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Abstract: Given a sequence T = t0t1 . . . tn−1 of size n = |T |, with symbols from a
fixed alphabet Σ, (|Σ| ≤ n), the suffix array provides a listing of all the suffixes of T in
a lexicographic order. Given T , the suffix sorting problem is to construct its suffix array.
The direct suffix sorting problem is to construct the suffix array of T directly without using
the suffix tree data structure. While algorithims for linear time, linear space direct suffix
sorting have been proposed, the actual constant in the linear space is still a major concern,
given that the applications of suffix trees and suffix arrays (such as in whole-genome analysis)
often involve huge data sets. In this work, we reduce the gap between current results and the
minimal space requirement. We introduce an algorithm for the direct suffix sorting problem
with worst case time complexity in O(n), requiring only (12

3
n log n − n log |Σ| + O(1)) bits

in memory space. This implies 52
3
n + O(1) bytes for total space requirment, (including space

for both the output suffix array and the input sequence T ) assuming n ≤ 232, |Σ| ≤ 256,
and 4 bytes per integer. The basis of our algorithm is an extension of Shannon-Fano-Elias
codes used in source coding and information theory. This is the first time
information-theoretic methods have been used as the basis for solving the suffix
sorting problem.
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1. Introduction

The suffix array provides a compact representation of all the n suffixes of T in a lexicographic order.
The sequence of positions in T of the first symbols from the sorted suffixes in this lexicographic order
is the suffix array for the sequence. The suffix sorting problem is to construct the suffix array of T .
Mamber and Myers [1] were the first to propose an O(n log n) algorithm to construct the suffix array
with three to five times less space than the traditional suffix tree. Other methods for fast suffix sorting in
O(n log n) time have been reported in [2], while memory efficient constructions were considered in [3].
Puglisi et al. [4] provide a detailed comparison of different recently proposed linear time algorithms for
suffix sorting.

Suffix trees and suffix arrays have drawn a significant attention in recent years due to their theoretical
linear time and linear space construction, and their logarithmic search performance. Gusfield [5]
provides a detailed study on the use of suffix trees in the analysis of biological sequences. Suffix sorting
is also an important problem in data compression, especially for compression schemes that are based
on the Burrows-Wheeler Transform [6, 7]. In fact, it is known that the suffix sorting stage is a major
bottleneck in BWT-based compression schemes[6–8]. The suffix array is usually favored over suffix
trees due to its smaller memory footprint. This is important given that the applications of suffix trees and
suffix arrays (such as in whole-genome sequence analysis) often involve huge data sets. An important
problem therefore is to construct suffix arrays in linear time, while requiring space for the input sequence,
in addition to n log n bits, the minimal space required to hold the suffix array. This translates to 5n bytes
of total space requirment, assuming n ≤ 232, |Σ| = 256, and 4 bytes per integer. Existing algorithms,
such as the KS Algorithm [9] require 13n bytes, while the KA Algorithm [10] requires 10n bytes.

This paper presents a space-efficient linear time algorithm for solving the direct suffix sorting
problem, using only 52

3
n bytes. The basis of the algorithm is an extension of the Shannon-Fano-Elias

codes pupularly used in arithmetic coding. In the next section, we provide a background to the
problem, and briefly describe related work. Section 3 presents our basic algorithm for suffix sorting.
Section 4 improves the complexity of the basic algorithm using methods from source coding and
information theory.

2. Background

The BWT [6, 7] performs a permutation of the characters in the input sequence, such that characters
in lexically similar contexts will be near to each other. Thus, the BWT is very closely related to the
suffix tree and suffix array - two important data structures used in pattern matching, analysis of sequence
redundancy, and in data compression. The major link is the fact the BWT provides a lexicographic
sorting of the contexts as part of the permutation of the input sequence. The recent book [7] provides a
detailed treatment of the link between the BWT and suffix arrays and suffix trees. Apart from the BWT,
other popular compression schemes have also been linked with the suffix tree data structure. For instance,
the PPM* compression was implemented using suffix trees and suffix tries in [11]. The sequence
decomposition step required for constructing the dictionary in LZ-based schemes can be performed by
the use of tree structures, such as binary search trees, or suffix tries [12]. A detailed analysis on the use
of suffix trees in data compression is provided in Szpankowski [13]. When decorated with the array of
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longest common prefixes, the suffix array can be used in place of the suffix tree in almost any situation
where a suffix tree is used [14]. This capability is very important for applications that require huge
storage, given the smaller memory requirement of the suffix array. An important issue is how to devise
efficient methods for constructing the suffix array, without the suffix tree.

Some methods for constructing suffix arrays first build the suffix tree, and then construct the suffix
array by performing an inorder traversal of the suffix tree. Farach al.[15] proposed a divide and conquer
method to construct the suffix tree for a given sequence in linear time. The basic idea is to divide
the sequence into odd and even sequences, based on the position of the symbols. Then, the suffix
tree is constructed recursively for the odd sequence. Using the suffix tree for the odd sequence, they
construct the suffix tree for the even sequence. The final step merges the suffix tree from the odd and even
sequences into one suffix tree using a coupled depth-first search. The result is a linear time algorithm for
sufix tree construction. This divide and conquer approach is the precursor to many recent algorithms for
direct suffix sorting.

Given the memory requirement and implementation difficulty of the suffix tree, it is desirable to
construct the suffix array directly, without using the suffix tree. Also, for certain applications such
as in data compression where only the suffix array is needed, avoiding the construction of the suffix
tree will have some advantages, especially with respect to memory requirements. More importantly,
direct suffix sorting without the suffix tree raises some interesting algorithmic challenges. Thus,
more recently, various methods have been proposed to construct the suffix array directly from the
sequence [9, 10, 16–18], without the need for a suffix tree.

Kim et al.[16] followed an approach similar to Farach’s above, but for the purpose of constructing the
suffix array directly. They introduce the notion of equivalent classes between strings, which they use to
perform coupled depth-first searches at the merging stage. In [9] a divide and conquer approach similar
to Farach’s method was used, but for direct construction of the suffix array. Here, rather than dividing
the sequence into two symmetric parts, the sequence was divided into two unequal parts, by considering
suffixes that begin at positions (i mod 3 6= 0) in the sequence. These suffixes are recursively sorted,
and then the remaining suffixes are sorted based on information in the first part. The two sorted suffixes
are then combined using a merging step to produce the final suffix array. Thus, a major difference is in
the way they divided the sequences into two parts, and in the merging step.

Ko and Aluru [10] also used recursive partitioning, but following a fundamentally different approach
to construct the suffix array in linear space and linear time. They use a binary marking strategy whereby
each suffix in T is classified as either an S-suffix or an L-suffix, depending on its relative order with
its next neighbor. Let T ′

i = titi+1ti+2 . . . tn−1 denote the suffix T ′
i of sequence T starting at position i.

An S-suffix is a suffix that is lexicographically smaller than its right neighbor in T , while an L-suffix
is one that is lexicographically larger than its right neighbor. That is, T ′

i is an S-suffix if T ′
i ≺ T ′

i+1,
otherwise T ′

i is an L-suffix. This classification is motivated by the observation that an S-suffix is always
lexicographically greater than any L-suffix that starts with the same first character. The two types of
suffixes are then treated differently, whereby the S-suffixes are sorted recursively by performing some
special distance computations. The L-suffixes are then sorted using the sorted order of the S-suffixes.
The classification scheme is very similar to the approach earlier used by Itoh and Tanaka [19]. But the
algorithm in [19] runs in O(n log n) time on average.
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Lightweight suffix sorting algorithms [3, 17, 20, 21] have also been proposed which pay more
attention on the extra working space required. Working space excludes the space for the output suffix
array. In general, the suffix array requires ndlog ne bit space, while the input text requires another
ndlog |Σ|e bits, or in the worst case ndlog ne bits. In [22], an algorithm that runs in O(n log n) worst case
time, requiring O(n log n+(n/

√
log n)) working space was proposed, while Hon et al. [20] constructed

suffix arrays for integer alphabets in O(n log n) time, using O(n log n)-bit space. Nong and Zhang [17]
combined ideas from the KS algorithm [9] and the KA algorithm [10] to develop a method that works
in O(n log |Σ|) time, using (n log |Σ| + |Σ| log n)-bit working space (without the output suffix array).
In [23, 24] they extended the method to use 2n + O(1) bytes of working space (or a total space
of 7n + O(1) bytes, including space for the suffix array, and the original sequence), by exploiting
special properties of the L and S suffixes used in the KA algorithm, and of the leftmost S-type
substrings. In-place suffix sorting was considered in [25], where suffix sorting was performed for
strings with symbols from a general alphabet using O(1) working space in O(n log n) time. In some
other related work [2, 26], computing the BWT was viewed as a suffix sorting problem. Okanohara
and Sadakane [26] modified a suffix sorting algorithm to compute the BWT using a working space
of O(n log |Σ| log log|Σ| n) bits. There has also been various efforts on compressed suffix arrays and
compressed suffix trees as a means to tackle the space problem with suffix trees and suffix arrays.
(See [27–29] for examples). We do not consider compressed data structures in this work. A detailed
survey on suffix array construction algorithms is provided in [4].

2.1. Main Contribution

We propose a divide-and-conquer sort-and-merge algorithm for direct suffix sorting on a given input
string. Given a string of length n, our algorithm runs in O(n) worst case time and space. The algorithm
recursively divides an input sequence into two parts, performs suffix sorting on the first part, then
sorts the second part based on the sorted suffix from the first. It then merges the two smaller sorted
suffixes to provide the final sorted array. The method is unique in its use of Shannon-Fano-Elias codes
in efficient construction of a global partial order for the suffixes. To our knowledge, this is the first time
information-theoretic methods have been used as the basis for solving the suffix sorting problem.

Our algorithm also differs from previous approaches in the use of a simple partitioning step, and
how it exploits this simple partitioning scheme for conflict resolution. The total space requirement for
the proposed algorithm is (5

3
ndlog ne − ndlog |Σ|e) + O(1) bits, including the space for the output

suffix array, and for the original sequence. Using the standard assumption of 4 bytes per integer, with
|Σ| ≤ 256, n ≤ 232, we get a total space requirement of 52

3
n bytes, including the n bytes for the original

string and the 4n bytes for the output suffix array. This is a significant improvement when compared with
other algorithms, such as the 10n bytes required by the KA algorithm [10], or the 13n bytes required by
the KS algorithm [9].
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3. Algorithm I: Basic Algorithm

3.1. Notation

Let T = t0t1t2 . . . tn−1 be the input sequence of length n, with symbol alphabet
Σ = {σ0, σ1, . . . , σ|Σ|−1}. Let T ′

i = titi+1ti+2 . . . tn−1 denote the suffix of T starting at position
i(i = 0, 1, 2, . . . n − 1). Let T [i] = ti denote the i-th symbol in T . For any two strings, say α and
β, we use α ≺ β to denote that the α preceeds β in lexicographic order. (Clearly, α and β could be
individual symbols, from the same alphabet, i.e. |α| = |β| = 1.) We use $ as the end of sequence
symbol, where $ /∈ Σ and $ < σ,∀σ ∈ Σ. Further, we use SA to denote the suffix array of T , and S to
denote the sorted list of first characters in the suffixes. Essentially, S[i] = T [SA[i]]. Given SA, we use
SA′ to denote its inverse. We define SA′ as follows: SA′[i] = k if SA[k] = i; i, k = 0, 1, . . . , n−1. That
is, S[k] = S[SA′[i]] = T [i]. We use pi to denote the probability of symbol T [i], and Pi the probability
of the substring T [i . . . i + m − 1], the m-length substring starting at position i.

3.2. Overview

We take the general divide and conquer approach:

1. Divide the sequence into two groups;

2. Construct the suffix array for the first group;

3. Construct the suffix array for the second group;

4. Merge the suffix arrays from the two groups to form the suffix array for the parent sequence;

5. Perform the above steps recursively to construct the complete suffix array for the entire sequence.

Figure 1 shows a schematic diagram for the working of the basic algorithm using an example
sequence, T=aaaabaaaabxaaaab. The basic idea is to recursively partition the input sequence in
a top-down manner into two equal-length subsequences according the odd and even positions in the
sequence. After reaching the subsequences with length ≤ 2, the algorithm then recursively merges and
sorts the subsequences using a bottom-up approach, based on the partial suffix arrays from the lower
levels of the recursion. Thus, the algorithm does not start the merging procedure until it reaches the last
partition on a given branch.

Each block in the figure contains two rows. The first row indicates the position of the current block of
symbols in the original sequence T . The second row indicates the current symbols. The current symbols
are unsorted in the downstream dividing block and sorted in the upstream merging block. To see how
the algorithm works, starting from the top left block follow the solid division arrow, the horizontal trivial
sort arrow (dotted arrow), and then the dashed merge arrows. The procedure ends at the top right block.
We briefly describe each algorithmic step in the following. Later, we modify this basic algorithm for
improved complexity results.
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Figure 1. Basic working of the proposed algorithm using an example. The original sequence
is indicated at the top left. The sorted sequence and the suffix array are indicated in the top
right box.
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3.3. Algorithm I

3.3.1. Divide T

If |T | ≥ 2, divide T into 2 subsequences, T1 and T2. T1 contains all the symbols at the even positions
of T . T2 contains all the symbols at the odd positions of T . That is, T1 = {T [j], j ∈ [0, |T |)| j

mod 2 = 0}, T2 = {T [j], j ∈ [0, |T |)| j mod 2 = 1}

3.3.2. Merge SA of T1 and SA of T2

Let SA1 and SA2 be the suffix array of T1 and T2 respectively. Let SA be the suffix array of T . If
T1 and T2 have been sorted to obtain their respective suffix arrays SA1 and SA2, then we can merge
SA1 and SA2 in linear time on average, to form the suffix array SA. Without loss in generality, we
assume SA1 = a0a1a2 . . . au, SA2 = b0b1b2 . . . bv and SA = c0c1c2 . . . cu+v are the sorted indices of
T1, T2 and T respectively. Given ak, we use âk to denote its corresponding position in T . That is,
T1[SA1[k]] = T1[ak] = T [âk]. Similarly, for b̂k. âk and b̂k are easily obtained from ak, based on the
level of recursion, and whether we are on a left branch or a right branch. For k = 0 (0 ≤ k ≤ u), l = 0

(0 ≤ l ≤ v) and g = 0 (0 ≤ g ≤ u + v), we compare the partially ordered subsequences using ak and
bl, viz.

If T [âk] ≺ T [b̂l],
{

SA[cg] ← âk, S[cg] ← T [âk]; k++, g++

If T [b̂l] ≺ T [âk],
{

SA[cg] ← b̂l, S[cg] ← T [b̂l]; l++, g++

If T [âk] = T [b̂l],

{
cx ← ResolveConflict(âk, b̂l)

SA[cg] ← cx, S[cg] ← T [cx] ; g++

Whenever we compare two symbols, T [âk] from T1 and T [b̂l] from T2, we might get into the
ambiguous situation whereby the two symbols are the same (i.e., T [âk] = T [b̂l]). Thus, we cannot
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easily decide which suffix precedes the other, (i.e., whether T ′
âk

≺ T ′
b̂l

, or T ′
b̂l

≺ T ′
âk

), based on the
individual symbols. We call this situation a conflict. The key to the approach is how efficiently we can
resolve potential conflicts as the algorithm progresses. We exploit the nature of the division procedure,
and the fact that we are dealing with substrings (suffixes) of the same string, for efficient conflict
resolution. Thus, the result of the merging step will be a partially sorted subsequence, based on the
sorted order of the smaller child subsequences. An important difference here is that unlike in other related
approaches [9, 10, 16], our sort-order at each recursion level is global with respect to T , rather than being
local to the subsequence at the current recursion step. This is important, as it significantly simplifies the
subsequent merging step.

3.3.3. Recursive Call

Using the above procedure, we recursively construct the suffix array of T1 from its two children T11

and T12. Similarly, we obtain the suffix array for T2 from its children T21 and T22. We follow this
recursive procedure until the base case is reached (when the length of the subsequence is ≤ 2).

3.4. Conflict Resolution

We use the notions of conflict sequence or conflict pairs. Two suffixes T ′
i and T ′

j form a conflict
sequence in T if T ′

i [0 . . . k] = T ′
j [0 . . . k], (that is, T [i . . . i + k] = T [j . . . j + k] ) for some k ≥ 1.

Thus, the two suffixes can not be assigned a total order after considering their first k symbols. We say
that the conflict between T ′

i and T ′
j is resolved whenever T [i . . . i + lk − 1] = T [j . . . j + lk − 1], and

T [i + lk] 6= T [j + lk]. Here, lk is called the conflict length. We call the triple (T ′
i , T

′
j , lk) a conflict

pair, or conflict sequence. We use the notation CP (i, j, lk) to denote a conflict pair T ′
i and T ′

j with a
conflict length of lk. We also use CP (i, j) to denote a conflict pair where the conflict length is yet to be
determined, or is not important given the context of the discussion.

The challenge, therefore, is how to resolve conflicts efficiently given the recursive partitioning
framework proposed. Obviously, lk ≤ n, the sequence length. Thus, the minimum distance from the
start of each conflicting suffix to the end of the sequence (min{n − i, n − j}), or the distance from an
already sorted symbol can determine how long it will take to resolve a conflict. Here, we consider how
the previously resolved conflicts can be exploited for a quick resolution of other conflicts. We maintain
a traceback record on such previously resolved conflicts in a conflict tree, or a conflict table.

Figure 2 shows the conflict tree for the example sequence, T=aaaabaaabxaaaab. Without loss in
generality and for easier exposition of the basic methodology, we assume that n = 2x, for some positive
integer x. Our conflict resolution strategy is based on the following properties of conflict sequences and
conflict trees.

1. Given the even-odd recursive partitioning scheme, at any given recursion level, conflicts can only
occur between specific sets of positions in the original sequence T . For instance, at the lowest
level, conflicts can only occur between T0, and Tn/2, or more generally, between Ti, and Ti+n/2.
See Figure 2.
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2. Given the conflict sequence, T ′
i and T ′

j the corresponding conflict pair CP (i, j, lk) is unique in T .
That is, only one conflict pair can have the pair of start positions (i, j). Thus the conflict pairs
CP (i, j, lk) and CP (j, i, lk) are equivalent. Hence, we represent both CP (i, j, lk) and CP (j, i, lk)

as CP (i, j, lk), where, i < j.

3. Consider CP (i, j) at level h, 0 ≤ h ≤ dlog ne in the tree. We define its neighbors as the conflict
pairs: CP (i′, j′), with (i′ = i + 2q, j′ = j + 2q), or (i′ = i − 2q, j′ = j − 2q), where q > 0,
with q = h, h − 1, h − 2, . . . , 1, and i′, j′ ≤ n. Essentially, neighboring conflicts are found on
the same level in the conflict tree, from the leftmost node to the current node. For example, for
R6 = CP (2, 14) at h = 2, the neighbor will be: {R2 = CP (0, 12)}. We notice that, by our
definition, not all conflicts in the same node are neighbors.

Figure 2. Conflict tree for the example sequence T = aaaabaaaabxaaaab. The original
sequence is indicated at the root node. The notation Ri 7→ Rj indicates that conflict pair Ri

is resolved by Rj after a certain number of steps, given that Rj has been resolved. Conflict
pairs are labeled following a depth-first traversal on the tree.
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Given the conflict tree, we can determine whether a given conflict pair CP (i, j) can be resolved based
on previous trace back information (i.e., previously resolved conflicts). From the conflict tree, we see
that this determination can be made by checking only a fixed number of neighboring conflict pairs. In
fact, from the definition above, we see that the size of the neighborhood is at most 6. For CP (i, j), the
neighbors will be the conflict pairs in the set CP (i′, j′), with (i′ = i− 2h, j′ = j− 2h); (i′ = i+2h, j′ =

j + 2h); (i′ = i − 2h−1, j′ = j − 2h−1); (i′ = i + 2h−1, j′ = j + 2h−1); (i′ = i − 2h−2, j′ = j − 2h−2);
and (i′ = i + 2h−2, j′ = j + 2h−2). Some of these pair of indices may not be valid indices for a
conflict pair. For example, using the previous example, R6 = CP (2, 14) has only one valid neighbor,
{R2 = CP (0, 12)}. Also, given that we resolve the conflicts based on the depth first traversal order,
neighbors of CP (i, j) that are located on a node to the right of CP (i, j) in the conflict tree cannot be
used to resolve conflict CP (i, j). Therefore, in some cases, less than six probes may be needed.
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Let CP (i, j) be the current conflict. Let CP (i′, j′, l′k) be a previously resolved neighboring
conflict. We determine whether CP (i, j) can be resolved based on CP (i′, j′, l′k) using a simple check:
Let ∆ = (i′ − i) = (j′ − j). If ∆ is negative, then CP (i, j) can be resolved with CP (i′, j′, l′k) iff:
|∆| ≤ l′k − 1 Conversely, if ∆ is positive, then CP (i, j) can be resolved with CP (i′, j′, l′k) iff: l′k ≥ 0

If any of the two conditions holds, we say that CP (i, j) is resolved by CP (i′, j′, l′k), after ∆ steps.
Essentially, this means that after ∆ comparison steps, CP (i, j) becomes equivalent to CP (i′, j′, l′k). We
denote this equivalence using the notation: CP (i, j) 7→ CP (i′, j′, l′k). The following algorithm shows
how we can resolve a given conflict pair, CP (i, j).

RESOLVECONFLICT(i, j)

Generate neighbors for CP (i, j)

Remove invalid neighbors
Probe the valid neighbors for previously resolved conflict pairs
for each valid neighbor, compute the quantity d = (l′k − |∆|); end for
Select the neighbor CP (i′, j′, l′k) with maximum value for d

if (∆ < 0 and |∆| ≤ l′k), then /* no extra work is needed */
Compute lk = l′k + ∆ − 1.

else if (∆ > 0 and l′k ≥ 0), then
Perform at most (∆ − 1) extra comparison steps
if (conflict is not resolved after the ∆ − 1 comparisons), then

/*Resolve conflict using CP (i′, j′, l′k) */
Compute lk = l′k + ∆

end if
end if

else /* conflict cannot be resolved using earlier conflicts */
Resolve conflict using direct symbol-wise comparisons

end if

The complexity of conflict resolution (when it can be resolved using previous conflicts) thus depends
on the parameter ∆. Table 1 shows the conflict pairs for the example sequence used to generate the
conflict tree of Figure 2. That table includes the corresponding ∆ value where a conflict can be resolved
based on a previous conflict.

The final consideration is how to store the conflict tree to ensure constant-time access to the resolved
conflict pairs. Since for a given CP (i, j), the (i, j) pair is unique, we can use these for direct access to
the conflict tree. We can store the conflict tree as a simple linear array, where the positions in the array
are determined based on the (i, j) values, and hence the height in the tree. To avoid the sorting that may
be needed for fast access using the (i, j) indices, we use a simple hash function, where each hash value
can be computed in constant time. The size of this array will be O(n log n) in the worst case, since there
are at most n log n conflicts (see analysis below). The result will be an O(1) time access to any given
conflict pair, given its (i, j) index in T .
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Table 1. Conflict pairs for T=aaaabaaaabxaaaab. Rq 7→ Rp indicates that conflict pair
Rq is resolved by a previously resolved conflict pair Rp, after a fixed number of steps. That
is, after the fixed number of steps ∆, conflict pair Rq becomes equivalent to conflict pair Rp.

R CP (i, j, lk) 7→ ∆ R CP (i, j, lk) 7→ ∆ R CP (i, j, lk) 7→ ∆ R CP (i, j, lk) 7→ ∆
R1 (0, 8, 0) − − R9 (6, 8, 1) − − R17 (3, 7, 1) R5 −1 R25 (1, 12, 4) R22 −1
R2 (0, 12, 3) − − R10 (2, 8, 1) R7 −2 R18 (5, 11, 5) R8 +1 R26 (1, 6, 4) R23 −1
R3 (8, 12, 1) − − R11 (8, 14, 2) R8 −2 R19 (5, 7, 2) R9 +1 R27 (6, 13, 2) R24 −1
R4 (6, 14, 1) − − R12 (5, 13, 2) R4 +1 R20 (1, 7, 2) R10 +1 R28 (2, 13, 3) R25 −1
R5 (2, 6, 2) R3 +6 R13 (1, 5, 3) − − R21 (7, 13, 3) R11 +1 R29 (2, 7, 3) R26 −1
R6 (2, 14, 1) R2 −2 R14 (1, 13, 2) R5 +1 R22 (0, 11, 5) − − R30 (7, 14, 1) R27 −1
R7 (0, 6, 3) − − R15 (3, 11, 1) R6 +1 R23 (0, 5, 5) − − R31 (3, 14, 2) R28 −1
R8 (6, 12, 4) − − R16 (7, 11, 2) R3 +1 R24 (5, 12, 3) − − R32 (3, 8, 2) R29 −1

3.5. Complexity Analysis

Clearly, the complexity of the algorithm depends on the overall number of conflicts, the number of
conflicts that require explicit symbol-wise comparisons, the number that can be resolved using earlier
conflicts, and how much extra comparsions are required for those. We can notice that we require
symbol-wise comparison mainly for the conflicts at the leftmost nodes on the conflict tree, and the
first few conflicts in each node. For the sequence used in Figure 2 and Table 1, with n = 16, we have
the following: 32 total number of conflict pairs; 20 can be resolved with only look-ups based on the
neighbors (with no extra comparisons); 1 requires extra comparisons after lookup (a total of 6 extra
comparisons); 11 cannot be resolved using lookups, and thus requires direct symbol-wise; comparisons
(a total of 20 such comparisons in all). This gives 44 overall total comparisons, and 21 total lookups.

This can be compared with the results for the worst case sequence with the same length,
T = a16 = aaaaaaaaaaaaaaaa. Here we obtain: 49 total number of conflict pairs; 37 can
be resolved with only look-ups based on the neighbors (with no extra comparisons); 8 requires extra
comparisons after lookup (a total of 12 extra comparisons); 4 cannot be resolved using lookups, and
thus require direct symbol-wise; comparisons (a total of 19 such comparisons in all). This results in 41
overall total comparisons and 45 total lookups. While the total number of comparisons is similar for
both cases, the number of lookups is significantly higher for T = an, the worst case sequence.

The following lemma establishes the total number of symbol comparisons and the number of conflicts
that can be encountered using the algorithm.

Lemma 1: Given an input sequence T = t0, t2 . . . , tn−1, with length n, the maximum number of
symbol comparisons and the maximum number of conflict pairs are each in O(n log n).

Proof. Deciding on whether we can resolve a given conflict based on its neigbors requires only
constant time, using Algorithm RESOLVECONFLICT(). Assume we are sorting the worst case sequence,
T = an. Consider level h in the conflict tree. First, we resolve the left-most conflict at this level,
say conflict RL. This will require at most n

2hmax−h = n
2h symbol comparisons. For example, at

h = hmax − 1, the level just before the lowest level, the leftmost conflict will be R1 = CP (0, n
2
),

requiring n
2

comparsions. However, each conflict on the same level with RL can be resolved with at
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most n
2hmax−h+1 = 2h−1 comparisons, plus constant time lookup using the earlier resolved neighbors.

A similar analysis can be made for conflict pairs CP (i, j), where both i and j are odd. There are are
at most ( n

2h − 1) conflicts for each node at level h of the tree. Thus, the total number of comparisons
required to resolve all conflicts will be

∑dlog ne
i=0 2i( n

2i − 1) ≤ n log n. In the worst case, each node in
the tree will have the maximum ( n

2h − 1) number of conflicts. Thus, similar to the overall number of
comparisons, the worst case total number of conflicts will be in O(n log n). ¤

We state our complexity results in the following theorem:

Theorem 1: Given an input sequence T = t0, t2 . . . , tn−1, with symbols from an alphabet Σ,
Algorithm I solves the suffix sorting problem in O(n log n) time and O(n) space, for both the average
case and the worst case.

Proof. The worst case result on required time follows from Lemma 1 above. Now consider the
random string with symbols in Σ unifomly distributed. Here, the probablity of encountering one symbol
is 1

|Σ| . Thus, the probability of matching two substrings from T will decrease rapidly as the length of the
substrings increase. In fact, the probability of a conflict of length lk will be Pr{CP (i, j, lk)} = 1

|Σ|2lk
.

Following [30], the maximum value of lk, the length of the longest common prefix for a random string
is given by lmax = O(log|Σ| n). Thus, the average number of matching symbol comparisons for a given
conflict will be:

ηcompare =
∑lmax

lk=1(lk)Pr{CP (i, j, lk)} = 1
|Σ|2.1 + 2

|Σ|2.2 + 3
|Σ|2.3 + . . . + lmax

|Σ|2.lmax

This gives:

ηcompare = 1−|Σ|2.lmax

1−|Σ| =
1− 1

n2

1− 1
|Σ|2

= n2−1
n2 . |Σ|2

|Σ|2−1
≤ 2

For each conflict pair, there will be exactly one mismatch, requiring one comparison. Thus, on
average, we require at most 3 comparisons to resolve each conflict pair.

The probability of a conflict is just the probablity that any two randomly chosen symbols will match.
This is simply 1

|Σ|2 . However, we still need to make at least one comparison for each potential conflict
pair. The number of this potential conflict pairs is exacty the same as the worst case number of conflicts.
Thus, although the average number of comparisons per conflict is constant, the total time required to
resolve all conflicts is still in O(n log n).

We can reduce the space required for conflict resolution as follows. A level-h conflict pair can be
resolved based on only previous conflicts (its neighbors), all at the same level, h. Thus, rather than the
current depth-first traversal, we change the traversal order on the tree, and use a bottom-up breadth-first
traversal. Then, starting with the lowest level, h = dlog ne, we resolve all conflicts at a given level
(starting from the leftmost), before moving up to the next level. Then, we re-use the space used for the
lower levels in the tree. This implies a maximum of n − 1 entries in the hash table at any given time, or
O(n) space.

We make a final observation about the nature of the algorithm above. It may be seen that, in deed,
we do not need to touch T2, the odd tree at all, until the very last stage of final merging. Since we can
sort T1 to obtain SA1 without reference to T2, we can therefore use SA1 to sort T2 using radix sort, since
positions in T1 and T2 are adjacent in T . This will eliminate consideration of the (n − 1) worst case
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conflicts at level h = 0, and all the conflicts in T2. This will however not change the complexity results,
since the main culprit is the O(n log n) total number of conflicts in the worst case. We make use of this
observation in the next section, to develop an O(n) time and space algorithm for suffix sorting.

4. Algorithm II: Improved Algorithm

The major problem with Algorithm I is the time taken for conflict resolution. Since the worst case
number of conflicts is in O(n log n), an algorithm that performs a sequential resolution of each conflict
can do no better than O(n log n) time in the worst case. We improve the algorithm by modifying the
recursion step, and the conflict resolution strategy. Specifically, we still use binary partitioning, but we
use a non-symmetric treatment of the two branches at each recursion step. That is, only one branch will
be sorted, and the second branch will be sorted based on the sorted results from the first branch. This is
motivated by the observation at the end of the last section. We also use a preprocessing stage inspired by
methods in information theory to facilitate fast conflict resolution.

4.1. Overview of Algorithm II

In Algorithm I, we perform symmetric division of T into two subsequences T1 and T2, and then
merge their respective suffix arrays SA1 and SA2 to form SA, the suffix array of T . SA1 and SA2

in turn are obtained by recursive division of T1 and T2 and subsequent merging of the suffix arrays of
their respective children. The improvement in Algorithm II is that when we divide T into T1 and T2,
the division is no longer symetric. Similar to the KS Algorithm [9], here we form T1 and T2 as follows:
T1 = {T [j], j ∈ [0, |T |)| j mod 3 = 0}, T2 = {T [j], j ∈ [0, |T |)| j mod 3 6= 0}. This is a 1:2
asymetric partitioning. The division schemes are special cases of the general 1 : η partitioning, where
η = 2 in the above, while η = 1 in the symetric partitioning scheme of Algorithm I. An important
parameter is α, defined as: α = 1+η

η
. In the current case, α = 1.5.

Further, the recursive call is now made on only one branch of T , namely T2. After we obtain the suffix
array SA2 for T2, we radix sort T1 based on the values in SA2 to construct SA1. This radix sorting step
only takes linear time. The merging step remains similar to Algorithm I, though with some important
changes to accomodate the above non-symetric partitioning of T . We also now use an initial ordering
stage for faster conflict resolution.

4.2. Sort T2 to Form SA2

After dividing T into T1 and T2, we need to sort each child sequence to form its own smaller suffix
array. Consider T2. We form SA2 by performing the required sorting recursively, using a non-symmetric
treatment of each branch. T2 is thus sorted by a recursive subdivision, and local sorting at each step. The
suffix arrays of the two children are then merged to form the suffix array of their parent. Figure 3 shows
this procedure for the example sequence T = aaaabaaaabxaaaab. Merging can be performed as
before (with changes given the non-symetric nature of T1 and T2). The key to the algorithm is how to
obtain the sorted array of the left child from that of the right child at each recursion step.
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Figure 3. Asymmetric recursive partitioning for improved algorithm, using
T = aaaabaaaabxaaaaab. Recursive partitioning is performed on the right branch.

4.3. Sort T1 by Inducing SA1 from SA2

Without loss in generality, we assume T1 is unsorted and T2 has been sorted to form SA2. Given
the partitioning scheme, we have that for any tk ∈ T1, tk+1 ∈ T2. There must exist an ordering of
tk+1 ∈ SA2, since the indices in SA2 are unique. For each k, we construct the set of pairs P , given by
P = {〈tk, SA′

2[k + 1])|tk ∈ T1〉}. Each pair in P is unique. Then, we radix sort P to generate the suffix
array SA1 of T1. This step can thus be accomplished in linear time. This only works for the highest level
(i.e., obtaining SA1 from SA2). However, we can use a similar procedure, but with some added work, at
the other levels of recursion.

Consider a lower level of recursion, say at level h. See Figure 3. We can append the values in the
SA from the right tree so that we can perform successive bucket sorts. Thus, we use the SA from
the right tree as the tie breaker, after a certain number of steps. In general, this will not change the
number of comparisons at the lowest level of the tree. However, for the general case, this will ensure
that at most αh−1 bucket sorts are performed, involving αhmax−h symbols in each bucket sort, where
hmax = dlogα ne is the lowest level of recursion. For instance, using the example in Figure 3, at h = 3,
we will have T1 = a2a8, and T2 = b4a7a11a13 (for convenience, we have used superscripts to denote the
respective positions in the original sequence T ). Assume T2 has been sorted to obtain SA2 = [3 2 1 0].
Using SA2, we now form the sequences:

T [2]T [4] ◦ 3

T [8]T [11] ◦ 1
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where symbol ’◦’ denotes concatenation. The last symbol in each sequence is obtained from SA2, the
suffix array of the right tree. These sequences are then bucket-sorted to obtain SA1. Since bucket sorting
is linear in the number of input symbols, in the worst case, this will result in a total of O(n) time at each
level. Thus, the overall time for this procedure will still be in O(n log n) worst case.

We can also observe that with the asymetric partitioning, and by making the recursive call on only
one partition at each level, we reduce both the overall number of conflicts and number of comparisons
to O(n). But the number of lookups could still be in O(n log n) worst case.

4.4. Improved Sorting - Using Shannon-Fano-Elias Codes

The key to improved sorting is to reduce the number of bucket sorts in the above procedure. We do
this by pre-computing some information before hand, so that the sorting can be performed based on a
small block of symbols, rather than one symbol at a time. Let m be the block size. With the precomputed
information, we can perform a comparison involving an m-block symbol in O(1) time. This will reduce
the number of bucket sorts required at each level h from αh−1 to αh−1

m
, each involving αhmax−h symbols.

By an appropriate choice of m, we can reduce the complexity of the overall sorting procedure. For
instance, with m = log log n, this will lead to an overall worst case complexity in O( n log n

log log n
) time for

determining the suffix array of T1 from that of T2. With m = log n, this gives O(n) time. We use
m = log n in subsequent discussions.

The question that remains then is how to perform the required computations, such that all the needed
block values can be obtained in linear time. Essentially, we need a pair-wise global partial ordering of
the suffixes involved in each recursive step. First, we observe that we only need to consider the ordering
between pairs of suffixes at the same level of recursion. The relative order between suffixes at different
levels is not needed. For instance, using the example sequence of Figure 3, the sets of suffixes for which
we need the pair-wise orderings will be those at positions: {{1, 5, 10, 14}; {2, 8}; {4, 13}}. Each subset
corresponds to a level of recursion, from h = 2 to h = hmax − 1. Notice that we don’t necessarily
need those at level h = 1, as we can directly induce the sorted order for these suffixes from SA2, after
sorting T2.

We need a procedure to return the relative order between each pair of suffix positions in constant time.
Given that we already have an ordering from the right tree in SA2, we only need to consider the prefixes
of the suffixes in the left tree up to the corresponding positions in T2, such that we can use entries in
SA2 to break the tie, after a possible αh−1

m
bucket sorts. Let Qi be the m-length prefix of the suffix T ′

i :
Qi = T [i . . . i + m − 1]. We can use a simple hash function to compute a representative of Qi, for
instance using the polynomial hash function:

h(Qi) =
∑m−1

j=0 |Σ|m−1f(Qi[j]) mod n′

where f(x) = k, if x is the k-th symbol in Σ, k = 0, 1, . . . , |Σ| − 1, and n′ is the nearest prime
number ≥ n. The problem is that the ordering information is lost in the modulus operation. Although
order-preserving hash functions exist (see [31]), these run in O(n) time on average, without much
guarantees on their worst case. Also, with the m-length blocks, this may require O(mn) = O(n log n)

time on average.
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We use an information theoretic approach to determine the ordering for the pairs. We consider
the required representation for each m-length block as a codeword that can be used to represent the
block. The codewords are constrained to be order preserving: That is, C(Qi) < C(Qj) iff Qi ≺ Qj and
C(Qi) = C(Qj) iff Qi = Qj , where C(x) is the codeword for sequence x. Unlike in traditional source
coding where we are given one long sequence to produce its compact representation, here, we have
a set of short sequences, and we need to produce their respective compact representations, and these
representations must be order preserving.

Let Pi be the probability of Qi, the m-length block starting at position i in T . Let pi be the probability
of symbol ti = T [i]. If necessary, we can pad T with a maximum of (m − 1) ’$’ symbols, to form
a valid m-block at the end of the sequence. We compute the quantity: P ′

i =
∏i+m−1

k=i pk. Recall that
ti = T [i] ∈ Σ, and

∑|Σ|−1
j=0 Pr{σj} = 1. For a given sequence T , we should have:

∑n−1
i=0 P ′

i = 1.
However, since T may not contain all the possible m−length blocks in Σm, we need to normalize the
product of probabilities to form a probability space:

Pi =
P ′

i∑n−1
i=0 P ′

i

(1)

To determine the code for Qi, we then use the cumulative distribution function (cdf) for the Pi’s, and
determine the corresponding position for each Pi in this cdf. Essentially, this is equivalent to dividing a
number line in the range [0 1], such that each Qi is assigned a range proportional to its probability, Pi.
See Figure 4. The total number of divisions will be equal to the number of unique m-length blocks in T .
The problem then is to determine the specific interval on this number line that corresponds to Qi, and to
choose a tag qi to represent Qi.

Figure 4. Code assignment by successive partitioning of a number line.

021

0 1 2

0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

0 1.0

We use the following assignment procedure to compute the tag, qi. First we determine the interval
for the tag, based on which we compute the tag. Define the cumulative distribution function for the
symbols in Σ = {σ0, σ1, . . . , σ|Σ|−1}: Fx(σj) =

∑j
v=0 Pr{σv}. The symbol probabilities, Pr{σv}’s

are simply obtained based on the pi’s. For each symbol σk in Σ, we have an open interval in the cdf:
[Fx(σk−1) Fx(σk)). Now, given the sequence Qi = s1s2 . . . sk . . . sm, si ∈ Σ, the procedure steps
through the sequence. At each step k, k = 1, 2, . . . ,m along the sequence, we can compute U(k) and
L(k), the respective current upper and lower ranges for the tag using the following relations:
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L(0) = 0; U(0) = 1

for k = 1 to m :

U(k) = L(k − 1) + [U(k − 1) − L(k − 1)]Fx(sk)

L(k) = L(k − 1) + [U(k − 1) − L(k − 1)]Fx(sk − 1)

The procedure stops at k = m, and the values of U(k) and L(k) at this final step will be the range of the
tag, qi. We can choose the tag qi as any number in the range: L(m) ≤ qi < U(m). Thus we chose qi as
the mid point of the range at the final step: qi = U(m)+L(m)

2
. Figure 5(a) shows an example run of this

procedure for a short sequence: Qi = acabd with a simple alphabet, Σ = {a, b, c, d}, and where each
symbol has an equal probability pi = 1

4
. This gives qi = 271

2048
.

Figure 5. Code assignment procedure, using an example sequence. The vertical line
represents the current state of the number line. The current interval at each step in the
procedure is shown with a darker shade. The symbol considered at each step is listed under
their respective number lines (a) Using the sequence Qi = acabd. (b) Evolution of code
assignment procedure, after removing the first symbol (in previous sequence acabd), and
bringing in a new symbol a to form a new sequence: Qi+1 = cabda.
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Lemma 2: The tag assignment procedure results in a tag qi that is unique to Qi.

Proof. The procedure described can be seen as an extension of the Shanon-Fano-Elias coding
procedure used in source coding and information theory [32]. Each tag qi is analogous to an arithmetic
coding sequence of the given m-length block, Qi. The open interval defined by [(L(m) U(m)) for each
m-length sequence is unique to the sequence.

To see this uniqueness, we notice that the final number line at step m represents the cdf for all
m-length blocks that appeared in the original sequence T . Denote this cdf for the m-blocks as Fm

x .
Given Qi, the i-th m-block in T , the size of its interval is given by (U(m) − L(m)) = Pi. Since all
probabilities are positive, we see that Fm

x (Qi) 6= Fm
x (Qj) whenever Qi 6= Qj . Therefore, Fm

x (Qi)

determines Qi uniquely. Thus, Fm
x (Qi) serves as a unique code for Qi. Choosing any number qi within

the upper and lower bounds for each Qi define a unique tag for Qi. Thus the chosen tag defined by the
midpoint of this interval is unique to Qi. ¤

Lemma 3: The tags generated by the assignment procedure are order preserving.

Proof. Consider the ordering of the tags for different m-length blocks. Each step in the assignment

procedure uses the same fixed order of the symbols on a number line, based on their order in Σ. Thus,
the position of the upper and lower bounds at each step depends on the previous symbols considered,
and the position of the current symbol in the ordered list of symbols in Σ. Therefore the qi’s are ordered
with respect to the lexicographic ordering of the Qi’s: qi < qj ⇔ Qi ≺ Qj , and qi = qj ⇔ Qi = Qj . ¤

Lemma 4: Given T = t0t1 . . . tn−1, all the required tags qi,∀i, can be computed in O(n) time.

Proof. Suppose we have already determined Pi and qi for the m-block Qi as described above. For
efficient processing, we can compute Pi+1 and the tag qi+1 in the [0 1] number line, using the previous
values for Pi and qi. This is based on the fact that Qi and Qi+1 are consecutive positions in T (In practice,
we need only a fraction of the positions in T , which will mean less time and space are required. But here
we describe the procedure for the entire T since the complexity remains the same.). In particular, given
Qi = T [i . . . i + m − 1], and Qi+1 = T [i + 1 . . . i + m]. We compute P ′

i+1 as:

P ′
i+1 =

P ′
i .pi+m

pi

Then, we compute Pi+1 using Equation (1). Thus, all the required Pi’s can be computed in
O(n + m) = O(n + log n) = O(n) time.

Similarly, given the tag qi for Qi, and its upper and lower bounds U(m) and L(m), we can compute
the new tag qi+1 for the incoming m-block, Qi+1 based on the structure of the assignment procedure
used to compute qi, (see Figure 5(b)). We compute the new tag qi+1 by first computing it’s upper and
lower bounds. Denote the respective upper and lower bounds for qi as: U i(m), Li(m). Similarly, we use
U i+1(m), Li+1(m) for the respective bounds for qi+1. Let s = T [i] = Qi[0] be the first symbol in Qi. Its
probability is given by pi. Also, let snew = T [i + m] be the new symbol that is shifted in. Its probability
is given by pi+m, and we also know it’s position in the cdf. We first compute the intermediate bounds at
step k = m − 1 when using Qi+1, namely:

U i+1(m − 1) = [U(m) − Fx(s)](
1
pi

)

Li+1(m − 1) = [L(m) − Fx(s − 1)]( 1
pi

)



Algorithms 2010, 3 162

Multiplying by ( 1
pi

) changes the probability space from the previous range of [Fx(s − 1) Fx(s))

to [0 1]. After the computations, we can then perform the last step in the assignment procedure to
determine the final range for the new tag:

U i+1(m) = Li+1(m − 1) + [U i+1(m − 1) − Li+1(m − 1)]Fx(snew)

Li+1(m) = Li+1(m − 1) + [U i+1(m − 1) − Li+1(m − 1)]Fx(snew − 1)

The tag qi+1 is then computed as the average of the two bounds as before. The worst case time
complexity of this procedure is in O(n + m + |Σ|) = O(n + log n + |Σ|). The |Σ| component comes
from the time needed to sort the unique symbols in T before computing the cdf. This can be performed
in linear time using counting sort. Since |Σ| ≤ n, this gives a worst case time bound of O(n) to compute
the required codes for all the O(n) m-length blocks. ¤

Figure 5(b) shows a continuation of the previous example, with the old m-block: Qi = acabd, and a
new m-block Qi+1 = cabda. That is, the new symbol a has been shifted in, while the first symbol in the
old block has been shifted out. We observe that the general structure in Figure 5(a) is not changed by
the incoming symbol, except only at the first step and last step. For the running example, the new value
will be qi+1 = 1051

2048
. Table 2 shows the evolution of the upper and lower bounds for the two adjacent

m-blocks. The bounds are obtained from the figures.

Table 2. Upper and lower bounds on the current interval on the number line.

a c a b d c a b d a

Uk 1 1
4

3
16

9
64

17
128 1 3

4
9
16

17
32

17
32

Lk 0 0 1
8

1
8

33
256 0 1

2
1
2

33
64

135
256

Uk − Lk 1 1
4

1
16

1
64

1
256 1 1

4
1
16

1
64

1
256

Having determined qi, which is fractional, we can then assign the final code for Qi by mapping the
tags to an integer in the range [0 n − 1]. This can be done using a simple formula:

ci=C(Qi) = b(n − 1) qi−qmin

qmax−qmin
c

where qmin = mini{qi}, and qmax = maxi{qi}. Notice that here, the ci’s computed will not necessarily
be consecutive. But they will be ordered. Also, the number of distinct qi’s is at most n. The difference
between ci and ci+1 will depend on Pi and Pi+1. The floor function, however, could break down the
lexicographic ordering. A better approach is to simply record the position where each Qi fell on the
number line. We then read off these positions from 0 to 1, and use the count at which each Qi is
encountered as its code. This is easily done using the cummulative count of occurence of each distinct
Qi. Since the qi’s are implicitly sorted, so are the ci’s. We have thus obtained an ordering of all the
m-length substrings in T . This is still essentially a partial ordering of all the suffixes based on their
first m symbols, but a total order on the distinct m-length prefixes of the suffixes.
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We now present our main results in the following theorems:

Theorem 2: Given the sequence T = t0t1 . . . tn−1, from a fixed alphabet Σ, |Σ| ≤ n, all the m-length
prefixes of the suffixes of T can be ordered in linear time and linear space in the worst case.

Proof. The theorem follows from Lemmas 2 to 4. The correctness of the ordering follows from
Lemma 2 and Lemma 3. The time complexity follows from Lemma 3. What remains is to prove is the
space complexity. We only need to maintain two extra O(|Σ|) arrays, one for the number line at each
step, and the other to keep the cumulative distribution function. Thus, the space needed is also linear in
O(n + m + |Σ|) = O(n). ¤

Theorem 3: Given the sequence T = t0t1 . . . tn−1, with symbols from a fixed alphabet Σ, |Σ| ≤ n,
Algorithm II computes the suffix array of T in O(n) worst case time and space.

Proof. At each iteration, the recursive call applies only to the 2
3
n suffixes in T2. Thus, the running

time for the algorithm is given by the solution to the recurrence : ϕ(n) = ϕ(d2
3
ne) + O(n). This

gives ϕ(n) = O(n). Combined with Theorem 2, this establishes the linear time bound for the
overall algorithm.

We improve the space requirement using an alternative merging procedure. Since we now have SA1

and SA2, we can modify the merging step by exploiting the fact that any conflict that can arise during
the merging can be resolved by using only SA2. To resolve a conflict between suffix T1i

in T1 and suffix
T2j

in T2, we need to consider two cases:

• Case 1: If j mod 3 = 1, we compare 〈T1[i], SA2[SA′
2[i + 1]]〉 versus 〈T2[j], SA2[SA′

2[j + 1]]〉,
since the relative order of both T1i+1

and T2j+1
are available from SA2.

• Case 2: If j mod 3 = 2, we compare 〈T1[i], T1[i + 1], SA2[SA′
2[i + 2]]〉 versus 〈T2[j], T2[j +

1], SA2[SA′
2[j + 1]]〉. Again, for this case, the tie is broken using the triplet, since the relative

order of both T1i+2
and T2j+2

are also available from SA2.

Consider the step just before we obtain SA1 from SA2 as needed to obtain the final SA. We needed
the codes for the m-blocks in sorting to obtain SA2. Given the 1:2 non-symetric partitioning used, at this
point, the number of such m-blocks needed for the algorithm will be 2

3
.2
3
n. These require 4

9
n integers

to store. We need 2
3
n integers to store SA2. At this point, we also still have the inverse SA used to

merge the left and right suffix arrays to form SA2. This requires 4
9
n integers for storage. Thus, the

overall space needed at this point will be 15
9
n integers, in addition to the space for T . However, after

getting SA2, we no longer need the integer codes for the m-length blocks. Also, the merging does
not involve SA

′
1, so this need not be computed. Thus, we compute SA′

2, and re-use the space for the
m-block codes. SA′

2 requires 2
3
n integers. Further, since we are merging SA1 and SA2 from the same

direction, we can construct the final SA in-place, by re-using part of the space used for the already
merged sections of SA1 and SA2. (See for example [33, 34]). Thus, the overall space requirement in
bits will be (n log |Σ| + n log n + 2

3
n log n) = (n log |Σ| + 12

3
n log n), where we need n log |Σ| bits to

store T , n log n bits for the output suffix array, and 2
3
n log n bits for SA

′
2. ¤

The above translates to a total space requirement of 72
3
n bytes, using standard assumptions of 4 bytes

per integer, and 1 byte per symbol.
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Though the space above is O(n), the 2
3
n log n bits used to store SA

′
2 could further be reduced. We

do this by by making some observations in the above two cases encountered during merging. We can
notice that after obtaining SA2 and SA1, we do not really need to store the text T anymore. The key
observation is that, merging of SA2 and SA1 proceeds in the same direction for each array, for instance,
from the least to the largest suffix. Thus, at the k-th step, the symbol at position i = SA

′
2[k] (that is,

T2[i]) can easily be obtained using SA2, and two O(|Σ|) arrays, namely, B1: which stores the symbols
in Σ in lexicographic order, and B2 that stores the cummulative count for each symbol in T2.

For T2[i + 1], we compute SA2[SA
′
2[i] + 1]) and use the value as index into B2. We then use the

position in the B2 arrray to determine the symbol value from B1. Similarly we obtain the symbol
T1[i] = T1[SA

′
1[k]], using a second set of O(|Σ|) arrays. For symbol T1[i + 1] we do not have SA

′
1.

However, we can observe that symbol T1[i+1] will be some symbol T2[j] in T2. Hence, we can use SA2

and SA
′
2 to determine the symbol, as described above.

Thus, we can now release the space currently used to store T and use this in part to store SA
′
2, and

then merge SA1 and SA2 using SA
′
2 and the two sets of O(|Σ|) B1, B2 arrays. The space saving gained

in doing this will be: (n log |Σ| − 2(|Σ| log |Σ| + |Σ| log n)) ≈ n log |Σ| bits. Using this in the previous
space analysis leads to a final space requirement of (n log n+ 2

3
n log n+2|Σ|(log |Σ|+log n)−n log |Σ|)

≈ (12
3
n log n−n log |Σ|) bits. This gives 52

3
n bytes, assuming n ≤ 232, |Σ| ≤ 256 at 4 bytes per integer.

Finally, since we do not need SA
′
2 anymore, we can release the space it is occupying. Compute a new

set of B1 and B2 arrays (in place) for the newly computed SA. The second set of O(|Σ|) arrays are no
longer needed. Using SA and the new B1 and B2 arrays, we now recover the original sequence T , at no
extra space cost.

5. Conclusion and Discussion

We have proposed two algorithms for solving the suffix sorting problem. The first algorithm runs
in O(n log n) time and O(n) space, for both the averge case and worst case. Using ideas from
Shannon-Fano-Elias codes used in infomation theory, the second algorithm improved the first to an
O(n) worst case time and space complexity. The algorithms proposed perform direct suffix sorting on
the input sequence, circumventing the need to first construct the suffix tree.

We mention that the proposed algorithms are generally independent of the type of alphabet, Σ. The
only requirement is that Σ be fixed during the run of the algorithm. Any given fixed alphabet can be
mapped to a corresponding integer alphabet. Also, since practically the number of unique symbols in
|T | cannot be more than n, the size of T , it is safe to say that n ≥ |Σ|.

For practical implementation, one will need to consider the problem of practical code assignment,
since the procedure described may involve dealing with very small fractions, depending on m, the block
length, and |Σ|. This is a standard problem in practical data compression. With n ≤ 232, |Σ| = 256, we
have m = 32,and thus we may need to store values as small as 1

|Σ|32 = 1
25632 while computing the tags.

This translates to 1
2256 , or about 1.158× 10−77. In most implementations, a variable of type double can

store values as small as 1.7×10−308. For the case of 1:2 asymetric partitioning used above, we need only
only 4n

9
of the m-blocks, and hence, the overall space needed to store them will still be n integers, since

the size of double is typically twice that of integers. To use the approach for much larger sequences,
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periodic re-scaling and re-normalization schemes can be used to address the problem. Another approach
will be to consider occurrence counts, rather than occurrence probabilities for the m-blocks. Here, the
final number line will be a cummulative count, rather than a cdf, with the total counts being n. Then, the
integer code for each m-block can easily be read off this number line, based on its overall frequency of
occurrence. Therefore, we will need space for at most 4n

9
+ |Σ| integers in computing the integer codes

for the positions needed. Moffat et al. [35] provide some ideas on how to address practical problems in
arithmetic coding.

Overall, by a careful re-use of previously allocated space, the algorithm requires
(12

3
n log n − n log |Σ|) bits, including the n bytes needed to store the original string. This translates

to 52
3
n bytes, using standard assumptions of 4 byte per integer, and 1 byte for each symbol. This is

a significant improvement over the 10n bytes required by the KA algorithm [10], or the 13n bytes
required by the KS algorithm [9]. Our algorithm is also unique in its use of Shannon-Fano-Elias codes,
traditionally used in source coding, for efficient suffix sorting. This is the first time information-theoretic
methods have been used as the basis for solving the suffix sorting problem. We believe that this new
idea of using an information theoretic approach to suffix sorting could shed a new light on the problems
of suffix array construction, their analysis, and applications.
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