is no content] return 〈  [image: Algorithms 04 00200i1][4,4],λ,κ,  [image: Algorithms 04 00200i1][5,8],λ,κ 〉. Based on Fact 3, it can be verified inductively that after [image: there is no content], the new [image: there is no content] is an interesting-partition covering [pmax + 1, rI]; Invariant (**) is preserved. In the rest of this section, we analyze the size of [image: there is no content] and the accuracy of its estimates.

Figure 4. Trim(〈  [image: Algorithms 04 00200i1][2, 2],λ,κ,  [image: Algorithms 04 00200i1][3, 4],λ,κ,  [image: Algorithms 04 00200i1][5, 8],λ,κ〉, 3).
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Let All be the set of all  [image: Algorithms 04 00200i1]J,λ,κ's that ever exist, i.e., if  [image: Algorithms 04 00200i1]J,λ,κ ∈ All, then either (i) it is currently in [image: there is no content], or (ii) it has been in [image: there is no content] some time earlier in the execution, but is thrown away during some trimming of [image: there is no content]. For any p ∈ I, define



ALL≥p={CJ,λ,κ∣CJ,λ,κ∈ALL,andJcovers or is to the right ofp}








Let vadd(  [image: Algorithms 04 00200i1]J,λ,κ) be the total value added to the nodes of  [image: Algorithms 04 00200i1]J,λ,κ during its lifespan. We now derive an upper bound on Σ [image: Algorithms 04 00200i3]J,λ,κ ∈ All≥pvadd(  [image: Algorithms 04 00200i1]J,λ,κ), which is crucial for getting a tight error bound on the accuracy of [image: there is no content]'s estimates.

Recall that initially [image: there is no content] and thus  [image: Algorithms 04 00200i1]I,λ,κ ∈ All. For any other  [image: Algorithms 04 00200i1]J,λ,κ ∈ All,  [image: Algorithms 04 00200i1]J,λ,κ must be a child of some  [image: Algorithms 04 00200i1]H,λ,κ ∈ All (i.e.,  [image: Algorithms 04 00200i1]J,λ,κ is obtained from Split(  [image: Algorithms 04 00200i1]H,λ,κ))- Given  [image: Algorithms 04 00200i1]J,λ,κ and  [image: Algorithms 04 00200i1]H,λ,κ, we say that  [image: Algorithms 04 00200i1]J,λ,κ is a descendant of  [image: Algorithms 04 00200i1]H,λ,κ, and  [image: Algorithms 04 00200i1]H,λ,κ is an ancestor of  [image: Algorithms 04 00200i1]J,λ,κ, if either (i)  [image: Algorithms 04 00200i1]J,λ,κ is a child of  [image: Algorithms 04 00200i1]H,λ,κ, or (ii) it is a child of some of  [image: Algorithms 04 00200i1]H,λ,κ's descendants. Note that the original  [image: Algorithms 04 00200i1]I,λ,κ is an ancestor of every  [image: Algorithms 04 00200i1]J,λ,κ ∈ All, and in general, any  [image: Algorithms 04 00200i1]H,λ,κ ∈ All is an ancestor of every  [image: Algorithms 04 00200i1]J,λ,κ ∈ All with J ⊂ H. We have the following lemma. (Note that we are abusing the notation here and regard [image: there is no content] as a set.)



Lemma 5

Suppose that [image: there is no content] is covering [p, rI]. Let [image: there is no content] be the set {CH,λ,κ∣CH,λ,κis an ancestor of someCJi,λ,κ∈DI,∊Y}. Then,


	[image: there is no content],


	vadd(  [image: Algorithms 04 00200i1]J,λ,κ) ≤ (1 + ∊)Y for any  [image: Algorithms 04 00200i1]J,λ,κ ∈ All, and


	[image: there is no content].




Therefore, Σ{vadd(  [image: Algorithms 04 00200i1]J,λ,κ) |  [image: Algorithms 04 00200i1]J,λ,κ ∈ All≥p} ≤ 2(1 + ∊)Y logW.


Proof

For (1), it suffices to prove that for any [image: there is no content]. By definition, J covers or is to the right of p; thus J ∩ (J1 ∪ ⋯ ∪ Jm) = J ∩ [p, rI] ≠ ∅. Since the intervals are interesting and do not cross, there is an 1 ≤ i ≤ m such that either (i) J = Ji, and thus [image: there is no content], or (ii) Ji ⊂ J, which implies  [image: Algorithms 04 00200i1]J,λ,κ is an ancestor of  [image: Algorithms 04 00200i1]J,λ,κ, i.e., [image: there is no content]. (It is not possible that J ⊂ Ji, otherwise  [image: Algorithms 04 00200i1]Ji,λ,κ would have been split and should not be in the current [image: there is no content]. Hence, [image: there is no content].

To prove (2), suppose that J = [x, y] and vadd(  [image: Algorithms 04 00200i1]J,λ,κ) has just reached (1 + ∊)Y. This implies f*([x, rI]) ≥ (1 + ∊)Y, and so does its estimate f̂*([x, rI]) given by  [image: Algorithms 04 00200i6]I,∊ (as f*([x, rI]) ≤ f̂*([x, rI]), by Equation (7)). Then, the procedure Trim( ) will be called and  [image: Algorithms 04 00200i1]J,λ,κ will be either thrown away or split, and no more value can be added to  [image: Algorithms 04 00200i1]J,λ,κ. It follows that vadd(  [image: Algorithms 04 00200i1]J,λ,κ) ≤ (1 + ∊)Y.

For (3), recall that [image: there is no content]. Among the intervals J1, …, Jm, interval J1 is the leftmost interval and its left boundary ℓJ1 = p. We now prove that [image: there is no content] where anc(  [image: Algorithms 04 00200i1]J1,λ,κ) is the set of ancestors of  [image: Algorithms 04 00200i1]J1,λ,κ. Then, together with the facts that [image: there is no content] (by Property (ii) of interesting-partition) and |anc(  [image: Algorithms 04 00200i1]J1,λ,κ)| ≤ logW (as each Split operation would reduce the size of interval by half), we have



[image: there is no content]








To show [image: there is no content], it suffices to show that for any [image: there is no content],  [image: Algorithms 04 00200i1]H,λ,κ ∈ anc(  [image: Algorithms 04 00200i1]J1,λ,κ). Since [image: there is no content], it is the ancestor of some [image: there is no content]. Thus Ji = [ℓji, rji] ⊂ H = [ℓH, rH]. Since  [image: Algorithms 04 00200i1]H,λ,κ is already an ancestor, it no longer exists, and all the  [image: Algorithms 04 00200i1]J,λ,κ to its left have been thrown away. Thus, [image: there is no content] has no  [image: Algorithms 04 00200i1]J,λ,κ where J is to the right of ℓH. This implies ℓH ≤ p = ℓJ1 and ℓH ≤ ℓJ1 ≤ rJ1 ≤ rJi ≤ rH. It follows that J1 ⊂ H and  [image: Algorithms 04 00200i1]H,λ,κ is an ancestor of  [image: Algorithms 04 00200i1]J1,λ,κ, i.e.,  [image: Algorithms 04 00200i1]H,λ,κ ∈ anc(  [image: Algorithms 04 00200i1]J1,λ,κ).

We are now ready to analyze the accuracy of [image: there is no content]'s estimates.




Theorem 6

Suppose that [image: there is no content] is covering [p, rI]. For any item a and any t ∈ [p, rI], the estimate f̂a([t, rI]) of fa([t, rI]) obtained by [image: there is no content] satisfies |f̂a([t, rI]) − fa([t, rI])| ≤ ∊Y. Furthermore, [image: there is no content] uses [image: there is no content] space.


Proof

Let alive [image: there is no content] be the set of nodes currently in [image: there is no content] the set of those that were in [image: there is no content] earlier in the execution but have been deleted, and [image: there is no content]. It can be verified that [image: there is no content]. Below, we prove that



[image: there is no content]



(8)




Recall that we fix λ = ∊Y/logW and [image: there is no content]; the ∊Y error bound follows.

The proof of the second inequality of Equation (8) is identical to that of Lemma 3, except that we replace all occurrences of  [image: Algorithms 04 00200i1]J,λ,κ by [image: there is no content]. The proof of the first inequality is also similar. We still have



[image: there is no content]








which equals [image: there is no content]. As in Lemma 3, we can derive the bound [image: there is no content], but we can do better here.
Observe that for any node [image: there is no content], N can only be in those  [image: Algorithms 04 00200i1]J,λ,κ ∈ All≥p (because t ∈ [p, rI]), and when we debit N, if it is in  [image: Algorithms 04 00200i1]J,λ,κ, then we debit κ − 1 other nodes in  [image: Algorithms 04 00200i1]J,λ,κ monitoring κ − 1 items other than a. Thus, [image: there is no content] is no more than the total value available in the  [image: Algorithms 04 00200i1]J,λ,κ ∈ All≥p, which is Σ {vadd(  [image: Algorithms 04 00200i1]J,λ,κ) |  [image: Algorithms 04 00200i1]J,λ,κ ∈ All≥p}. Together with Lemma 5 we conclude



κ⋅d(dead(DI,∊Y)≥pa)≤∑{vadd(CJ,λ,κ)|CJ,λ,κ∈ALL≥p}≤2(1+∊)YlogW








and the first inequality of Equation (8) follows.
For the size of [image: there is no content], similar to the proof of Lemma 3, we can argue that the number of born-rich nodes is only [image: there is no content], but the number of born-poor nodes can be much larger. A born-poor node of a non-trivial queue is created either when we increase the value of a trivial queue, or when we execute Lines 2-6 of procedure Split. It can be verified that every queue [image: there is no content] has at most one born-poor node, which is the rightmost node in [image: there is no content]. Since there are O(logW)  [image: Algorithms 04 00200i1]J,λ,κ's in [image: there is no content] and each has at most κ non-trivial queues, the number of born-poor nodes, and hence the size of [image: there is no content], is [image: there is no content].

To reduce [image: there is no content]'s size from [image: there is no content] to O(1∊loglogWlogW), we need to reduce the number of born-poor nodes; or equivalently, the number of non-trivial queues in [image: there is no content]. In the next section, we give a simple idea to reduce the number of non-trivial queues and hence the size of [image: there is no content] to O(1∊loglogWlogW). In Section 6, we show how to further reduce the size by taking advantage of the tardiness of the data stream.





5. Reducing the Size of [image: there is no content]

Our idea for reducing the size is simple; for every [image: there is no content], its capacity is no longer fixed at [image: there is no content]; instead, we start with a much smaller capacity, namely 4∊loglogW, which is allowed to increase gradually during execution. To determine  [image: Algorithms 04 00200i1]J,λ,κ's capacity, we use a variable to keep track of the number f̄*(J) of items (a, u) with u ∈ J that have arrived since  [image: Algorithms 04 00200i1]J,λ,κ's creation. Let vJ be the total value of the nodes in  [image: Algorithms 04 00200i1]J,λ,κ when it is created (vJ may not be zero if  [image: Algorithms 04 00200i1]J,λ,κ is resulted from the splitting of its parent). The capacity of  [image: Algorithms 04 00200i1]J,λ,κ is determined as follows.


	When [image: there is no content] for some integer c ≥ 1, the capacity of  [image: Algorithms 04 00200i1]J,λ,κ is κ(c)=4c∊loglogW, i.e., set κ = κ(c) and allow κ(c) non-trivial queues in  [image: Algorithms 04 00200i1]J,λ,κ.




Note that when we increase the capacity of  [image: Algorithms 04 00200i1]J,λ,κ to κ(c), we do not need to do anything, except that we allow more non-trivial queues (up to κ(c)) in the data structure. Also note that when  [image: Algorithms 04 00200i1]J,λ,κ is created during the trimming process, its inherited capacity may be larger than the supposed capacity κ(c); in such case, we simply debit every non-trivial queue until some queue [image: there is no content] has [image: there is no content] and we execute Lines 4 and 5 of the procedure Process( ) to make this queue trivial. We repeat the process until the number of non-trivial queues is at most κ(c). The following theorem asserts that [image: there is no content] maintains the accuracy of its estimates under this new implementation. It gives the revised size and the update time.


Theorem 7


	Suppose that [image: there is no content] is currently covering [p, rI]. For any item a ∈ Σ and any timestamp t ∈ [p, rI], the estimate f̂a([t, rI]) of f̂a([t, rI]) obtained by the new [image: there is no content] satisfies |f̂a([t, rI]) − fa([t, rI])| ≤ ∊Y.


	[image: there is no content] has size O(1∊(loglogW)logW), and supports O(log1∊+loglogW) update time.





Proof

Suppose that [image: there is no content]. From the fact that we are using  [image: Algorithms 04 00200i1]Ji,λ,κ(ci) to monitor Ji we conclude [image: there is no content]. It follows that [image: there is no content], which is O(Y) because (i) [image: there is no content] and (ii) [image: there is no content] (otherwise [image: there is no content] would have been trimmed). Thus,



[image: there is no content]



(9)




For Statement (1), the analysis of the accuracy of f̂a([t, rI]) is very similar to that of Theorem 6, except for the following difference: In the proof of Theorem 6, we show that [image: there is no content], and since κ is fixed at [image: there is no content], [image: there is no content]. Here, we also prove that [image: there is no content], but we have to prove it differently because the capacities are no longer fixed.

As argued previously, any node in [image: there is no content] is in some  [image: Algorithms 04 00200i1]J,λ,κ ∈ All≥p. Below, we show that for any  [image: Algorithms 04 00200i1]J,λ,κ ∈ All≥p, we can make at most [image: there is no content] debit operations to the queue [image: there is no content] of  [image: Algorithms 04 00200i1]J,λ,κ during its lifespan. Together with the fact that |All≥p| ≤ 2 logW, we have [image: there is no content].

Consider any  [image: Algorithms 04 00200i1]J,λ,κ ∈ All≥p. Note that the smaller its capacity, the larger the number of debit operations can be made to the queue [image: there is no content] of  [image: Algorithms 04 00200i1]J,λ,κ. To maximize the number of debit operations made to [image: there is no content], suppose that vJ = 0 and thus  [image: Algorithms 04 00200i1]J,λ,κ has the smallest capacity κ(1) when it is created. Before increasing its capacity to κ(2),  [image: Algorithms 04 00200i1]J,λ,κ can make at most [image: there is no content] debit operations to [image: there is no content]. Then, during the next [image: there is no content] arrivals of items (a, u) with [image: there is no content], the capacity is κ(2), and at most [image: there is no content] debit operations can be made to [image: there is no content]. In general, during the period when [image: there is no content], at most [image: there is no content] debit operations can be made to [image: there is no content]. If the largest capacity is κ(cmax), the total number of debit operations made to [image: there is no content] is at most



YlogW(1κ(1)+⋯+1κ(cmax))=∊Y4(loglogW)logW(1+12+⋯+1cmax)≤∊Y(ln(cmax)+1)4(loglogW)logW








which is smaller than [image: there is no content] because by Equation (9), cmax = O(logW), which implies ln(cmax) + 1 ≤ 2 log logW (suppose that W is larger than some constant).
We now prove (2). Note that the total number of non-trivial queues in [image: there is no content], and hence the number of born-poor nodes, is at most ∑1≤i≤mκ(ci)=∑1≤i≤m4ci∊loglogW. By Equation (9), [image: there is no content], and it follows that the size of [image: there is no content] is O(1∊loglogWlogW).

For the update time, suppose that an item (a, u) arrives. We can find the  [image: Algorithms 04 00200i1]Ji,λ,κ in [image: there is no content] with u ∈ Ji using O(log m) = O(log logW) time by querying a balanced search tree storing the Ji's. By hashing (e.g., Cuckoo hashing [15], which supports constant update and query time) we can locate the queue [image: there is no content] in constant time. Then, by consulting an auxiliary balanced search tree on the intervals monitored by the nodes of [image: there is no content], we can find and update the node N of [image: there is no content] with u ∈ i(N) using O(log(Y/λ))=O(log1∊+loglogW) time. At times we may also need to execute Lines 3 and 4 of the procedure Process( ), which debits all the non-trivial queues in  [image: Algorithms 04 00200i1]Ji,λ,κ. Using the de-amortizing technique given in [16], this step takes constant time.

Note that occasionally, we may also need to clean up [image: there is no content] by calling Trim( ); this step takes time linear to the size of [image: there is no content], which is O(1∊(loglogW)logW).





6. Further Reducing the Size of [image: there is no content] for Streams with Small Tardiness

Recall that in an out-of-order data stream with tardiness dmax ∈ [0, W], any item (a, u) arriving at time τcur satisfies u ≥ τcur − dmax; in other words, the delay of any item is guaranteed to be at most dmax. This section extends [image: there is no content] to a data structure [image: there is no content] that takes advantage of this maximum delay guarantee to reduce the space usage. The idea is as follows. Since there is no new item with stamps smaller than τCur − dmax, we will not make any further change to those nodes to the of left τcur − dmax and hence can consolidate these nodes to reduce space substantially. To handle those nodes with timestamps in [τcur − dmax, τcur], we use the data structure given in Section 5; since it is monitoring an interval of dmax instead of W, its size is [image: there is no content] instead of O(1∊(loglogW)logW).

To implement [image: there is no content], we need a new operation called consolidate. Consider any list of queues [image: there is no content], where J1, J2, …, Jm are ordered from left to right and form a partition of the interval J1‥m = J1 ∪ ⋯ ∪ Jm. We consolidate them into a single queue [image: there is no content] as follows:


	Concatenate the queues into a single queue, in which the nodes preserve the left-right order.


	Starting from the leftmost node, check from left to right every node N in the queue, if N is not the rightmost node and v(N) < λ, merge it with the node N′ immediately to its right, i.e., delete N, set v(N′) = v(N) + v(N′), d(N′) = d(N) + d(N′) and  [image: Algorithms 04 00200i4](N′) =  [image: Algorithms 04 00200i4](N) ∪  [image: Algorithms 04 00200i4](N′).




Note that after the consolidation, the resulting queue [image: there is no content] has at most one node (the rightmost one) with value smaller than λ.

Given the list 〈  [image: Algorithms 04 00200i1]J1,λ,κ(c1), …,  [image: Algorithms 04 00200i1]Jm,λ,κ(cm)〉, we consolidate them into [image: there is no content] by first consolidating, for each item a, the queues [image: there is no content] in  [image: Algorithms 04 00200i1]J1,λ,κ(c1), …,  [image: Algorithms 04 00200i1]Jm,λ,κ(cm) into the queue [image: there is no content] and put it in [image: there is no content]. Then, we apply Lines 3–5 of procedure Process( ) repeatedly to reduce the number of non-trivial queues in the data structure to [image: there is no content].

We are now ready to describe how to extend [image: there is no content] to [image: there is no content]. In our discussion, we fix [image: there is no content], and without loss of generality, we assume that I = [1, W]. Recall that pmax denotes the largest timestamp in I such that f̂*([pmax, rI]) > (1 + ∊)Y (which implies f*([pmax, rI]) > Y). We partition I into sub-windows I1, I2, …, Im, each of size dmax (i.e., Ii = [(i − 1)dmax, idmax]). We divide the execution into different periods according to τcur, the current time.


	During the 1st period, when τcur ∈ [1, dmax] = I1, [image: there is no content] simply is [image: there is no content].


	During the 2nd period, when τcur = I2, [image: there is no content] maintains [image: there is no content] in addition to [image: there is no content].


	During the 3rd period, when τcur ∈ I3, [image: there is no content] maintains [image: there is no content] in addition to [image: there is no content]. Also, the [image: there is no content] is consolidated into [image: there is no content].


	In general, during the ith period, when [image: there is no content] maintains [image: there is no content] and [image: there is no content], and also [image: there is no content] where I1‥i−2 = I1 ∪ I2 ∪ ⋯ ∪ Ii−2. Observe that in this period, there is no item (a, u) with u ∈ I1‥i−2 arrives (because the tardiness is dmax), and thus we do not need to update [image: there is no content]. However, we will keep throwing away any node N in [image: there is no content] as soon as we know i(N) is to the left of pmax + 1.


	When entering the (i + 1)st period, we do the followings: Keep [image: there is no content], create [image: there is no content], merge  [image: Algorithms 04 00200i1]I1‥i−2,λ,κ with [image: there is no content], and then get [image: there is no content] by consolidating [image: there is no content].




Given any t ∈ [pmax + 1, rI], the estimate of fa([t, rI]) given by [image: there is no content] is



[image: there is no content]








The following theorem gives the accuracy of [image: there is no content]'s size and its update time.


Theorem 8


	For any t ∈ [pmax + 1, rI], the estimate f̂a([t, rI]) given by [image: there is no content] satisfies



[image: there is no content]









	[image: there is no content] has size [image: there is no content], and supports [image: there is no content] update time.





Proof

Recall that I is partitioned into sub-intervals I1, I2, …, Im. Suppose that t ∈ Iκ. Note that if we had not performed any consolidation,



[image: there is no content]








Note that for κ + 1 ≤ i ≤ m, [image: there is no content], and for [image: there is no content] since |Iκ|= dmax, the same argument used in the proof of Lemma 3 gives us [image: there is no content]. Hence



[image: there is no content]



(10)




The consolidation step may add errors to [image: there is no content]. To get a bound on them, let N1, N2, … be the nodes for a in [image: there is no content], ordered from left to right. Suppose that t ∈ Nh. Note that


	the consolidation step will added at most λ units to v(Nh) before we move on to consider the node immediately to its right, and


	for node Ni with i ≥ h + 1, any node N that has been merged to Ni must be to the right of of Nh, and thus is to the right of t; it follows that N is contributing v(N) to [image: there is no content] in Equation (10) and its merging will not make any change.




In conclusion, the consolidation steps introduce at most λ extra errors, and Equation (10) becomes [image: there is no content], which is the second inequality of the lemma.

To prove the first inequality, suppose that we ask for the estimate f̂a([t, rI]) during the ith period, when we have [image: there is no content], [image: there is no content] and [image: there is no content]. Recall that  [image: Algorithms 04 00200i1]I1‥i−2, λ,∊ comes from consolidating [image: there is no content]. As in all our Previous analyses, we have



[image: there is no content]








(Note that the merging of nodes during consolidations would not take away any value). To get a bound on [image: there is no content], suppose that pmax ∈ Iκ. Then, all the nodes to the left of Iκ have been thrown away. Among [image: there is no content], only [image: there is no content] may have been trimmed. Note that


	[image: there is no content],


	as in the proof of Theorem 7, we can argue that [image: there is no content], and


	for the other [image: there is no content], since their capacity is at least [image: there is no content]






[image: there is no content]








Thus, [image: there is no content], and the first inequality follows.

For Statement (2), note that both [image: there is no content] and [image: there is no content] have size [image: there is no content] (by Theorem 7, and |Ii−1| = |Ii| = dmax), and for [image: there is no content], it has size [image: there is no content]; thus the size of [image: there is no content] is [image: there is no content]. For the update time, it suffices to note that it is dominated by the update times of [image: there is no content] and [image: there is no content].
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