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Abstract: Techniques in image similarity can be used to improve the classification of 

breast cancer images. Breast cancer images in the mammogram modality have an 

abundance of non-cancerous structures that are similar to cancer, which make classification 

of images as containing cancer especially difficult to work with. Only the cancerous part of 

the image is relevant, so the techniques must learn to recognize cancer in noisy 

mammograms and extract features from that cancer to appropriately classify images. There 

are also many types or classes of cancer with different characteristics over which the 

system must work. Mammograms come in sets of four, two images of each breast, which 

enables comparison of the left and right breast images to help determine relevant features 

and remove irrelevant features. In this work, image feature clustering is done to reduce the 

noise and the feature space, and the results are used in a distance function that uses a 

learned threshold in order to produce a classification. The threshold parameter of the 

distance function is learned simultaneously with the underlying clustering and then 

integrated to produce an agglomeration that is relevant to the images. This technique can 

diagnose breast cancer more accurately than commercial systems and other  

published results.  

Keywords: cancer; similarity; classification 

 

1. Introduction  
 

A technique that radiologists use to diagnose breast cancer involves first finding suspicious sites in 

the mammograms and then comparing the left and right breasts to reduce the number of false positives. 
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The symmetry of the human body is utilized to increase the accuracy of the diagnosis through visual 

registration of the mammograms. This technique is emulated by combining both computer vision and 

learning techniques, attempting to capture the diagnosis of the radiologist. Therefore this work is 

motivated not only by computer science theory and technique, but also by domain-specific knowledge 

and theory. These ideas were verified through an approach that has been completed with surprisingly 

good results at diagnosing breast cancer. It is hoped that this work will improve techniques in image 

similarity and classification, as well as provide insights into medical imaging and especially into the 

imaging, diagnosis, and classification of breast cancer.  

Breast cancer remains a leading cause of cancer deaths among women in many parts of the world. 

In the United States alone, over forty thousand women die of the disease each year [1]. Mammography 

is currently the most effective method for early detection of breast cancer [2], and example 

mammograms are shown in Figure 1. Computer-aided detection (CAD) of mammograms could be 

used to avoid these missed diagnoses, and has been shown to increase the number of cancers detected 

by more than nineteen percent [3], so there is hope that improving techniques in computerized 

detection of breast cancer could significantly improve the lives of women across the globe. Studies 

have shown that CAD can improve the search and detection of cancer associated with  

micro-calcification clusters [4,5], but cancers associated with masses are often considered to be false 

positives in the clinical environment [6,7]. Poor performance is caused by high false-positive rates [8] 

and the use of only one view [9]. The benefit of using CAD systems are still being tested [10,11], and 

new CAD schemes are being developed [12-26]. Asymmetry, which consists of a comparison of the 

left and right breast images [27], is a technique that could be used to significantly improve the results. 

An automated prescreening system only classifies a mammogram as either normal or suspicious, while 

CAD picks out specific points as cancerous [28]. One of the most challenging problems with 

prescreening is the lack of sensitive algorithms for the detection of asymmetry [29]. Image similarity 

methods can capture the asymmetry properties, and then improve both CAD and prescreening of  

breast cancer.  

Contextual and spatial comparisons can be combined to determine image similarity, which has been 

often utilized in image databases [30-33]. Medical image databases have also used image similarity, 

ranging from rule-based systems for chest radiographs [34] to anatomical structure matching for 3-D 

MR images [35] to learning techniques [36]. This work applies image similarity concepts to the 

problem of detecting breast cancer for CAD in mammograms.  

Detecting breast cancer in mammograms is challenging because the cancerous structures have many 

features in common with normal breast tissue. This means that a high number of false positives or false 

negatives are possible. Asymmetry can be used to help reduce the number of false positives so that true 

positives are more obvious. Previous work utilizing asymmetry has used wavelets or structural clues to 

detect asymmetry with correct results as often as 77% of the time [27,37]. Additional work has focused 

on bilateral or temporal subtraction, which is the attempt to subtract one breast image from the  

other [38,39]. This approach is hampered by the necessity of exact registration and the natural 

asymmetry of the breasts. Bilateral subtraction tries to utilize the multiple images taken with the same 

machine by the same technician and analyzed using the same process in an effort to reduce the 

systematic differences that can be introduced. Developing ways to better utilize asymmetry is 

consistent with a philosophy of trying to use methods that can capture measures deemed important by 
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doctors thereby building upon their knowledge base, instead of trying to supplant it. However, 

measuring asymmetry involves registration and comparing multiple images, and thus it is a more 

complicated process.  

Figure 1. The typical set of four images that make up a mammogram, the side view of the 

left breast in (a), the side view of the right breast in (b), the top view of the left breast in 

(c), the top view of the right breast in (d). The cancerous areas are outlined in red. Since 

the images come in sets, the non-cancerous cases are examples of similar images, while the 

cancerous cases are examples of dissimilar images, and these examples can be used to 

determine image similarity. Note that the textures of the cancer are very similar to non-

cancerous areas, which is why image comparisons are so important in the analysis of 

mammograms. Also note that the cancer is apparent in both images of the same breast, 

which provides additional information for the analysis. This image set was correctly 

classified by the method described in Section 3. 

 
(a) (b) (c) (d) 

 

Registration is the matching of points, pixels, or structures in one image to another image. 

Registration of mammograms is difficult because mammograms are projections of compressed  

three-dimensional structures. Primary sources of registration errors are differences in positioning and 

compression, which manifests itself in visually different images. The problem is more complex 

because the breast is elastic and subject to compression. Additional sources of difficulty include the 

lack of clearly defined landmarks and the normal variations between breasts. Strictly speaking, precise 

mammogram registration is intractable. However, an approximate solution is possible [40]. Warping 

techniques have been used [41], as well as statistical models [42] or mutual information as a basis for 

registration [43]. The technique advanced in this paper learns image comparison models based upon a 

clustering that encapsulates an approximate registration and uses them to compare the mammograms 

of the left and right breasts. This also avoids direct registration when measuring the image similarity. 

The rest of this paper is organized as follows. Section 2 describes mammogram images and feature 

extraction from mammograms. Section 3 details the approach taken as an initial data exploration and 

classification approach, and the development of a distance function. Section 4 describes the 

improvement to CAD approaches through the inclusion of similarity. The conclusion is in Section 5.  
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2. Mammogram Image Description and Feature Extraction 
 

A mammogram is an x-ray exam of the breast. It is used to detect and diagnose breast disease, both 

in women who have no breast complaints or symptoms and in women who have breast cancer 

symptoms (such as a lump). The special type of x-ray machine used for the breasts is different than for 

other parts of the body. This type of machine produces x-rays that do not penetrate tissue as easily as 

that used for routine chest films or x-rays of the arms or legs, and gives a better image of variations in 

tissue density. For a mammogram, the breast is squeezed between two plastic plates attached to the 

mammogram machine unit in order to spread the tissue apart. This squeezing or compression ensures 

that the calibration will be accurate, that there will be very little movement so the image is sharper, and 

that the exam can be done with a lower x-ray dose. However, it also makes 3-D reconstruction of the 

breast structure much more difficult. 

Mammography produces a black and white image of the breast tissue on a large sheet of film which 

is interpreted by a radiologist. The appearance of the breast on a mammogram varies a great deal from 

woman to woman. Some breast cancers produce changes in the mammogram that are difficult to 

notice. Breast cancer takes years to develop. Early in the disease, most breast cancers have none of the 

obvious symptoms like lumps. When breast cancer is detected in a localized stage and when it has not 

spread to the lymph nodes, the five year survival rate is 98% [1]. If the cancer has spread to the 

auxiliary lymph nodes, the rate drops to 80% [1]. If the cancer has metastasized to distant organs such 

as the lungs, bone marrow, liver, or brain, the five-year survival rate is only 26% [1]. A screening 

mammogram is an x-ray exam of the breast in a woman who has no symptoms and usually takes two 

x-ray images of each breast, as is shown in Figure 1. The goal of a screening mammogram is to find 

cancer when it is still too small to be felt by a woman or her doctor. Finding small breast cancers early 

by a screening mammogram greatly improves a woman’s chance for successful treatment and survival.  

Breasts vary in density, which affects the appearance of the breast in mammograms. Examples of 

the variations are shown in Figure 2. The American College of Radiology (ACR) Breast Imaging 

Reporting and Data System (BIRADS) characterizes these as ranging from 1-4, with 4 being the most 

dense. A dense breast presents more non-cancerous structures on a mammogram that can obscure  

a mass.  

The majority of work on feature analysis of mammograms has been through CAD efforts, focusing 

on determining the contextual similarity to cancer and finding abnormalities in a local area of a single 

image [44,45]. The primary methods used range from filters to wavelets to learning methods. In this 

context, filters are equivalent to shapes that are searched for in an image. Wavelets are the result of 

applying a transform to the image, and learning methods try to apply prior knowledge to combine a set 

of low-level image features like pixel intensities into an accurate classification. Problems arise in using 

filter methods [44] because of the range of sizes and morphologies for breast cancer, as well as the 

difficulty in differentiating cancerous from non-cancerous structures. The size range problem has been 

addressed by using multi-scale models [45]. Multiple types of filters must be used to handle the 

variation in the morphology of various cancers. Similar issues affect wavelet methods, although their 

use has led to reported good results [46] with the size range issue being improved through the use of a 

wavelet pyramid [47]. Learning techniques have included support vector machines [48] and neural 

networks [46]. 
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Figure 2. The variations in density a mammogram, the least dense in (a) being 

characterized as mostly fat to the very dense breast in (d). The American College of 

Radiology (ACR) Breast Imaging Reporting and Data System (BIRADS) characterizes 

these as ranging from 1–4, with 4 being the most dense.  

 

(a) (b) (c) (d) 

 

Our analysis starts with CAD prompts to find the contextually similar suspicious points that could 

be cancers in the mammograms. The CAD technique highlights the areas of the image that have bright 

cores, a characteristic of spiculated lesions as shown in Figure 3a. The filter calculates the percent of 

the pixels in the outer ring that are less bright than the least bright of the pixels in the inner disk to 

produce a suspiciousness value, and an example is given in Figure 3b. This suspiciousness value 

represents the degree to which the surrounding region of a point radially decreases in intensity, and is 

done over several sizes. This results in focusing on the bright central core of the cancer and ignoring 

the radiating lines of spiculation. A second filter can be used to detect the radiating lines of spiculation, 

as shown in Figure 3c, but a combined filter shown in Figure 3d that detects both the cores and the 

spiculation could improve the performance, especially if the relative weighting of the measurements is 

learned on an appropriate data set. 

Figure 3. (a) Mammographic image of a spiculated lesion. (b) AFUM filter. (c) Cosine 

Gabor filter. (d) Combined filter.  

 

(a) (b) (c) (d) 

 

The CAD suspiciousness calculation is performed at each pixel location (x,y) in the images. The 

minimum intensity Imin within r1 is found, and then the fraction of pixels between r1 and r2 with 

intensities less than Imin is calculated. This yields the fraction under the minimum (FUM) for one set of 

r1 and r2. Keeping r1 – r2 = b constant and averaging the FUM over a range of r1 determines the 
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average fraction under the minimum (AFUM) [31]. The AFUM is then considered to be a 

suspiciousness value, and represents the extent to which the surrounding region of a point radially 

decreases in intensity. The CAD prompt output is a set of these suspicious points that are above a 

certain threshold. Since this is done over a range of sizes, it can respond to cancers of different sizes. 

This focuses on the bright central core of the cancer and ignores the radiating lines of spiculation. The 

distribution of these features on a mammogram is shown in Figure 4. 

Figure 4. The distribution of the AFUM features on a mammogram are shown as small 

circles, while the larger oval shapes are hand-drawn annotations by a radiologist of the 

cancer. Note that the feature does find a cancer, but there are many false positives.  

 
 

Features with a high suspiciousness value have a higher chance of corresponding to an occurrence 

of cancer. The centroid of each local maxima in the filtered image is initially marked as a candidate 

feature site with its suspiciousness value. This collection of sites is then sorted in decreasing order of 

suspicion. All suspicious sites that are closer than 5 mm from a more suspicious site are removed to 

prevent multiple reporting of the same site. This yields a set of potential feature sites that can  

be analyzed.  

A further improvement might be possible by first transforming the data before filtering, such as 

applying wavelet analysis to the images before simply thresholding or applying the filter. This has 

been successfully attempted previously [27] with good results. However, an optimal solution would 

first combine all of the various filtering and transform methods which create meaningful suspicious 

points, and then learn an effective analysis from them. This is similar to the effective combination of 
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weak classifiers into a single strong classifier through ensemble learning methods like boosting, which 

has been successfully used before in tumor classification [49]. Many of the images like mammograms 

come in pairs, so they form a set that should be very similar. If one of the pair contains cancer and the 

other does not, then that pair should be different. Thus, the mammogram image set provides both 

positive and negative examples to build on for image similarity classification.  

Figure 5. Mammograms of left and right breasts with cancerous area outlined. The 

similarity of texture between cancerous and normal tissue makes asymmetry an important 

tool in cancer detection.  

 
 
3. Breast Cancer Image Classification 
 

An effort was made to provide image classifications and to develop a distance function for CAD of 

medical images as well as to explore the properties of the dataset. This initial approach utilizes filtering 

followed by spatial symmetry analysis using a variant of supervised clustering to determine an overall 

measure of similarity by combining the contextual similarity of the filtering with the spatial similarity 

of the analysis. This can be a useful measure for diagnosing mammograms (or for pre-screening) since 

only an overall determination of cancer or no cancer is required. A secondary goal of our work is to 

determine the importance of similarity or asymmetry in the computer analysis of mammograms.  

Figure 5 shows why spatial asymmetry is important in finding cancers in mammograms since we see 

that the texture and appearance of cancer are both very similar to the texture and appearance of normal 

tissue in the breast. Our analysis starts with filtering to find the contextually similar suspicious points 

that could be cancers in the mammograms. The AFUM filter was used, which highlights the areas of 

the image that have bright cores, a characteristic of spiculated lesions, and is shown in Figure 3b. The 

filter results are used to rank the output and only the top thirty-two are kept. Although it may not be the 

optimal choice of filtering, the spatial analysis can be applied to any technique that can rank the 

suspiciousness of areas. The number of points returned by the filtering step is one of the variables that 

were learned in optimizing the analysis. Alternatively, a threshold on the suspiciousness value could 

have been used instead of taking the top few. However, the top few were chosen in order to try to be 
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insensitive to image processing choices. The filter results varied significantly from image to image, 

which might have biased the analysis if thresholds were used. 

Several techniques were developed to aid in the development of an improved distance function for 

the classification of medical images. We used clustering as a basis for determining image similarity, 

but there were several changes that had to be made to the technique to adapt it to the application. First, 

instead of utilizing cluster centers as the main descriptor of the clustering, we used both linear 

separators in the original feature space as well as hyper-volumes to describe the clusters. Second, we 

adapted the clustering method to use supervised learning instead of minimizing an objective function. 

Third, we incorporated the clusters into several distance functions, the parameters of which were 

learned simultaneously with the cluster definitions to produce an image similarity classification 

technique. Fourth, since the importance of correct classification of the cancerous cases is much more 

important than the non-cancerous cases, the associated weighting of the cancerous cases was varied, 

and we evaluated the performance of various weightings. The algorithm is composed of the  

following steps:  

1. Extract K points from both of the images using an AFUM filter. 

2. Assign each point to the appropriate cluster defined by the parameters P. 

3. Apply the distance function over the clusters. 

4. Determine the error function from the supervised cases. 

5. Adjust the cluster and distance function parameters P. 

6. Repeat Steps 2 through 5 until the error is minimized.  

This produces a clustering in the feature space that is independent of the classification and can be 

used to learn about the image properties. It also produces a threshold for the distance function 

simultaneously with the cluster parameters. The details on step 1 were given in Section 2, while the 

details on the clustering are in Section 3.1, the details on the supervised learning in Section 3.2, and the 

distance function in Section 3.3. 

 

3.1. Separators and Hyper-Volumes 

 

The adaptation of clustering to use separators and hyper-volumes instead of cluster centers was 

motivated by a desire to minimize the number of parameters required in order to maximize the 

generalizability of the technique from the training data to the actual test data and thus to real 

applications. Creating two clusters requires two d-dimensional cluster centers, or 2d parameters like  

P = (x1, y1, z1, x2, y2, z2), while using a separator plane requires a maximum of d parameters like  

P = (a, b, c) and can be described in as few as one parameter in special cases like P = (a). Four clusters 

can be described using as few as two separator planes, greatly reducing the number of parameters 

required to describe the clustering. However, eliminating parameters can change the final clustering. 

There is a tradeoff between the number of parameters and the flexibility of the technique for breaking 

up the feature space. The use of overlapping separators minimizes the parameters, but the use of 

hierarchical separators enables greater flexibility in the definition of the clusters.  

The use of separators or cluster centers both have the disadvantage of being space-filling so that no 

part of the feature space can be eliminated from the analysis at the cluster level as well as not allowing 
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overlapping of clusters. However, using hyper-volumes instead of separators does allow both 

overlapping of clusters and eliminating space at the cost of including additional parameters. A simple 

hyper-volume is the hyper-sphere which requires d + 1 parameters for a cluster center point and a 

radius where d is the dimensionality of the feature space. An example of hyper-volumes compressed 

into 2D space and overlaid on the original image is shown in Figure 6.  

Figure 6. Example Comparison. The AFUM features are the small circles. The 

automatically created hyper-volumes in this example are the large boxy shapes containing 

the points, but the same effect can be created with two separators. This case was correctly 

diagnosed by both the space-based and data-based techniques. Note the red hyper-cluster, 

which was found to be a significant area in the determination of cancer. In noisy,  

cancer-free images this area would pick up a statistically equal number of features. 

 
 

These alternate definitions of clustering focus on increasing the flexibility of the clustering or on 

decreasing the required number of parameters. An alternate clustering is shown in Figure 7 where the 

cluster is designed to avoid a noisy area on the images. The focus on decreasing the number of 

parameters is required to improve the generalizability of the technique when using supervised learning, 

which is another adaptation we did to the clustering method.  
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Figure 7. The automatically created hyper-volumes in this case are non-space-filling and 

attempt to avoid a noisy area at the chest wall by not including those features.  

 
 

3.2. Supervised Clustering  

 

The second adaptation of the clustering method was the use of supervised learning to maximize the 

performance on a training set instead of minimizing an objective function. The error function that we 
minimize is ∑ −= j jjjj cPkgWE );,(τ  where jW  is the normalized weight of that particular case, jg and jk

are the unregistered three-dimensional input features (sorted by one particular feature value for 
convenience), );,( Pkg jjτ  is the classification function, P are the parameters of the classification, and cj 

is the correct classification of the image set j. Note that this technique is being used on image sets, but 

can be used to compare arbitrary images. The parameters P  are learned in order to reduce the error 

function and includes the parameters of the clustering. Varying the weights of the cancerous and non-

cancerous cases allows tuning the performance to achieve fewer false negatives at the expense of 

higher false positives. The learning was done using exhaustive search in order to guarantee that the 

result was not caught in a local minimum.  

Though the learning was finally done using exhaustive search, we did experiment with hierarchical 

learning. This is where the first separator is learned, and then the subsequent separators are learned 

while only changing the parent separator by some fixed percentage and not affecting the grandparent. 
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We also experimented with true hierarchical learning, where the parent is not allowed to vary, but this 

was found to be ineffective. This has the effect of reducing the number of degrees of freedom to learn 

by breaking the learning up into multiple levels. The learning of one level is reduced to learning the 

two child separators and the minimized range of the parent separator, instead of learning the entire set 

of separators. The inclusion of more separators is self-limiting if the separators are allowed to line up 

with the parent, thus not breaking up the space and indicating that the hierarchy should end at the 

parent for that volume of feature space. The application did not require a large number of levels in the 

hierarchy, allowing the use of exhaustive search to verify the results of the hierarchical learning.  

 

3.3. Image Comparison Distance Functions Using Clusters  

 

The analysis for image comparison that we used performs a comparison of clusters of features in 

order to maintain both a contextual and spatial comparison while avoiding an exact registration. We 

experimented with two different models where the clusters are defined using separators and  

hyper-volumes. We also experimented with a model that compares small clusters of AFUM features 

between images. The hyper-volume image comparison can be seen in Figure 6, where the points are 

assigned to clusters that are defined by large volumes of feature space and have a set spatial 

relationship between each other. The feature-space hyper-volumes have a pre-set registration with the 

corresponding volumes in the other image. For simplicity, the volumes are assumed to be  

non-overlapping and space-filling, but this is not required. Additionally, the volumes are assumed to 

contain the same hyper-volumes in the images of the left and right breasts out of symmetry. This 

reduces the number of parameters and increases the ability of the model to be generalized to a larger 

data set, based on the assumption that there are no important anatomical differences between the left 

and right breasts and that breast cancer is equally as likely to be in the left or right breast. However, 

when there is a large natural asymmetry to the breasts this assumption may no longer be valid. 

In a hyper-volume image comparison, a hyper-volume is assigned all of the suspicious points in the 

space dA that the hyper-volume spans. The parameters of the hyper-volumes are learned through 

parametric learning, and any model can be used to characterize the hyper-volumes in feature space. 

Exact registration of the suspicious points is avoided by using the volumes for the comparisons as they 

are registered with the corresponding volume in the other image. The feature space is broken up into 

hyper-volumes as shown in Figure 6. The agglomerated distance D shown in Equation 1 is defined for 

the comparison of the two point feature sets, and the absolute value of the differences compared 

against an optimized threshold. Since the features are point features, they are represented using the 

delta function δ and there is no weighting function yet introduced:  

 
(1) 

The point sets for the images are represented as {ai} and {bi} for images a and b respectively. The 

summation over dA is done over all of the clusters which are represented by their hyper-volume dA. 

The integration is done over the actual hyper-volume dA of the cluster. The summation over i is done 

over all of the features. The multi-dimensional integral over feature space provides the agglomeration 

aspect of the distance metric. The hyper-volumes dA provide the agglomeration and are learned along 

|))()((|∑ ∫∫∫ ∑ −−−=
dA dA i

ii bfafdfD δδ
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with a threshold in order to optimize the performance of the distance measure at classification. This 

allows the distance metric to be easily adapted to different image types and imaging techniques, as 

well as providing a method for incorporating feedback into the distance metric. This distance metric 

compares the distributions of spatially distributed point sets, and is sensitive to variations in the 

distribution for image comparison. This is useful for applications such as determining the presence of 

cancer. There are several other variations to this distance metric that have been explored. 

A variation on this distance metric is shown in Equation 2 that learns a threshold for each cluster 

dA, which has the advantage of being able to emphasize the importance of some areas in the feature 

space over others. This can be used to distinguish noisy areas where many spurious suspicious points 

are found from important areas where even small variations are indicative of a lack of similarity. This 

technique of learning important areas in images can be thought of as an image discovery technique: 

( ) ( )i idA
idA

D df f a f bδ δ= − − −∑∫∫∫     (2) 

A more generalized form of the similarity distance metric is given by equation 3, where the delta 

function is not the required function and the number of features in each image is not required to be the 

same. A natural choice for the function g is the probability density function; however, the function g 

can be determined to try to optimize the retrieval on the particular application:  

| ( ( ) ( )) |i j
dA i jdA

D df g f a g f b= − − −∑ ∑ ∑∫∫∫    (3) 

We tested several variations of the image comparison ideas. The simplest model utilizes only one 

seperator to create two hyper-volumes and thus only two parameters P = (x1 || y1 || z1, t): one parameter 

for a separator, one parameter t for a threshold, and Equation 1 for the distance function. This will be 

called the “two-cluster” analysis. The first parameter x1 || y1 || z1 chooses the best dimension and best 

position to break up the feature space into volumes and the value in that dimension. The second model 

used the same parameters and Equation 1, but weighted the learning to give greater weight to the 

performance on the cancerous cases over the performance on the non-cancerous cases, and this will be 

called the “two-cluster weighted towards cancer” analysis. The third model used the parameters of the 

first, but also included an additional parameter that permits selection, so that cases that do not have a 

minimum number of features in each cluster are not analyzed. This approach used the parameter set  

P = (x1 || y1 || z1, t, s) where s is a required minimum occupancy of each cluster. This approach is  

called the “two-cluster with selection” approach. The fourth model used three parameters  

P = (x1 || y1 || z1, x2 || y2 || z2, t): two parameters for two separators and one for a threshold and is shown 

in Figure 6. This model will be called “three cluster Equation 1” and Equation 1 is used. The fifth 

model used three clusters and Equation 2 with the same threshold for each cluster comparison and will 

be called “three cluster Equation 2.” These models were motivated by the observation that the cancer 

would change the distribution of the suspicious points, leading to an indication of cancer. An 

improvement to the method would be to adaptively determine the optimal number of volumes through 

a split-and-merge type methodology [50]. 

A different approach explored the importance of the distribution of AFUM feature points, as 

explored with approaches one through five, versus the clumping of AFUM features together. This sixth 

approach does not set the number of clusters arbitrarily, but instead learns the number of clusters from 
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the data and learns the best parameterization of the clusters. This image comparisons search for small 

clumps of AFUM features and then assign a cluster there, as shown in Figure 8, and is called the 

“small cluster analysis.” The maximum distance between feature points and the minimum features 

needed to define a cluster are learned on the training set. The clusters were also defined to be centered 

on a suspicious point because we believed that small clumps of suspicious points tended to form 

around the central cancer. This assumption may be incorrect, and freeing the cluster centers from that 

constraint may improve the performance. Exact registration is avoided again by registering the clusters 

instead of the image or the suspicious points. Comparing the number of clusters in the right image 

versus the number of clusters in the left image provides a first cut at registering the clusters since a 

difference in the numbers of clusters implies that some clusters cannot be registered. Improving the 

cluster registration may improve the performance of the method. This image comparison was 

motivated by the data, where we observed a small volume of suspicious points at a cancer sites.  

Many other approaches were attempted on this dataset. One unsuccessful approach compared the 

variances of the distribution of suspicious points, while another used a Naive Bayes analysis, and these 

are compared along with wavelet methods and commercial techniques. 

Figure 8. Small Cluster Analysis, a different modeling approach. The AFUM features are 

the small circles, with the circles on the left coming from the image of the left breast and 

the circles on the right coming from the image of the right breast. The small clusters are the 

larger blue circles. This method searches for small clumps of suspicious points and then 

assigns a cluster there, comparing the number of clusters in the two images, which is a 

significantly different approach than the one shown in Figure 6 or 7. This method learns 

the best size for a cluster on the training data. The performance of this approach relative to 

the other methods showed that AFUM feature clumping was too hindered by the false 

positive clusters near the breast boundary. This approach may be improved by 

automatically removing clusters too near the breast boundary.  
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3.4. Evaluation  

 

The image comparisons were applied to the mediolateral oblique (MLO) mammogram views of 

both the left and right breast of patients that were diagnosed with cancer and patients that were 

diagnosed as normal, or free from cancer. The analysis was performed over test and training data sets, 

with cases that were roughly split between normal mammograms and mammograms with malignant 

spiculated lesions from the Digital Database for Screening Mammography [51]. The focus was on one 

type of breast cancer which creates spiculated lesions in the breasts. Spiculated lesions are defined as 

breast cancers with central areas that are usually irregular and with ill-defined borders. Their sizes vary 

from a few millimeters to several centimeters in diameter and they are very difficult cancers to  

detect [47]. 

The training set had 39 non-cancerous cases and 37 cancerous cases, while the test set had 38  

non-cancerous cases and 40 cancerous cases. The data is roughly spread across the density of the 

breasts and the subtlety of the cancer. The breast density and subtlety were specified by an expert 

radiologist. The subtlety of the cancer shows how difficult it is to determine that there is cancer. The 

training data set was used to determine optimal parameters the volumes dA. The inputs are the 

extracted AFUM features for each image in the screening mammogram set, as shown in Figure 3. The 

output is a classification as either cancerous or non-cancerous. We used exhaustive search because we 

could, and require only a single stage. These cases indicated that a difference in the clusters of one or 

more AFUM features indicated cancer in both the two and three cluster experiments.  

Figure 9. Comparison Data. The maxima in learning the two-cluster method with respect 

to one of the parameters, the y value parameters P is in (a) and the method is shown to 

generalize well from training to test data. The same information for the three-cluster 

method is shown in (b). The performance relative to the number of suspicious points used 

in the two-cluster technique is in (c). The performance of the three-cluster method on 

normals, or non-cancerous cases, is shown in (d). 

 
(a)      (c) 

 
(b)        (d) 
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3.5. Results  

 

Our results are good on all cases of the test set, correctly classifying 80% for the two

shown in Figure 9a, and 85% of the time for the three

cluster model results as shown in Figure 9

The results are summarized in Table 1. However, it is much more impor

cancerous cases, and by heavily weighting the importance of the cancerous cases, we correctly 

classified 97% of the cancerous cases with the two

Neither the subtlety nor the density of the cancer had an effect

have only a limited number of cancerous images, there is some possibility that the imperfect 

distribution could affect the results of the analysis.

The comparison with a commercial system shows that the results are sur

showed an improvement of 26% on the non

cancerous cases with the R2 ImageChecker system [29

asymmetry in the method should improve

R2 ImageChecker data contains all cancer types and our method has only the difficult to detect 

spiculated lesions. The R2 ImageChecker data set also had a much higher proportion of non

mammograms to cancerous cases. 

One of the parameters that was learned was the optimal number of 

analysis, and the results were always at or near the top of the range that we used, varying from 29 to 32 

features depending on the model and weightings as shown in 

the cancer was usually in the top six

tend to cluster around a cancer, so including more suspicious points may create a greater distortion of 

the underlying distribution than fewer points. The learning algorithm does not get t

directly, only the cluster differences, so the inclusion of more points should not skew this analysis.

Figure 10. ROC curve demonstrating the effectiveness of this distance metric at 

diagnosing mammograms.  

       

Our results are good on all cases of the test set, correctly classifying 80% for the two

a, and 85% of the time for the three-cluster as shown in Figure 9

Figure 9c were not as good, but have the potential for improvement. 

The results are summarized in Table 1. However, it is much more important to correctly classify the 

cancerous cases, and by heavily weighting the importance of the cancerous cases, we correctly 

classified 97% of the cancerous cases with the two-cluster model.  

Neither the subtlety nor the density of the cancer had an effect on the results.

have only a limited number of cancerous images, there is some possibility that the imperfect 

distribution could affect the results of the analysis.  

The comparison with a commercial system shows that the results are surprisingly good.

showed an improvement of 26% on the non-cancerous cases while matching the performance on 

h the R2 ImageChecker system [29]. The inclusion of additional factors other than 

asymmetry in the method should improve the results. However, the data sets used are different, as the 

R2 ImageChecker data contains all cancer types and our method has only the difficult to detect 

The R2 ImageChecker data set also had a much higher proportion of non

 Our performance is shown in Figure 10.  

One of the parameters that was learned was the optimal number of AFUM features

analysis, and the results were always at or near the top of the range that we used, varying from 29 to 32 

depending on the model and weightings as shown in Figure 9d. This was surprising because 

the cancer was usually in the top sixteen if not the top eight points. However, the suspicious points do 

tend to cluster around a cancer, so including more suspicious points may create a greater distortion of 

the underlying distribution than fewer points. The learning algorithm does not get t

directly, only the cluster differences, so the inclusion of more points should not skew this analysis.

ROC curve demonstrating the effectiveness of this distance metric at 
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Our results are good on all cases of the test set, correctly classifying 80% for the two-cluster as 

Figure 9b. The data-defined 

c were not as good, but have the potential for improvement. 

tant to correctly classify the 

cancerous cases, and by heavily weighting the importance of the cancerous cases, we correctly 

on the results. However, because we 

have only a limited number of cancerous images, there is some possibility that the imperfect 

prisingly good. Our method 

cancerous cases while matching the performance on 

]. The inclusion of additional factors other than 

the results. However, the data sets used are different, as the 

R2 ImageChecker data contains all cancer types and our method has only the difficult to detect 

The R2 ImageChecker data set also had a much higher proportion of non-cancerous 

AFUM features to use in the 

analysis, and the results were always at or near the top of the range that we used, varying from 29 to 32 

d. This was surprising because 

teen if not the top eight points. However, the suspicious points do 

tend to cluster around a cancer, so including more suspicious points may create a greater distortion of 

the underlying distribution than fewer points. The learning algorithm does not get the number of points 

directly, only the cluster differences, so the inclusion of more points should not skew this analysis.  

ROC curve demonstrating the effectiveness of this distance metric at 
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Table 1. The accuracy of the techniques.

Method 
Three-Cluster Equation 1
Two-Cluster Weighted 
Toward Cancer
Two Cluster Equation 1
R2 Image Checker* 
Wavelet* [27]
Naïve Bayes 
Three-Cluster 
Variance Analysis
Two-Cluster With 
Selection Equation 1
Small-Cluster Analysis

 

An interesting result from the three

in images that are important for the classification, and th

found a region of interest for diagnosing a mammogram as non

used as a method for probing feature space for important areas.

Our methods make use of a spatial analysis of the suspicious points, and its success is an 

encouraging sign for the investigation and utilization of more complicated non

techniques in medical imaging and analysis.

Analysis of the misdiagnosed cases in 

there is too much structure in one area that draws the relatively simple features that we are using into it 

on just a small number of cases, th

incorporate a second level of classifiers that would analyze the missed diagnoses.

Figure 11. The left and right MLO views of three cases that were misdiagnosed

three cluster approach. The

variations in the size and morphology of spiculated lesions.

have significant natural asymmetry

  
(a)                                   

 

       

the techniques. The * indicates different but similar data sets. 

Cancerous Non-Cancerous
Cluster Equation 1 90% 79%

Weighted 
Toward Cancer Equation 1 

97% 42%

Two Cluster Equation 1 87% 71%
R2 Image Checker* [29] 96% 33%

] 77% 77%
51% 49%

 Equation 2 95% 73%
Variance Analysis 60% 60%

With 
Selection Equation 1 

92% 73%

Cluster Analysis 51% 56%

An interesting result from the three-cluster analysis showed that these methods could discover areas 

in images that are important for the classification, and this is demonstrated in Figur

found a region of interest for diagnosing a mammogram as non-cancerous. These techniques can be 

obing feature space for important areas. 

Our methods make use of a spatial analysis of the suspicious points, and its success is an 

encouraging sign for the investigation and utilization of more complicated non

and analysis.  

Analysis of the misdiagnosed cases in Figure 11 demonstrates a potential flaw in the method.

there is too much structure in one area that draws the relatively simple features that we are using into it 

on just a small number of cases, the method can misclassify them. A potential improvement is to 

incorporate a second level of classifiers that would analyze the missed diagnoses.

The left and right MLO views of three cases that were misdiagnosed

. The cancerous areas are outlined in red. There are significant 

variations in the size and morphology of spiculated lesions. Note that cases (b) and (c) bo

natural asymmetry of the breasts from left to right. 

   
                                   (b)                                              
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The * indicates different but similar data sets.  

Cancerous 
% 

42% 

% 
33% 
77% 
49% 

% 
% 

% 

56% 

methods could discover areas 

is is demonstrated in Figure 9b,c. The analysis 

These techniques can be 

Our methods make use of a spatial analysis of the suspicious points, and its success is an 

encouraging sign for the investigation and utilization of more complicated non-local analysis 

demonstrates a potential flaw in the method. When 

there is too much structure in one area that draws the relatively simple features that we are using into it 

A potential improvement is to 

incorporate a second level of classifiers that would analyze the missed diagnoses. 

The left and right MLO views of three cases that were misdiagnosed by the 

There are significant 

Note that cases (b) and (c) both 

 
                                             (c) 
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4. Improvement to CAD  
 

Having developed the distance function for medical images described in Section 3, we used the 

results to help improve the computer-aided detection of breast cancer. Computer-aided detection 

(CAD) of mammograms could be used to avoid missed diagnoses, and has been shown to increase the 

number of cancers detected by more than nineteen percent [4]. Improving the effectiveness of CAD 

could improve the detection of breast cancer, and could improve the survival rate by detecting the  

cancer earlier.  

The typical CAD system takes in a mammogram set and displays it for the radiologist. The system 

also provides markers on potential cancerous sites as found by the system. The determination of these 

markers and the evaluation of their effectiveness in helping radiologists are the main thrust of CAD 

research. The hope for CAD is that the cancers missed by the radiologist are marked by the computer 

and brought to the attention of the radiologist.  

 Most computer-aided detection (CAD) systems are tested on images which contain cancer on the 

assumption that images without cancer would produce the same number of false positives. However, a 

pre-screening system is designed to remove the normal cases from consideration, and so the inclusion 

of a pre-screening system into CAD dramatically reduces the number of false positives reported by the 

CAD system. We define three methods for the inclusion of pre-screening into CAD.  

 

4.1. Incorporation into CAD  

 

There are three basic methods for including pre-screening into CAD analysis. The first is the strict 

method, where the pre-screening removes the non-cancerous cases entirely from the consideration of 

the CAD software. The second is the probabilistic method, where the probability of the case being 

cancerous or non-cancerous is determined by the pre-screening system and then incorporated into the 

CAD analysis. The third is an optimal method, which uses learning to try to determine the optimal 

factors for the inclusion of the pre-screening results into the CAD analysis. These methods will be 

defined and compared below.  

The strict method is the simplest to define. Images that are screened as normal are removed from 

consideration by the CAD analysis. Since there are no false positives drawn from these cases, the 

number of false positives per image decreases. This is the most effective technique at reducing the 

number of false positives, but it is also the most dangerous as mistakes by the pre-screening system 

cannot be rectified by the CAD system.  

The probabilistic method relies on the statistics of the pre-screening method to adjust the output of 

the CAD system. To incorporate pre-screening into a CAD system, we made use of Bayes Theorem, 

P(CancerSite | Pre-screen) = {P(Pre-screen | CancerSite) P(CancerSite) / P(Pre-screen)}. The sites 

where pre-screening indicates cancer are thus given an increased probability of being cancerous, while 

sites where pre-screening does not indicate cancer are given a reduced probability of being cancerous. 

Since the pre-screening measurement is applied to an entire case, all of the sites in those cases are 

affected similarly.  

The optimal approach is a variant of the probabilistic approach, but instead of deriving the change 

from the underlying probabilities, the change is learned on a training set of cases. In theory, this 
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approach can optimize the incorporation of pre-screening into CAD, but can be difficult in practice. In 

this case, P(CancerSite | Pre-screen) = A(Pre-screen) P(CancerSite), where A(Pre-screen) is the learned 

adjustment factor. This approach has more flexibility than the probabilistic approach, but is much 

harder to implement. The choice of what to optimize is also a concern. There are two main options, 

optimizing the area under the ROC curve or optimizing the accuracy of the CAD results in a certain 

range of specificity. Both approaches were attempted and will be discussed.  

 

4.2. Results of Incorporation into CAD  

 

The analysis was performed with the same cases that were used for the analysis in Section 3. The 

training data set was used to determine the parameter A(Pre-screen) for the optimal approach. The 

other approaches were tested against the same test set in order to be unbiased. An AFUM-based CAD 

system [44] was used as the CAD basis. 

The results were good at low numbers of false positives in all three techniques, and it is at high and 

medium numbers of false positives where techniques distinguish themselves. Using the probabilistic 

approach to incorporate pre-screening into CAD is shown to work well at low numbers of false 

positives per image and can improve the performance by over 70%, but at high levels of false positives 

per image, this technique has minimal effect. This is expected since using Bayes Theorem merely 

reduces the probability of the false positives and does not eliminate them. 

The results of the strict approach are identical to the results of the probabilistic approach at low 

levels of false positives, but diverge at higher levels of false positives. Since this approach eliminates 

the false positives instead of just diminishing them, the results at high levels of false positives per 

image are worse than the probabilistic approach because true positives are eliminated. However, in 

medium levels of false positives, the performance is significantly better than the probabilistic 

approach.  

The optimal approach was tuned to determine the best performance at both low levels of false 

positives and the overall area under the ROC curve. The performance under both converged to the 

strict approach; however, this may be due to the pre-screening technique that was chosen.  

The overall performance is still strongly dependent on the effectiveness of the CAD system. The 

accuracy of the pre-screening is essential in order to prevent true positives from having their 

probabilities diminished, and the specificity is important for improving the effectiveness of the  

CAD system.  

The incorporation of the classification results back into the original CAD system does significantly 

improve the original CAD system, as shown in Figure 12. The results of incorporating our 

classification into CAD were good, increasing the accuracy by up to 71% at a set level of false 

positives per image. The improvement is most apparent at low levels of false positives. Incorporating 

asymmetry into CAD can improve the effectiveness at low levels of false positives per image. We 

incorporated it as an afterthought, while it would be more effective as a feature used at the beginning 

of the CAD prompt calculation process. However, we did determine that asymmetry is a powerful 

technique by itself or incorporated into CAD. This indicates that further research into techniques that 

can compare images and thus measure asymmetry in mammograms may significantly improve the 

effectiveness of CAD algorithms.  
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Figure 12. ROC curve comparing the CAD system before and after the inclusion of the 

Three-Cluster approach to measuring asymmetry. The inclusion of asymmetry improves 

the CAD system by up to 77%. The asymmetry measure has a very low level of false 

positives per image because it does not try to determine the position of the cancer; it 

merely determines the presence of cancer. This CAD is done on the same images as 

mentioned in Section 3.4. 

 
 
5. Conclusions  
 

This work touched on many of the problems facing the classification and retrieval of cancer images 

and data. We developed a method for differencing and classifying images, which we then incorporated 

into CAD. Our results are strong on all cases of the test set for classifying breast cancer images, 

correctly classifying with 85% accuracy and our technique outperforms both the best academic and 

commercial approaches, suggesting that this is an important technique in the classification of 

mammograms. We have also shown that using the image comparisons to determine the classification is 

insensitive to the parameters of the approach. 

We created and compared multiple models, demonstrating improved results over both academic and 

commercial approaches. We also defined a new distance measure for the comparison of point sets and 

demonstrate its effectiveness in this application. The coupling of this distance measure with the 

parametric learning of clusters led to a highly effective classification technique.  

The clusters also discovered an area of interest in mammogram comparisons which improved the 

diagnosis of mammograms that did not have cancer. More clusters might improve the technique, or, 

more importantly, they might lead to the discovery of more areas of interest. The separation of the 

clusters from direct classification allowed a greater exploration of the feature space by the algorithm. 

We suggested several ways that might improve on the methods that we used to compare 

mammograms.  
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The incorporation of the classification results back into the original CAD system does significantly 

improve the original CAD system. The results of incorporating our classification into CAD were good, 

increasing the accuracy by up to 71% at a set level of false positives per image. The improvement is 

most apparent at low levels of false positives. Incorporating asymmetry into CAD can improve the 

effectiveness at low levels of false positives per image. We also determined that asymmetry is a 

powerful technique by itself or incorporated into CAD. This indicates that further research into 

techniques that can compare images and thus measure asymmetry in mammograms may significantly 

improve the effectiveness of CAD algorithms.  
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