
Algorithms 2010, 3, 311-328; doi:10.3390/a3030311

OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms
Article

Univariate Cubic L1 Interpolating Splines: Spline Functional,
Window Size and Analysis-based Algorithm
Lu Yu1,⋆, Qingwei Jin1, John E. Lavery1,2 and Shu-Cherng Fang1

1 Industrial and Systems Engineering Department, North Carolina State University, Raleigh, NC
27695-7906, USA; E-Mails: qjin2@ncsu.edu (Q.J.); john.lavery2@us.army.mil (J.L.);
fang@ncsu.edu (S.-C.F.)

2 Mathematical Sciences Division, Army Research Office, Army Research Laboratory, P.O. Box 12211,
Research Triangle Park, NC 27709-2211, USA

⋆ Author to whom correspondence should be addressed; E-Mail: lyu@ncsu.edu;
Tel.: +01-919-513-1909; Fax: +01-919-515-5281.

Received: 11 July 2010 / Accepted: 10 August 2010 / Published: 20 August 2010

Abstract: We compare univariate L1 interpolating splines calculated on 5-point windows, on
7-point windows and on global data sets using four different spline functionals, namely, ones
based on the second derivative, the first derivative, the function value and the antiderivative.
Computational results indicate that second-derivative-based 5-point-window L1 splines
preserve shape as well as or better than the other types of L1 splines. To calculate
second-derivative-based 5-point-window L1 splines, we introduce an analysis-based,
parallelizable algorithm. This algorithm is orders of magnitude faster than the previously
widely used primal affine algorithm.

Keywords: antiderivative; cubic L1 spline; first derivative; 5-point window; function value;
global; interpolation; locally calculated; second derivative; univariate

Classification: MSC 65D05, 65D07

1. Introduction

L1 splines have been shown to provide superior shape preservation for interpolation and
approximation of multiscale data, that is, data with sudden large changes in magnitude and/or spacing

Algorithms 2010, 3 312

used for modeling of natural and urban terrain, geophysical features, biological objects, robotic paths
and many other irregular surfaces, processes and functions ([1–15]). The minimization principles for L1

splines have typically (but not uniformly) been based on the L1 norm of the second derivative (rather
than on the L1 norm of expressions involving other levels of derivatives). The resulting non-differentiable
convex generalized geometric programs have been solved by active set [3], primal affine [5–7,10,11] and
primal-dual [12,14] algorithms.

In the literature, there are a few indications of limitations of the primal affine and primal-dual
algorithms for bivariate L1 splines for large data sets [9,12]. There is also unpublished computational
experience of the authors and others who have noticed issues of incomplete convergence or not
completely correct convergence of the active set, primal affine and primal-dual algorithms for
both univariate and bivariate L1 splines. It is in this context that we seek in this paper a new
algorithmic approach for calculating L1 splines. Auquiert, Gibaru and Nyiri [16] have developed a
subdifferential-based procedure for calculating second-derivative-based L1 splines on 5-point windows.
We propose here an algorithm for second-derivative-based 5-point-window L1 splines based on
the analysis in Section 2 of [17], which links, via analytical properties of the spline functional,
local geometric properties of 5-point windows of the data set with geometric properties of the L1

spline interpolant.
In considering second-derivative-based 5-point-window L1 splines, three types of information are

needed for full “situational awareness,” namely, 1) information about whether use of 5-point windows is
superior to use of windows of other sizes and to use of global data sets, 2) information about whether use
of the second derivative in the spline functional is superior to use of the first derivative, function value or
antiderivative and 3) information about whether the new, analysis-based algorithm mentioned above can
achieve computational results superior to those of the primal affine algorithm, which was the previously
most widely used algorithm for calculating L1 splines. The third item here has not yet been considered
in the literature and the information in the literature on the first and second items is sketchy at best.
The computational and analytical results in [2,16,17] do suggest that 5-point windows have advantages
vs. global calculations. However, it is not yet known whether windows of other sizes might also have
advantages. Results presented in [10,11] indicate that first-derivative-based and function-value-based
L1 splines may have advantages over standard second-derivative-based L1 splines. However, these two
publications considered only the behavior of L1 splines on the global scale and did not consider behavior
on the fine, interval-to-interval scale.

The present paper addresses these needs. In Section 2, we give a brief description of the primal affine
algorithm that has previously been widely used to calculate L1 splines. In Section 3, we compare L1

splines calculated by minimizing, on 5-point windows, on 7-point windows and on global data sets, four
different spline functionals, namely, ones based on the second derivative, the first derivative, the function
value and the antiderivative. These L1 splines are calculated by the primal affine algorithm. The results
of this section provide motivation for the development of a new, analysis-based algorithm for calculating
5-point-window, second-derivative-based L1 splines. In Section 4, we present this new algorithm, which
is based on the analysis in Section 2 of [17]. In Section 5, we show that, while the results of both the
new algorithm and the primal affine algorithm look good on the macro level, there are differences on the
micro level. Specifically, the results of the new algorithm are accurate on the micro level while those of

Algorithms 2010, 3 313

the primal affine algorithm are occasionally only approximate. Finally, in Section 6, we summarize the
results presented in the previous sections and point out the potential for future algorithms for locally
calculated univariate L1 approximating splines and locally calculated bivariate L1 interpolating and
approximating splines.

All of the quantities in this paper are real quantities. The nodes xi, i = 0, 1, . . . , I , are a strictly
monotonic but otherwise arbitrary partition of the finite interval [x0, xI]. Let hi = xi+1 − xi. At each
node xi, the function value zi is given, i = 0, 1, . . . , I . The slope of the line segment connecting (xi, zi)

and (xi+1, zi+1) is

△zi :=
zi+1 − zi

hi

, i = 0, 1, . . . , I − 1 . (1)

The local and global cubic L1 splines discussed in this paper are cubic polynomials in each interval
(xi, xi+1), i = 0, 1, . . . , I − 1, and are C1 continuous at the nodes. The first derivative of the spline at
node xi, i = 0, 1, . . . , I , is denoted by bi (to be determined by minimization of the L1 spline functional).
We use δi to denote the slope of the chord between neighboring points:

δi =
zi+1 − zi−1

xi+1 − xi−1

, i = 1, 2, . . . , I − 1,

δ0 =
z1 − z0
h0

and δI =
zI − zI−1

hI−1

.

(2)

We use ζ to denote the linear spline:

ζ(x) =
(xi+1 − x)zi + (x− xi)zi+1

hi

, x ∈ [xi, xi+1], i = 0, 1, . . . , I − 1 . (3)

For the interpolation problem under consideration in the present paper, the nodes and the function
values at the nodes are given. Minimization of a spline functional means “determination of the first
derivatives that yield the minimum.” The first derivatives determined from the minimization along
with the fixed nodal and functional values yield the piecewise cubic L1 spline by the standard Hermite
interpolation formula. For reference, we present here the spline functionals that define traditional,
globally calculated L1 splines (“global L1 splines”). Second-derivative-based, first-derivative-based,
function-value-based and antiderivative-based cubic L1 splines are calculated by minimizing

I−1∑
i=0

∫ xi+1

xi

∣∣∣∣d2z

dx2

∣∣∣∣ dx , (4)

I−1∑
i=0

∫ xi+1

xi

1

hi

∣∣∣∣dz
dx

− dζ
dx

∣∣∣∣ dx , (5)

I−1∑
i=0

∫ xi+1

xi

1

h2
i

|z − ζ| dx (6)

and
I−1∑
i=0

∫ xi+1

xi

1

h3
i

∣∣∣∣∫ x

(xi+xi+1)/2

(z(ξ)− ζ(ξ))dξ
∣∣∣∣ dx , (7)

respectively, over the finite-dimensional spline space of C1 piecewise cubic polynomials z that
interpolate the data. The L1 splines that minimize these functionals can be nonunique, a situation

Algorithms 2010, 3 314

that will be handled by adding “regularization terms” to the functionals when they are minimized by
the primal affine algorithm or, in the new algorithm proposed in this paper, by applying a “choice
procedure” as described below in Section 4. Second-derivative-based L1 splines are the L1 splines
commonly encountered in the literature. First-derivative-based L1 splines have been investigated in
[10,11]. Function-value-based L1 splines have been treated in [11]. Antiderivative-based L1 splines are
newly introduced in this present paper to provide additional insight into how the order of the derivative
in the spline functional affects the geometric shape preservation properties of the L1 spline.

In the present paper, computations of different algorithms are based on the following challenging data
set consisting of 56 irregular data points that lie on flat, linear, quadratic, cubic and oscillatory functions
and on protuberances, patched together with discontinuities of function values and first derivatives and
with extreme irregular spacing—with lengths of neighboring intervals differing by up to a factor of 100:

x = (0, 1, 2, 2.01, 4, 5, 6, 6.01, 8, 9, 10,

11, 11.01, 13, 14, 15, 16, 17, 18, 19, 20, 20.01,

22, 23, 24, 25, 26, 27, 27.1, 27.2, 27.3, 34.7, 34.8,

34.9, 35, 36, 37, 37.1 37.2, 37.3, 44.7, 44.8, 44.9, 45,

46, 47, 48, 48.1, 50.9, 51, 51.08, 53, 55, 57, 59,

60),

z = (0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0,

0, 1, 1, 1, 0, 0, 0, 1, 2, 3, 4,

5, 6, 7, 0, 0, 0, 2.1725, 4.29, 6.3525, 6.3525, 4.29,

2.1725, 0, 0, 0, 3.081, 5.928, 8.547, −8.547, −5.928, −3.081, 0,

0, 0, 0, 5, 3, 6, 2, 7, 0, 0, 0,

0).

This data set was used in [11]. The data (xi, zi), i = 27, 28, 29, 30, 31, 32, 33, 34, in the region
from x = 27 to x = 35 lie on the the quadratic function 44 − 2.75(x − 31)2. The data (xi, zi),
i = 36, 37, 38, 39, 40, 41, 42, 43, in the region from x = 37 to x = 45 lie on the cubic function
−16(x − 41) + (x − 41)3. Note the large gaps in the intervals [x30, x31] = [27.3, 34.7] and
[x39, x40] = [37.3, 44.7]. In the figures, the data will be represented by dots “·”. The linear spline
for these data is given in Figure 1.

2. Primal Affine and Other Previously Available Algorithms for L1 Splines

Minimization of the global L1 spline functionals (4), (5), (6) and (7) is a nonlinear programming
problem. Direct minimization of (4) has been accomplished by an active set method [3]. Active
set algorithms for minimizing (5), (6) and (7) have not been developed, but these functionals and
functional (4) have been minimized by primal affine algorithms and primal-dual algorithms [12,14].
Primal affine and primal-dual algorithms are linear (not nonlinear) programming procedures. To create
a linear program suitable for application of these algorithms, the integrals in the L1 spline functionals
need to be discretized. For the primal affine algorithm used in the present paper and in [5,6,8,10,11],
the spline functionals were discretized by the midpoint rule with K equal subintervals in each interval
(xi, xi+1). In this paper, K = 100. For a detailed description of the primal affine algorithm, see [7].

Algorithms 2010, 3 315

Figure 1. Data set and linear spline.

0 10 20 30 40 50 60

−20

−10

0

10

20

For calculation of L1 splines by the primal affine method using the global functionals (4), (5), (6) and
(7), we add to these functionals the regularization terms

ε
I∑
0

|bi − δi|, i = 0, 1, . . . , I . (8)

When ε is sufficiently small, the L1 spline that minimizes the functional with the regularization term is
unique. For the computational experiments of the present paper, ε = 10−4.

In addition to calculating L1 splines by minimizing the global functionals (4), (5), (6) and (7) by
the primal affine method, we will calculate L1 splines using these functionals on 5-point and 7-point
windows. To calculate the derivative bi of a “windowed” L1 spline at node xi, we minimize functionals
that are the same as (4), (5), (6) and (7) except that the integral is over a local set of intervals (“window”)
rather than over the global domain. For 5-point-window L1 splines, the window [xı̂−2, xı̂+2] is used for
nodes xı̂, ı̂ = 2, 3, . . . , I−2, the window [x0, x4] is used for nodes xı̂, ı̂ = 0, 1 and the window [xI−4, xI]

is used for nodes xı̂, ı̂ = I − 1, I . For 7-point-window L1 splines, the window [xı̂−3, xı̂+3] is used for
nodes xı̂, ı̂ = 3, 4, . . . , I − 3, the window [x0, x6] is used for nodes xı̂, ı̂ = 0, 1, 2 and the window
[xI−6, xI] is used for nodes xı̂, ı̂ = I − 2, I − 1, I . When minimizing a “windowed” L1 spline functional
for node xı̂ by the primal affine algorithm, we add to the spline functional the regularization term

ε|bı̂ − δı̂| . (9)

For the computational experiments of the present paper, ε = 10−4.

Algorithms 2010, 3 316

3. Computational Results for Windowed and Global L1 Splines

A window with an odd number of points is desirable, since it has a “middle point” at which one
can use a locally calculated derivative as the derivative of the global interpolant. Conversely, a window
with an even number of points is not desirable, because it lacks a middle point. Using the primal affine
algorithm described in the previous section, we generated computational results for 5-point-window and
7-point-window L1 splines as well as for global L1 splines.

In the literature, there have been reports [10,11] about L1 splines based on spline functionals involving
first derivatives and function values, that is, derivatives of degree lower than the standard second degree.
Results in [10,11] suggest that, for global L1 splines, spline functionals based on the first derivative or
function value (that is, on functional (5) or (6)) result in improved shape preservation. Those results
emphasized overall global preservation of shape on the macro scale but did not treat local preservation
of shape on the fine, interval-to-interval scale. Following up on these prior investigations, we revisit
here the comparison of L1 splines based on derivatives of degree 2, 1 and 0, add to the comparison L1

splines based on derivatives of degree −1 (antiderivatives) and add the new dimension of considering
the window size (5 points, 7 points or global). For this comparison, we use the primal affine algorithm
described in Section 2.

Computational results are presented in Figures 2–13. In each figure, we highlight in dashed boxes
the intervals [25, 27], [35, 37] and [45, 55], where differences among the various splines are most
prominent. The second-derivative-based 5-point-window spline of Figure 2 and the first-derivative-based
and function-value-based global splines of Figures 7 and 10 preserve linearity in the intervals [25, 27],
[35, 37] and [45, 48] and avoid extraneous overshoot, extraneous undershoot and extraneous oscillation
in the interval [48.1, 55]. None of the other nine splines of Figures 2–13 is able to preserve linearity and
avoid extraneous overshoot, undershoot and oscillation in all of these intervals. In particular, the splines
of Figures 3, 4, 8, 11, 12 and 13 do not preserve linearity well on the intervals [25, 27], [35, 37] and/or
[45, 48]. The splines of Figures 3, 5, 8 and 11 have extraneous oscillation on the interval [48.1, 50.9].
The splines of Figures 6, 9 and 12 have undershoot in [48.1, 50.9]. The differences in the large intervals
[27.3, 34.7] and [37.3, 44.7] is a separate issue that is discussed in the remark below.

Remark The data points immediately to the right and left of the large intervals [27.3, 34.7] and
[37.3, 44.7] lie on a quadratic and a cubic function, respectively. The second- and first-derivative-based
splines of Figures 2–7 approximate both the quadratic and the cubic function. In contrast, the
function-value-based and antiderivative-based splines of Figures 8–13 avoid approximating the quadratic
function in [27.3, 34.7], even though they do approximate the cubic function in [37.3, 44.7]. In classical
approximation theory, the ability to approximate or even reproduce quadratic, cubic and higher-degree
functions is a goal. In geometric modeling of irregular data, however, reproducing any function of
degree higher than 1 is generally considered disadvantageous because it leads to extraneous oscillation,
overshoot or undershoot. It is not yet known how to construct L1 splines that generically avoid
approximating functions of degree higher than 1. In the present article, we acknowledge this issue
but we do not take it into account when assessing the shape-preservation capabilities of the various types
of L1 splines.

Algorithms 2010, 3 317

Figure 2. Second-derivative-based 5-point-window L1 spline

0 10 20 30 40 50 60

−20

−10

0

10

20

Figure 3. Second-derivative-based 7-point-window L1 spline

0 10 20 30 40 50 60

−20

−10

0

10

20

Figure 4. Second-derivative-based global L1 spline

0 10 20 30 40 50 60

−20

−10

0

10

20

Algorithms 2010, 3 318

Figure 5. First-derivative-based 5-point-window L1 spline

0 10 20 30 40 50 60

−20

−10

0

10

20

Figure 6. First-derivative-based 7-point-window L1 spline

0 10 20 30 40 50 60

−20

−10

0

10

20

Figure 7. First-derivative-based global L1 spline

0 10 20 30 40 50 60

−20

−10

0

10

20

Algorithms 2010, 3 319

Figure 8. Function-value-based 5-point-window L1 spline

0 10 20 30 40 50 60

−20

−10

0

10

20

Figure 9. Function-value-based 7-point-window L1 spline

0 10 20 30 40 50 60

−20

−10

0

10

20

Figure 10. Function-value-based global L1 spline

0 10 20 30 40 50 60

−20

−10

0

10

20

Algorithms 2010, 3 320

Figure 11. Antiderivative-based 5-point-window L1 spline

0 10 20 30 40 50 60

−20

−10

0

10

20

Figure 12. Antiderivative-based 7-point-window L1 spline

0 10 20 30 40 50 60

−20

−10

0

10

20

Figure 13. Antiderivative-based global L1 spline

0 10 20 30 40 50 60

−20

−10

0

10

20

Algorithms 2010, 3 321

We do not claim here that the results presented in Figures 2–13 should yet be broadly interpreted as
general descriptions of the shape-preservation capabilities of the various types of L1 splines. However,
these results do provide insight into the shape-preservation capabilities of these types of L1 splines as
well as a piece of evidence supporting the use of second-derivative-based 5-point-window L1 splines.
In these computational results, the performance of second-derivative-based L1 splines, the hitherto
most widely used variant of L1 splines is improved by using 5-point windows. The other two “top
performers” of Figures 2–13, namely, the first-derivative-based and function-value-based global L1

splines of Figures 7 and 10 are computationally much more expensive than second-derivative-based
5-point-window L1 splines. No theory has been published for function-value-based L1 splines.
Elementary theory has been published for first-derivative-based L1 splines but only for the global case
[15]. Based on these considerations, we choose the second-derivative-based 5-point-window L1 spline
as the L1 spline to be used in the remainder of this paper.

4. Algorithm for Minimization of Second-derivative-based 5-point-window Spline Functional

We propose here an algorithm for generation of second-derivative-based 5-point-window L1 splines
based on the analytical results of Section 2 of [17]. Recall that, in the interpolation situation of interest
in this paper, the task of calculating an L1 spline is the task of calculating the first derivatives bi by
minimization of a spline functional with given nodes xi and given function values zi at the nodes. In the
ith 5-point window, 2 ≤ i ≤ I − 2, an objective function E(bi−2, bi−1, bi, bi+1, bi+2) is minimized:

min
b∈R5

E(bi−2, bi−1, bi, bi+1, bi+2)

= min
b

{
i+1∑

j=i−2

∫ 1
2

− 1
2

|(bj+1 − bj) + 6t(bj + bj+1 − 2△zj)| dt

}
.

In [17], minimization of E(bi−2, bi−1, bi, bi+1, bi+2) is treated as a bilevel minimization problem by
representing bi−2, bi−1, bi+1 and bi+2 as functions of bi. The optimal bi, called b∗i , is determined by
solving

min
b

E(bi−2, bi−1, bi, bi+1, bi+2) = min
bi

{G1(bi) +G2(bi)}, (10)

where

G1(bi) =
2(
√
10− 1)

3
|bi−1(bi)−△zi−2|+

∫ 1
2

− 1
2

|(bi − bi−1(bi)) + 6t(bi−1(bi) + bi − 2△zi−1)| dt (11)

and

G2(bi) =
2(
√
10− 1)

3
|bi+1(bi)−△zi+1|+

∫ 1
2

− 1
2

|(bi+1(bi)− bi) + 6t(bi + bi+1(bi)− 2△zi)| dt . (12)

G1(bi) and G2(bi) have similar structure, which leads to the representation

G1(bi) +G2(bi) = G(bi −△zi−1;△zi−2 −△zi−1) +G(bi −△zi;△zi+1 −△zi), (13)

where G(q; c) is a function that is defined and analyzed in [17].

Algorithms 2010, 3 322

The analysis of [17] is based on the signs of △zi−2 −△zi−1, △zi−1 −△zi and △zi −△zi+1. There
are 27 cases, as shown in Table 1. For the simple cases, the optimal b∗i are listed in the last column of the
table. For cases 14, 15, 17, 18, 23, 24, 26 and 27, the b∗i will be discussed in Algorithm 1.

Table 1. 27 cases used in the 5-point window algorithm (see [17])

Case
Sign of Same as

b∗i△zi−1 −△zi−2 △zi −△zi−1 △zi+1 −△zi Case
1 0 0 0 △zi−1

2 0 0 + △zi−1

3 0 0 − 2 △zi−1

4 0 + 0 δi

5 0 + + △zi−1

6 0 + − △zi−1

7 0 − 0 4 δi

8 0 − + 6 △zi−1

9 0 − − 5 △zi−1

10 + 0 0 2 △zi

11 + 0 + △zi−1

12 + 0 − △zi−1

13 + + 0 5 △zi

14 + + + [see text]
15 + + − [see text]
16 + − 0 6 △zi

17 + − + [see text]
18 + − − 15 [see text]
19 − 0 0 2 △zi

20 − 0 + 12 △zi−1

21 − 0 − 11 △zi−1

22 − + 0 6 △zi

23 − + + 15 [see text]
24 − + − 17 [see text]
25 − − 0 5 △zi

26 − − + 15 [see text]
27 − − − 14 [see text]

Whenever the optimal bi is non-unique at a node xi, 2 ≤ i ≤ I−2, we choose the solution b∗i to be the
real number in the optimal set closest to δi, that is, median{bui , b li , δi}. In all 27 cases, the solution is either
uniquely determined by a simple expression or lies inside the interval (△zi−1,△zi) and can be found
by a line search. The expression G1(bi) +G2(bi) is always continuously differentiable on (△zi−1,△zi).

When line search is required, the solution of (10) is obtained by solving
dG1(bi)

dbi
+

dG2(bi)

dbi
= 0. (The

explicit form of this expression is provided in [17].) For the results generated in this paper, we used the

Algorithms 2010, 3 323

secant method (previously used in an analogous way in [3]). Calculation of b∗i for i = 0, 1, I − 1 and I

is carried out differently, as described in Step 3 of Algorithm 2.
The complete algorithm for calculating second-derivative-based 5-point-window L1 splines consists

of a subroutine (Algorithm 1) for the local window calculation embedded in an “outer loop”
(Algorithm 2) as described in the remainder of this section. Recall that the quantities δi are defined
in (2).

Algorithm 1 (Subroutine(△zi−2,△zi−1,△zi,△zi+1; δi)).

STEP 1 Calculate △zi−2 −△zi−1, △zi−1 −△zi and △zi −△zi+1 and determine the case to which
these quantities correspond.

STEP 2 Calculate b∗i using information from [17] contained in Table 1 or described below in this
step. Here, c1 = △zi−2 −△zi−1 and c2 = △zi+1 −△zi.

- In Cases 1, 2, 3, 5, 6, 8, 9, 11, 12, 20 and 21, return b∗i = △zi−1.

- In Cases 10, 13, 16, 19, 22 and 25, return b∗i = △zi.

- In Cases 4 and 7, return b∗i = δi.

- Case 14:

· Subcase 14-1: If △zi −△zi−1 ≤
√
10−2√
10

(|c1|+ |c2|), then

b∗i = median{max{△zi−1,△zi+
2−

√
10√

10
c2},min{△zi−1+

2−
√
10√

10
c1,△zi}, δi}.

· Subcase 14-2: If
√
10−2√
10

(|c1| + |c2|) < △zi −△zi−1 <
1
2
(|c1| + |c2|), then b∗i lies in

the interval

[
max{△zi−1 +

2−
√
10√

10
c1,△zi −

1

2
c2},min{△zi−1 −

1

2
c1,△zi +

2−
√
10√

10
c2}

]
.

Use a line search to find b∗i such that
dG1(b

∗
i)

dbi
+

dG2(b
∗
i)

dbi
= 0 in this interval.

· Subcase 14-3: If 1
2
(|c1|+ |c2|) ≤ △zi −△zi−1 ≤ 2(|c1|+ |c2|), then

b∗i = median{max{△zi−1 −
1

2
c1,△zi − 2c2},min{△zi−1 − 2c1,△zi −

1

2
c2}, δi}.

· Subcase 14-4: If 2(|c1|+ |c2|) < △zi −△zi−1, then b∗i lies in the interval

[△zi−1 − 2c1,△zi − 2c2].

Use a line search to find b∗i such that
dG1(b

∗
i)

dbi
+

dG2(b
∗
i)

dbi
= 0 in this interval.

Return b∗i .

- Case 15:

· Subcase 15-1: If △zi −△zi−1 ≤ 2−
√
10√

10
c1, then b∗i = △zi.

· Subcase 15-2: If 2−
√
10√

10
c1 < △zi −△zi−1 ≤ −7+

√
10

3
c1, then b∗i = △zi.

Algorithms 2010, 3 324

· Subcase 15-3: If −7+
√
10

3
c1 < △zi −△zi−1, then b∗i lies in the interval

[△zi−1 −
7 +

√
10

3
c1,△zi].

Use a line search to find b∗i such that
dG1(b

∗
i)

dbi
+

dG2(b
∗
i)

dbi
= 0 in this interval.

Return b∗i .

- Case 17:

· Subcase 17-1: If △zi−1 −△zi >
√
10+1
3

(|c1|+ |c2|), then b∗i lies in the interval

[△zi +

√
10 + 1

3
c2,△zi−1 +

√
10 + 1

3
c1].

Use a line search to find b∗i such that
dG1(b

∗
i)

dbi
+

dG2(b
∗
i)

dbi
= 0 in this interval.

· Subcase 17-2: If △zi−1 −△zi ≤
√
10+1
3

(|c1|+ |c2|), then

b∗i = median{max{△zi,△zi−1+

√
10 + 1

3
c1},min{△zi−1,△zi+

√
10 + 1

3
c2}, δi}.

Return b∗i .

- In Case 18, let

(△z′i−2,△z′i−1,△z′i,△z′i+1, δ
′
i) = (△zi+1,△zi,△zi−1,△zi−2, δi).

This transforms Case 18 into Case 15. Obtain the optimal solution b′i of the transformed
problem. Return b∗i = b′i.

- In Case 23, let

(△z′i−2,△z′i−1,△z′i,△z′i+1, δ
′
i) = −(△zi+1,△zi,△zi−1,△zi−2, δi).

This transforms Case 23 into Case 15. Obtain the optimal solution b′i of the transformed
problem. Return b∗i = −b′i.

- In Case 24, let

(△z′i−2,△z′i−1,△z′i,△z′i+1, δ
′
i) = −(△zi−2,△zi−1,△zi,△zi+1, δi).

This transforms Case 24 into Case 17. Obtain the optimal solution b′i of the transformed
problem. Return b∗i = −b′i.

- In Case 26, let

(△z′i−2,△z′i−1,△z′i,△z′i+1, δ
′
i) = −(△zi−2,△zi−1,△zi,△zi+1, δi).

This transforms Case 26 into Case 15. Obtain the optimal solution b′i of the transformed
problem. Return b∗i = −b′i.

Algorithms 2010, 3 325

- In Case 27, let

(△z′i−2,△z′i−1,△z′i,△z′i+1, δ
′
i) = −(△zi−2,△zi−1,△zi,△zi+1, δi).

This transforms Case 27 into Case 14. Obtain the optimal solution b′i of the transformed
problem. Return b∗i = −b′i.

STEP 3 Stop.

The “outer loop” (Algorithm 2) consists of repeated or parallel application of Algorithm 1.

Algorithm 2 (Analysis-based Algorithm).

STEP 1 Given a set of points (xi, zi), i = 0, 1, . . . , I , calculate △zi, i = 0, . . . , I − 1, and δi,
i = 2, 3, . . . , I − 2, by formulas (1) and (2).

STEP 2 For i = 2, 3, . . . , I − 2, calculate b∗i using Subroutine(△zi−2,△zi−1,△zi,△zi+1;δi)
(Algorithm 1).

STEP 3 Set

b∗1 = △z1 +min{
√
10− 5

7− 2
√
10

(b∗2 −△z1),
3
√
10− 9

7− 2
√
10

(b∗2 −△z1),△z0 −△z1} ,

b∗0 = △z0 +
2−

√
10√

10
(b∗1 −△z1) ,

b∗I−1 = △zI−2 +min{
√
10− 5

7− 2
√
10

(b∗I−2 −△zI−2),
3
√
10− 9

7− 2
√
10

(b∗I−2 −△zI−2),△zI−1 −△zI−2} ,

b∗I = △zI−1 +
2−

√
10√

10
(b∗I−1 −△zI−1).

STEP 4 Stop.

5. Analysis-based Algorithm vs. Primal Affine Algorithm for 5-point Windows

In this section, we compare computational results generated by the analysis-based algorithm
introduced in Section 4 and the widely used primal affine algorithm described in Section 2. These
results differ significantly (by more than 10−4) at a number of nodes as shown in Table 2. It was
confirmed by hand calculation that the results for the analysis-based algorithm are accurate for the
original nondiscretized L1 spline functional (a confirmation of both the analysis-based algorithm and
the code). The differences in the results produced by the primal affine algorithm and the analysis-based
algorithm are due mainly to the discretization (midpoint rule with 100 subintervals, as described in
Section 2).

Remark On 5-point windows, the primal affine algorithm converges well. However, for global L1

splines on large data sets, the primal affine algorithm can converge slowly or not at all, especially in
bivariate situations, as indicated in Section 6 of [9], a conclusion supported by additional unpublished
computational experience of the authors. In such situations, the L1 spline functional may result in a
nearly degenerate nonlinear program and this near degeneracy is retained in the discretized version.

Algorithms 2010, 3 326

Table 2. b∗i generated by primal affine algorithm and analysis-based algorithm.

i xi b∗i from primal affine algorithm b∗i from analysis-based algorithm
7 6.01 3.4096 3.3874

29 27.2 20.9698 20.9729
30 27.3 19.5166 19.5250
31 34.7 -19.5166 -19.5250
32 34.8 -20.9698 -20.9729
38 37.2 27.5971 27.6099
39 37.3 18.4160 18.4667
40 44.7 18.4160 18.4667
41 44.8 27.5971 27.6099

The analysis-based algorithm introduced in this paper does not require discretization of the L1 spline
functional and does not require regularization terms to be added to this functional. The algorithm is
simple, accurate and inherently parallelizable. Moreover, it is computationally much cheaper than the
primal affine algorithm. Both of the algorithms were implemented in C++ 6.0. Computational results
for the data set of Section 1 were generated on an IBM laptop running under the Windows XP operating
system at 1.66 GHz CPU with 1.50 GB RAM and were presented in Section 3. The computing times of
the primal affine algorithm were

• 177.7 milliseconds for a 5-point window (sequential calculations),

• 335.2 milliseconds for a 7-point window (sequential calculations),

• 94.9 milliseconds for global

for the second-derivative-based L1 splines of Figures 2, 3 and 4, respectively. The computing time of the
analysis-based algorithm was

• 0.0531 milliseconds for a 5-point window (sequential calculations)

for the second-derivative-based L1 spline that corresponds to Figure 2. In these computational
experiments, the sequential analysis-based algorithm is thus 177.7/0.0531 = 3347 times faster than the
sequential primal affine algorithm. The speed-up for the parallel versions of these algorithms would
be roughly the same, since each parallel version would be faster than the corresponding sequential
version by a factor roughly equal to the number of points in the data set (56 in this case). The
sequential analysis-based algorithm is faster than the global primal affine algorithm by a factor of
94.9/0.0531 = 1787. The speed-up of the parallel analysis-based algorithm vs. the global primal affine
algorithm would, therefore, be roughly a factor of 1787.2× 56 ≈ 105, an impressive amount. For larger
data sets, the speed-up is correspondingly larger.

Remark The computing time for the primal affine algorithm could be reduced by decreasing the
number of subintervals K for discretization (via the midpoint rule) of the spline functional from 100, as
was used for the results generated for this paper, to, say, 10, or less. However, since the degree to which

Algorithms 2010, 3 327

a discretized spline functional approximates the continuum spline functional decreases as the number of
subintervals is decreased, using only a few subintervals is generally not an advantageous choice when
accuracy is an issue, as it is here.

6. Conclusion

The results presented here indicate that the new, analysis-based algorithm for calculating univariate
second-derivative-based L1 interpolating splines on 5-point windows is a highly computationally
efficient algorithm for generating a type of L1 spline that has good shape-preservation properties
on the micro scale as well as (generally) the macro scale. The analysis-based algorithm produces
computational results that are accurate, in contrast to the widely used primal affine algorithm, which
produces computational results that are only approximate. The low computing time and the inherently
parallelizable nature of the calculations in the analysis-based algorithm are strong advantages.

The extension of the results in the present paper to algorithms for locally calculated univariate L1

approximating splines and for locally calculated bivariate L1 interpolating and approximating splines is
a topic for future research. For approximation, either smoothing splines [4,6,8,9,12] or spline fits [8]
could be used. In the bivariate case, analytical results for windows consisting of contiguous triangles or
rectangles will have to be developed and, on the basis of those analytical results, algorithms analogous
to the univariate algorithm introduced in the present paper will need to be created. The success of the
algorithm for univariate interpolation of the present paper indicates that further extension in the directions
stated here may be fruitful.

Acknowledgements

The authors wish to thank Olivier Gibaru and Eric Nyiri of the Ecole Nationale Supérieure d’Arts et
Métiers de Lille and Philippe Auquiert of the Université de Valenciennes et du Hainaut-Cambrésis for
discussions related to the topic of this paper. The reviewers of this paper provided insightful comments
and questions that led to improvements in the paper. This work was generously supported by US Army
Research Office Grant # W911NF-04-D-0003, the NCSU Edward P. Fitts Fellowship and US NSF Grant
DMI-0553310.

References

1. Auquiert, P.; Gibaru, O.; Nyiri, E. C1 and C2-continuous polynomial parametric Lp splines (p ≥ 1).
Comput. Aided Geom. Design 2007, 24, 373–394.

2. Auquiert, P.; Gibaru, O.; Nyiri, E. On the cubic L1 spline interpolant to the Heaviside function.
Numer. Algorithms 2007, 46, 321–332.

3. Cheng, H.; Fang, S.-C.; Lavery, J.E. An efficient algorithm for generating univariate cubic L1

splines. Comput. Optim. Appl. 2004, 29, 219–253.
4. Cheng, H.; Fang, S.-C.; Lavery, J.E. A geometric programming framework for univariate cubic L1

smoothing splines. Ann. Oper. Res. 2005, 133, 229–248.
5. Lavery, J.E. Univariate cubic Lp splines and shape-preserving, multiscale interpolation by univariate

cubic L1 splines. Comput. Aided Geom. Design 2000, 17, 319–336.

Algorithms 2010, 3 328

6. Lavery, J.E. Shape-preserving, multiscale fitting of univariate data by cubic L1 smoothing splines.
Comput. Aided Geom. Design 2000, 17, 715–727.

7. Lavery, J.E. Shape-preserving, multiscale interpolation by bi- and multivariate cubic L1 splines.
Comput. Aided Geom. Design 2001, 18, 321–343.

8. Lavery, J.E. Shape-preserving approximation of multiscale univariate data by cubic L1 spline fits.
Comput. Aided Geom. Design 2004, 21, 43–64.

9. Lavery, J.E. The state of the art in shape preserving, multiscale modeling by L1 splines. Proceedings
of SIAM Conference on Geometric Design and Computing, Seattle, WA, USA, November 2003;
Lucian, M.L., Neamtu, M., Eds.; Nashboro Press: Brentwood, TN, USA, 2004; pp. 365–376.

10. Lavery, J.E. Shape-preserving, first-derivative-based parametric and nonparametric cubic L1 spline
curves. Comput. Aided Geom. Design 2006, 23, 276–296.

11. Lavery, J.E. Shape-preserving univariate cubic and higher-degree L1 splines with
function-value-based and multistep minimization principles. Comput. Aided Geom. Design
2009, 26, 1–16.

12. Lin, Y.-M.; Zhang, W.; Wang, Y.; Fang, S.-C.; Lavery, J.E. Computationally efficient models of
urban and natural terrain by non-iterative domain decomposition with L1 smoothing splines. In
Proceedings of the 25th Army Science Conference, Department of the Army, Washington, DC,
USA, November 2006.

13. Wang, Y.; Fang, S.-C.; Lavery, J.E. A geometric programming approach for bivariate cubic L1

splines. Comput. Math. Appl. 2005, 49, 481–514.
14. Wang, Y.; Fang, S.-C.; Lavery, J.E. A compressed primal-dual method for bivariate cubic L1 splines.

Comput. Math. Appl. 2007, 201, 69–87.
15. Zhao, Y.; Fang, S.-C.; Lavery, J.E. Geometric dual formulation for first-derivative-based univariate

cubic L1 splines. J. Global Optim. 2008, 40, 589–621.
16. Auquiert, P.; Gibaru, O.; Nyiri, E. Fast L1–Ck polynomial spline interpolation algorithm with

shape-preserving properties. Comput. Aided Geom. Design 2010, in press.
17. Jin, Q.; Lavery, J.E.; Fang, S.-C. Univariate cubic L1 interpolating splines: Analytical results for

linearity, convexity and oscillation on 5-point windows. Algorithms, 2010, 3, 276–293.
18. Bertsekas, D.P.; Nedić, A.; Ozdaglar, A.E. Convex Analysis and Optimization; Athena Scientific:

Belmont, MA, USA, 2003.

c⃝ 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access
article distributed under the terms and conditions of the Creative Commons Attribution license
http://creativecommons.org/licenses/by/3.0/.

	Introduction
	Primal Affine and Other Previously Available Algorithms for L1 Splines
	Computational Results for Windowed and Global L1 Splines
	Algorithm for Minimization of Second-derivative-based 5-point-window Spline Functional
	Analysis-based Algorithm vs. Primal Affine Algorithm for 5-point Windows
	Conclusion

