
Algorithms 2009, 2, 1449-1472; doi:10.3390/a2041449

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Exact and Heuristic Algorithms for Thrift Cyclic Scheduling

Michael J. Short

Embedded Systems Laboratory, University of Leicester, Leicester, UK; E-Mail: mjs61@le.ac.uk;

Tel.: +44(0)116 252 5052; Fax: +44(0)116 252 2619.

Received: 7 October 2009 in revised form: 17 November 2009 / Accepted: 18 November 2009 /

Published: 26 November 2009

Abstract: Non-preemptive schedulers, despite their many discussed drawbacks, remain a

very popular choice for practitioners of real-time and embedded systems. The

non-preemptive ‘thrift’ cyclic scheduler—variations of which can be found in other

application areas—has recently received considerable attention for the implementation of

such embedded systems. A thrift scheduler provides a flexible and compact

implementation model for periodic task sets with comparatively small overheads;

additionally, it can overcome several of the problems associated with traditional ‘cyclic

executives’. However, severe computational difficulties can still arise when designing

schedules for non-trivial task sets. This paper is concerned with an optimization version of

the offset-assignment problem, in which the objective is to assign task offsets such that the

required CPU clock speed is minimized whilst ensuring that task overruns do not occur; it

is known that the decision version of this problem is complete for ∑2
p. The paper first

considers the problem of candidate solution verification—itself strongly coNP-Complete—

and a fast, exact algorithm for this problem is proposed; it is shown that for any fixed

number of tasks, its execution time is polynomial. The paper then proposes two heuristic

algorithms of pseudo-polynomial complexity for solving the offset-assignment problem,

and considers how redundant choices of offset combinations can be eliminated to help

speed up the search. The performance of these algorithms is then experimentally evaluated,

before conclusions are drawn.

Keywords: non-preemptive scheduling; offset-assignment; heuristics; complexity

OPEN ACCESS

Algorithms 2009, 2

1450

1. Introduction

In many real-time embedded systems, some form of scheduler is generally used instead of a full

“real-time operating system” to keep the software environment as simple as possible. A scheduler

typically consists of a small amount of code, and a minimal hardware footprint (e.g., a timer and

interrupt controller). In this context, a scheduler is a basic component of an embedded system

architecture that is primarily employed to assign (or ‘dispatch’) software tasks to CPU’s at run-time. In

a typical situation, at any given time there will be more tasks than CPU’s available; the role of the

scheduler is to assign tasks to CPU’s such that some design goal is met. This paper is concerned with

single-processer scheduling, in which there are several periodic tasks to be dispatched on a single

CPU, and the goal is to schedule the tasks such that deadlines are not missed. An example of such a

situation would be a processor employed in a critical application such as automotive/avionic control

and robotics. In such a situation, ‘late’ calculations— i.e., deadline misses—may lead to system

instability, resulting in damage to property or the environment, and even loss of life [1].

In general, a scheduler for such a system may be designed around several basic paradigms:

time-triggered or event-triggered, and preemptive or co-operative (non-preemptive) [1,2,4,5]. This

paper is primarily concerned with time-triggered, co-operative (TTC) schedulers. TTC architectures

have been found to be a good match for a wide range of low-cost, resource-constrained applications.

These architectures also demonstrate comparatively low levels of task jitter, CPU overheads, memory

resource requirements and power consumption [2-5]. Additionally, exploratory studies seem to

indicate better transient error recovery properties in TTC systems over their preemptive counterparts;

however this issue requires much further investigation [6,7].

However, non-preemptive schedulers also have certain well discussed drawbacks over their

preemptive counterparts; a presumed lack of flexibility, an inability to cope with long task execution

times and long/non-harmonic periods, and fragility/complexity problems when generating a schedule

being the main perceived obstacles [3,5,8,10]. In practice several techniques now exist to help

overcome some of these problems. For example, co-operative designs based on well-understood

patterns and state machines [9] coupled with pre-runtime scheduling techniques [4] provide good

working solutions to the ‘long task’ problem.

The simplest form of practical TT scheduler is a “cyclic executive” [2,3,8]. Cyclic executives

achieve their behavior by storing a (repeating) look-up table which controls the execution of jobs at

any instant of time. The lookup table is divided into a number of minor cycles, which make up a major

cycle; the current minor cycle advances with each timer ‘tick’. Such a model is generally effective

when all task periods are harmonically related, resulting in a short major cycle length. It is known that

the off-line problem of assigning task instances to minor cycles (i.e., creating the lookup table), such

that periodicity constraints of the task are respected, is NP-Hard [8]. However, several effective

techniques—such as those adapted from bin packing and simulated annealing—have been developed

for most small instances of the problem [8].

A clear limitation that can arise in such architectures is as follows; the major cycle length is

proportional to the least common multiple of the task set periods. Thus, when arbitrary - as opposed to

harmonic - task periods are considered, no sub-exponential bound can be placed on the length of the

required major cycle. In these cases the amount of memory required for storing the lookup table, and

Algorithms 2009, 2

1451

the resulting computational resources that are needed to design the schedule, become hugely

impractical. Therefore heavy restrictions have to be placed on the choice of task set periods.

To overcome this limitation, the non-preemptive ‘thrift’ scheduler (or ‘TTC’ scheduler) has been

proposed [9]. This scheduling algorithm does not allow the use of inserted idle-time, and essentially

maintains a system of congruences to replace the lookup table, and is presented in pseudo code in

Figure 1. As can be seen, when tasks are released by the scheduler, they are immediately dispatched on

a first-come, first-served basis (FCFS). In general, generating a feasible schedule for a thrift scheduler

reduces to assigning offsets (delays) to each task [9,10], resulting in an asynchronous schedule.

However, previous investigations into the complexity of deciding the feasibility of asynchronous

schedules have shown it to be a strongly coNP-Complete problem, at least in the case of the

preemptive schedulers [11]. Moreover, as Goossens [12] has commented, when attempting to assign

offsets to preemptively schedule a task set, that there seems to be no way to avoid enumerating and

searching an exponential amount of offset combinations; in fact the decision version of this particular

problem is known to be complete for 2
p, even when preemption is allowed [11]. Unsurprisingly,

similar results have been demonstrated for the non-preemptive thrift cyclic scheduler, in which certain

task parameters are allowed to be either integer or fractional [20,21].

Figure 1. Thrift scheduling algorithm, in pseudo-code.

1 START
2 tick := 0;
3 DO(FOREVER)
4 Timer_Wait(); // Wait for timer signal
5 FOR i := 1 TO n DO
6 IF(((tick – oi) mod(pi)) = 0)
7 Run(ti); // Immediately run a task, if due
8 END FOR
9 tick := tick + 1; // Advance the time
10 END DO
11 EXIT

The thrift scheduling algorithm has also been suggested for use in domains other than that of

embedded systems, for example the processing of information requests in mission critical security

applications [22], and the underlying model has also proved to be identical (in most aspects) to

scheduling problems described in other application areas, for example the periodic vehicle delivery

problem [23]. The underlying concept in these formulations is that there exists a periodic (indefinitely

repeating) system of actions to be performed (tasks to execute, information to be serviced, items to

deliver) in which the temporal separation of actions must exactly correspond to the actions’ periodicity

requirements; the optimization goal is to assign individual start times (‘offsets’) to each action, such

that the number of actions to be simultaneously performed over the system lifetime is minimized.

The application of heuristics for this assignment of offsets in such problems—for example using

greedy approaches such as the ‘First-Fit Decreasing’ (FFD) algorithm—is an attractive option; a

severe drawback of recent works has been the limitation that in each step of the FFD procedure, it is

required to evaluate the quality of a partial candidate solution; which is itself strongly coNP-Hard [20].

In most cases, previous studies have severely limited the choice of task periods to attempt to

circumvent this problem. For example, in [10] Gendy & Pont describe a heuristic optimization

Algorithms 2009, 2

1452

procedure to generate feasible thrift schedules. Although the technique works reasonably well in

practice, it is required to limit the ratio of minimum to maximum periods in the task set to 1:10. A

similar restriction on periods is enforced by Goossens [11], who investigates heuristic methods for

preemptive schedules. In other domains, similar restrictions are placed on the various parameters in

question [22,23]. For many applications, this restriction is clearly unrealistic. Although it has been

argued that in many cases, a task set with either coprime or non-harmonic periods is not representative

of real-world applications (e.g., [10,14])—this is true only for closely related transactions, such as

filtering and updating a single control loop. In reality, for economic, topological and efficiency

reasons, a single processor may well be performing multiple—not physically related—functions. As

such, the periods are dictated by many factors and there is likely to be little, if any, harmonic coupling

between transactions [5,8].

If thrift scheduling is therefore to be employed in more realistic and representative situations, then

fast and effective algorithms to both decide feasibility and assign task offsets are required. This forms

the main motivation for the current research. The remainder of the paper is organized as follows.

Section 2 presents the task model, defines the problem and reviews its complexity. Section 3 describes

the Largest Congruent Subset (LCS) algorithm, which significantly improves upon previous

algorithms for the feasibility problem. In Section 4, exact and approximate methods for solving the

offset assignment problem are described, along with a discussion of how offset symmetries can be

efficiently broken. Section 5 presents detailed results of computational experiments to investigate the

performance of the new algorithms. Section 6 concludes the paper and suggests areas for further

research.

2. Problem Formulation and Complexity Review

2.1. Task Model and Problem Description

Consider a set  of n real-time tasks, where each task t   is represented by a four-tuple:

 iiiii odcpt ,,, (1)

In which pi is the task period, ci is the worst case computation time of the task, di is the task

deadline and oi is the task offset (release time), represented as integers in suitable processor time units,

for example microseconds. For the purposes of this paper it is assumed that the worst case computation

time c of each task has been determined using suitable analysis techniques (see, for example [15]) and

that an appropriate ‘factor of safety’ has been added to this estimate. Even when rigorous techniques

such as static analysis are used in conjunction with standard testing, it is normal to overestimate these

values by a factor of around 5% [10,15]. In this paper it also assumed that tasks are not subject to

precedence constraints, and task I/O processing is small enough to be neglected. The paper restricts

attention to instances having n  30 tasks. Since no restriction is placed on the choice of task periods,

this is representative of most real-world task sets. The objective of any feasibility analysis or test is to

determine if the task set will always meet its deadlines for a given scheduling algorithm. In the case of

the non-preemptive thrift scheduler, this surmounts to verifying that a ‘task overrun’ – an overload of

Algorithms 2009, 2

1453

the processor in any given time quantum - does not occur. The time quantum is normally referred to as

the tick interval tTick and is chosen to be as large as possible given the task periods, using (2):

),,gcd(1 nTick ppt  (2)

where gcd represents greatest common divisor. Without loss of generality, it can be assumed that the

offsets for each task are specified as an integer multiple of the tick interval, according to the following

condition [10-12]:

; 0 ; ; 0 i
i Tick

Tick

p
i i n o k t k

t
       (3)

Since it is desired to prevent task overruns, a constraint is placed in thrift schedulers that the

effective deadline of all tasks released at the start of any tick interval is the start of the following tick

interval [2,3,9]. As such, a specific deadline is often omitted when describing task sets for thrift

schedulers. Under these conditions, a sufficient and necessary schedulability test for synchronous task

sets can be formulated to be as follows [21]:

1

i n

i Tick
i

c t



 (4)

Although this also provides a sufficient test for offset-free schedules, it is clearly not necessary, as

illustrated in Figure 2. Similarly, two necessary (but not sufficient) related tests for offset-free thrift

schedules are as follows:
, 0 ; i Ticki i n c t    (5)

1

1
i n

i

i i

c

p




 (6)

That is, the execution time of each task must be less than tTick, and the total CPU utilization u must

be less than unity. A necessary and sufficient test for schedulability can only be determined

algorithmically; existing approaches generally perform this through a simulation of the task schedule

over a fixed time horizon, known as the schedule hyperperiod—this algorithmic process is generally

referred to as “hyperperiod simulation” [1,9-12]. In the case of the thrift scheduler, given the deadline

restrictions the hyperperiod has a length h given by [20,22,23]:

1(, ,)nh lcm p p  (7)

where lcm is the least common multiple, in this case of the task periods. At each search point, the

computational load  placed on the processor by the schedule in the given time bound of the current

search point is computed. From (3), it can be seen that tasks may only be released at the start of any

given tick interval. Thus, if the time interval is divided up in segments such that [t1, t2] defines a

single tick interval, as follows:

1 2 1, 0 ; ,Tick Tickk k h t k t t t t       (8)

Then it follows that an asynchronous thrift schedule is schedulable iff:

, 0 ; [] Tickk k h k t    (9)

Algorithms 2009, 2

1454

Deciding this problem (9) will be referred to as the Thrift Schedule Asynchronous Feasibility

Problem (TSAFP). The search version of this problem can be used to determine cMax, the worst-case

demand for processor time over the entire hyperperiod for a given asynchronous schedule. It can be

seen (e.g., Figure 2) that by assigning appropriate task offsets, this value of cMax can be considerably

reduced over the synchronous case; ideally we wish to assign offsets such that (9) is satisfied. In

addition, since tTick is fixed by the task periods which, in turn, are dictated by the environment, it can

also be seen that with knowledge of cMax any task set satisfying (6) can effectively be scheduled by

increasing the clock speed of the CPU by a factor , defined as follows:

Max

Tick

c

t
  (10)

Since the task execution times are largely (inversely) proportional to the CPU clock speed, this

clearly follows from (9). However, there are a multitude of reasons – for example power consumption,

logical circuit stability, EMC issues and transient rejection – why system designers would wish to

minimize  and hence the clock speed [8,9].

Figure 2. Effect of task release times on feasibility, showing (top): a synchronous

infeasible task set with = {(5,2),(10,2),(10,2)}; (bottom): an asynchronous (feasible)

version of this task set with release time of 1 tick – 5 time units - added to t3.

In this paper, we therefore consider the following minimax problem: Given a task set , assign a

non-negative offset to each task such that cMax is minimized. This problem will be referred to as the

Thrift Schedule Offset Assignment Problem (TSOAP). Consideration of such a problem has several

advantages over previous (decision) formulations of similar problems (such as those of [8], [10]

and [12], for example); the algorithms to be described in the current paper will always find a schedule

that is feasible. Although the value of  for the found schedule may not be the optimal value, it is

hoped that it will be relatively close to it. Additionally, many modern low-cost microcontrollers (such

as the ARM-7 and its variants) feature the ability to dynamically change the CPU clock speed—over a

wide range of possible values—by manipulating the appropriate on-chip PLL registers. In such cases,

the fragility problems (discussed in [8] and [10] for example) are greatly reduced, as a change to the

schedule may also simply require a single line of code to be changed to adjust the clock speed. An

additional benefit of such an approach is that the algorithms to be presented in this paper may be

adapted for use in other domains – for example the fractional periodic delivery problem described by

Algorithms 2009, 2

1455

Campell & Hardin [22]. It can also be noted that conceptually, this problem is somewhat similar to the

makespan minimization problem of multiprocessor scheduling – the dual of Bin Packing [13,16,17]. In

the following section, the complexity of this problem is briefly reviewed.

2.2. Complexity of the Problem

This Section first considers the decision version of the TSAFP. Formally, we are given a set of n

tasks, each with period pi, offset oi, computational cost ci, and a positive integer b. The question that is

asked is as follows: is the maximum demand for processor time over the hyperperiod (cMax) less than

or equal to b? From Figure 1, it can be seen that TSAFP is in coNP, since the existence of a

counterexample (task overrun) in the jth tick can be verified in polynomial-time by setting tick: =j and

executing lines 5,6 and 7 of the TTC algorithm, summing the execution times of all tasks that are run.

Theorem 1: TSAFP is strongly coNP-Complete.

Proof: Short (2009) [20], Transformation from the complement of Simultaneous Congruences Problem

(SCP) which is known to be strongly NP-Complete [11].

It should be noted at this stage that it was previously (incorrectly) assumed by some authors, that a

particular version of the TSAFP problem was actually in P [21,23]. Considering next the decision

version of TSOAP, again we are given a set of n tasks each with period pi, computational cost ci, and a

positive integer b. The question that is asked is as follows: is it possible to assign a non-negative offset

to each task such that the maximum demand for processor time over the hyperperiod (cMax) is less than

or equal to b? Given the previous result, this problem is clearly coNP-Hard; however under the

assumption that P  NP, it is worthwhile investigating where the problem lies on the so-called

“polynomial hierarchy” [16]. From (3), it can be seen that the task offsets for ‘Yes’ instances of this

problem can be encoded in a number of bits that is less than or equal to the task periods, and hence the

size of the problem instance. Given the previous Theorem, the resulting asynchronous schedule is

verifiable in polynomial time by a Turing machine with an oracle for the feasibility problem; the

problem resides in 2
p. The lower bound that shows the problem is complete for this complexity class

is achieved by a transformation from the Periodic Maintenance Scheduling Problem (PMSP); this

problem is known to be 2
p-Complete [11,19].

Theorem 2: TSOAP is 2
p-Complete.

Proof: Short (2009) Transformation from PMSP [20].

Given these results, it can be seen that there are two (closely related) issues to be addressed in order

to efficiently solve this problem, even approximately. In order to begin to address these complexity

issues, the coNP-Hard problem of determining cMax for a given asynchronous schedule will first be

addressed. From (7), it can be seen that the length of the hyperperiod that needs to be examined is

Algorithms 2009, 2

1456

potentially proportional to the product of the task periods, a largely undesirable situation. An algorithm

to circumvent this problem is described in the following Section.

3. Algorithm for TSAFP

3.1. Basic Idea

The basis for a new algorithm starts from a single requirement; given the thrift scheduling algorithm

(as shown in Figure 1) and an asynchronous task set , determine - in the fewest possible steps—the

correct value of cMax. In order to find this value in the fewest possible steps—in a manner that is robust

to the task set periods—the possibility of examining task phasings is explored. Since the scheduler

controls the release of each task, and tasks can only be released at the start of each tick interval, the

scheduler can be viewed purely as a generator of an equivalent binary sequence, as follows. Given the

task parameters , the scheduler produces h n-bit long binary sequences, one for every tick interval;

where a ‘1’ in each sequence indicates that the corresponding task is released at this tick, and a ‘0’

represents otherwise. This abstraction is illustrated in Figure 3, for a 5-task system.

Figure 3. Thrift scheduling as binary sequence generation.

In such an abstraction, the demand for processor time  at each tick interval relates to this binary

sequence as follows. The processor demand at the kth tick interval is determined by simply weighting

the ith binary digit in the kth n-bit sequence by the ith task’s execution time, ci, then summing the

weighted totals. To observe the worst-case behavior of a given schedule, it follows from Theorem 1

and Equation (7) that h n-bit long binary sequences must be examined. In general, from (7), it can be

observed that from the numerical properties of least common multiple, in the worst-case h is

proportional to the product of the task set periods (this situation occurs when all periods are pairwise

coprime). If the maximum of the task set periods is represented by the parameter pmax, it follows that

the running time of a hyperperiod simulation algorithm is given by O(n pmax
n). It can also be observed

that in the best case— for instance when all task periods are restricted to be integer powers

Algorithms 2009, 2

1457

of 2 (2, 4, 8, 16, 32 … etc.)—h is simply proportional to pmax; the best one can hope for is that the

algorithm running time is pseudo-polynomial in the input parameters.

It may seem that a useful restriction to consider would be to place an upper bound on the choice of

periods—say in the interval [1,50]—but this can still result in a length of h that can approach 1038. In

most cases, a more realistic restriction would be to suppose time is represented in milliseconds, and

tasks may require periods in the interval [1, 1,000]. It is trivial to create instances in which number of

tasks is small (e.g., ≤30), and the length of h exceeds 10100 with this more realistic restriction. It can be

observed then, that the actual time complexity of deciding a given PSD problem instance is incredibly

fragile, and is highly dependent on the task periodicity requirements.

However, consider a parameterization of the input representation, which primarily considers the

number of tasks n and the largest task period pmax (the remaining task parameters may be neglected

from this analysis as they do not affect algorithm run times). Now, in a system with n tasks, there is a

maximum of 2n possible binary combinations of tasks, the actual patterns which will be generated by

the scheduler at run time depend on the choice of offsets; for almost all instances of this problem, 2n

<< h. For example, consider a system of 10 tasks with periods in the interval [1, 1,000]. Whilst h may

approach 4 × 1020 in such a situation, 2n is significantly smaller—1,024—in comparison. In most real-

world instances of the problem, n will in fact be relatively small (e.g., ≤ 30). This observation forms

the basis for the LCS algorithm; if an algorithm can be developed such that the running time is

exponential only in the number of tasks n, and polynomial in the representation of pmax, this will be a

marked improvement in efficiency in most cases; it will in fact constitute a fixed-parameter tractable

(FPT) algorithm in the sense described by Niedermeier [25]. In order to explore this possibility further,

the nature of congruencies in a periodic system of tasks will be explored.

3.2. Congruence of Periodic Tasks

Consider two tasks t1 and t2 represented purely as binary sequences. This is shown in Figure 4 for

the case where p1 = 5 and p2 = 3, with offsets of o1 = 1 and o2 = 2. The coincident task releases (logical

AND) are also indicated, where a ‘1’ indicates that the two tasks are released (phased) together.

Figure 4. Congruence relationship of two periodic tasks.

t1 010000100001000010000100001000010000

t2 001001001001001001001001001001001001

t12 000000000001000000000000001000000000

Given the thrift scheduling algorithm, each task can be represented as a linear congruence of

the form:

mod()i ix r p (11)

where x is one of the (multiple) possible solutions to the congruence. If the two tasks are phased

together (denoted by (t1, t2)) then x must be a valid integer solution to both congruences

simultaneously. According to the linear congruence theorem this occurs iff:

Algorithms 2009, 2

1458

1 2 2 1 1 2(,) () | gcd(,)t t o o p p  (12)

That is, if the relative offsets of the tasks divides the gcd of the periods. Suppose now that we wish

to consider the phasing of a set of m tasks. Clearly, x must now provide a valid solution to each of the

m simultaneous congruences for the tasks to all be in phase. According to the Chinese remainder

theorem [12,18], (12) can be extended such that a valid integer solution to such a set of m congruences

exists iff:

1(, ,) , ; ;() | gcd(,)m j i i jt t i j i j o o p p      (13)

That is, if each pair wise combination of tasks in the set m satisfies (12) simultaneously. In such a

case that each pair wise combination of periods in m are coprime then (13) is guaranteed to be true.

Equations (12) and (13) form the basis for the LCS algorithm. A congruent subset is defined as a set T

  s.t. i,j  T, equation (13) holds. Let |T| be the cardinality of the subset, i.e., the number of tasks it

contains, and let (T) refer to the magnitude of the subset:

() i
i T

T c


  (14)

The purpose of the LCS algorithm is to search for a congruent subset of tasks with the largest

magnitude, given an asynchronous task schedule. Central to the proposed algorithm is the notion of a

phase matrix . This is an n-by-n matrix that contains all pairwise task phasing information, encoded

in binary format. For all elements i,j, j > i, a ‘1’ is placed in the ijth element of the matrix indicating a

phasing of tasks i and j, and a ‘0’ indicating otherwise. The matrix is ‘0’ both on and below the

diagonal, and can be generated by repeated application of the gcd algorithm and Equation (12) to each

pair wise combination of tasks in the set, and effectively defines the powerset of all possible task

phasings. Each row of this matrix is referred to as a ‘phase code’, and represented as an n-bit long

binary string; in this paper, each phase code is represented as an unsigned integer. The phase code Pj

corresponds to the jth row of the phase matrix .

3.3. Algorithm Description

The LCS algorithm (Please note that an earlier for the LCS algorithm was previously described by

the current author in [21]) operates as a depth-first search of all possible task phasings, employing

simple bounding heuristics to help prune the search. The inputs to the algorithm are a task set , and

the output of the algorithm is the determined value of cMax. The first step is the calculation of the phase

matrix. The initial incumbent solution value b is set to the maximum of the largest task execution

times, and summed execution times of any pairwise phased tasks during this process; cMax cannot be

any less than this. The algorithm then begins to recursively search for congruent subsets of tasks; the

main elements of the algorithm are shown in Figure 5.

Each node of the search tree represents a subset T of congruent tasks; the depth of recursion

corresponds to |T|. The incumbent is updated whenever a subset with (T) > b is found. Each node has

associated with it its own phase code P. Since only proper congruent subsets can be expanded as child

nodes in the search, the ith task can only be added into the current subset T to form a new child node

with subset T’ if the ith bit of P is set to a ‘1’. To generate the new phase code in the child node, a

Algorithms 2009, 2

1459

logical AND is performed between P’ and Pi, the ith row of the phase matrix. This effectively applies

equation (13) in one single operation, and the only bits that will subsequently be set to ‘1’ in P thus

correspond to tasks that are properly congruent with all tasks in T. When an empty phase code is

encountered, the algorithm begins to backtrack since either a leaf node has been reached or - since bits

are cleared by the algorithm after the corresponding child node has been explored – no further child

nodes exist.

Figure 5. LCS algorithm, in pseudo-code.

01 procedure LCS(, n)
02 {
03 b := max(ci), i  ; // Set initial incumbent
04  := Create_Phase_Matrix();
05 FOR i: = 1 TO n DO
06 Expand(i, 0, Pi); // Expand each task
07 END FOR
08 RETURN(b); // Return incumbent
09 }

10 procedure Expand(i, T’, P’)
11 {
12 P := P’ & Pi; // Generate new phase code
13 T := T’ + i; // Add task i to the set
14 IF (T) > b
15 b := (T); // Update incumbent
16 END IF
17 WHILE P  {0} AND (T) + bup > b DO
18 {
19 j := ssb(P); // Locate the next set bit in P
20 {
21 Expand(j, T, P); // Expand the new child node
22 Pj := '0'; // Mark the node as visited
23 }
24 }
25 END WHILE
26 }

The call to sub-function ssb on line 19 locates the next lowest set bit in the current phase code;

since these codes are represented as bit-strings, this can be performed in small fixed constant time, e.g.

using techniques based around a deBruijn sequence [24]. The pruning rule that is implemented simply

prevents the expansion of child nodes which cannot possibly lead to a value greater than the current

incumbent. This simple procedure works as follows; suppose the current node represents a subset T,

and that a proper child node corresponding to the jth task is about to be expanded. An upper bound bup

on the best possible value that can be achieved by such an expansion is as follows:
n

up i
i j

b c


  (15)

This bound expresses the fact that the best possible situation - in which all tasks corresponding to

unexplored branches - are congruent to T. If this value is not greater than b, then the node need not be

expanded. Moreover, since the search progresses in a depth-first, left-to-right search, the current node

can be considered fathomed; this bound can only be non-increasing for all child nodes greater than j.

Algorithms 2009, 2

1460

This fathoming rule, along with the fact that the algorithm can be implemented entirely using (fast)

integer arithmetic, leads to a very efficient formulation. After first showing that the algorithm

completely solves the TSAFP, its time complexity is analysed.

Theorem 3: Algorithm LCS exactly solves the search version of TSAFP.

Proof: By inspection. It can be seen that LCS will recursively enumerate only congruent subsets of

tasks as the search progresses, as follows; line 12 ensures that only subsets of tasks that conform to

(14) are considered as valid child nodes in the search, and the IF statement of line 20 ensures that only

these nodes are actually expanded. The WHILE statement on line 18 ensures that the algorithm will

explore every possible child node, backtracking iff either no unexplored child nodes remain or the

current node has been fathomed according to (15). The conditional assignment on lines 15 and 16

ensure that the incumbent is only updated when the magnitude of the proper congruent subset (T)

corresponding to the current node exceeds the current incumbent value b. Upon termination, the

incumbent b clearly corresponds to the correct value of cMax.

3.4. Complexity

The analysis starts with the generation of the phase matrix. It can be seen that with a set of n tasks,

there are exactly 0.5 n × n+1 combinations of task pairs. To generate the matrix, each pair requires an

application of the gcd calculation and application of (15). If the periods in question can be encoded in

log2(pmax) bits, generation of this matrix has time complexity O(n2 ┌log2(2pmax)
┐) [18]. Thus the

computation of the phase matrix runs in time polynomial, and need only be calculated once and

memoized. Moving now onto the main body of the algorithm, it can be seen from its formulation that

in the worst case it is exponential in the number of tasks n, with complexity O(2n). However, the

running time of the algorithm is clearly independent of the choice of task periods and pmax; for any

fixed n, |2n| is constant; LCS therefore constitutes a polynomial-time algorithm for the search version

of TSAFP for fixed n. If n is less than or equal to the binary bit-width of the solving machine, then as

mentioned previously the application of equation (13) can be performed with a single binary

conjunction instruction; the running time of the algorithm can be described as follows:

() (1)f n O (16)

where f(n) is equal to 2n. LCS thus constitutes a FPT algorithm for TSAFP, in the sense described by

Niedermeier [25]. In the more general case, it can be observed that LCS may also be applied to solve

the underlying SIMULTANEOUS CONGRUENCES problem; when n is larger than the bit width of

the solving machine, the running time will be proportional to f(n).n, which is also FPT for a given n.

As will be subsequently demonstrated, for values of n  30—such as for the real-world task sets

considered in this paper—the LCS algorithm provides an exponential running time improvement over

hyperperiod simulation. The adoption of LCS has allowed for deeper investigations into the offset

assignment (TSOAP) problem; attention is now focused on this problem in the following Section.

Algorithms 2009, 2

1461

4. Algorithms for TSOAP

A simple, exact algorithm for the TSOAP problem would be as follows: enumerate and search all

possible offset combinations, using the LCS algorithm to determine the optimal value of cMax. This can

be improved upon by generating an initial heuristic solution of reasonable quality, and using this

solution to guide a simple back stepping search, similar to the procedure outlined in [15]. Further

improvements can be gleaned by omitting redundant configurations of offsets from the search; this is

discussed in the next Section.

4.1. Breaking Symmetry

Symmetry, in the current context, occurs when two sets of task offsets O and O’ result in identical

periodic behavior over the hyperperiod h, the only difference being the relative start point of the

schedules at t = 0. In such cases, the value of cMax for both schedules is identical. A simple example

can illustrate the concept of symmetry: suppose we have two tasks with periods {3,5}. Although

offsets in the range 0–2 and 0–4 can seemingly be considered, the periods are coprime; all choices of

offset are in fact identical and result in the same periodic behavior, shifted only at the origin.

Obviously, to reduce the search space it is wished to only consider one set of offsets in situations

where symmetry exists.

Previous work in the area of offset-free preemptive scheduling by Goossens [11] has shown that in

most periodic task system in which one is free to assign offsets, many classes of equivalent offset

combinations exist. It is clear from the proofs developed in this previous work (specifically Theorem

9) that this can be also be shown to hold for the case of the offset-free non-preemptive thrift scheduler.

[11] also outlined a method to break symmetries as part of a backstepping search algorithm; this can be

adapted to develop a simple polynomial-time symmetry breaking algorithm, which is called once (and

once only) before a search begins. Also, this method does not require the manipulation of any large

integers—which in practice causes integer overflow even for moderately low n—and is also somewhat

faster in practice.

Let p’ be the phase capacity of a task, which is used to place an upper bound on the choice of its

offset, such that if offsets for task i are selected in the range 0  oi < p’ then all (and only) redundant

configurations of offsets will be removed from the search. Since the evaluation of each offset

configuration in the search space requires the solution of a coNP-Hard problem, this clearly has many

benefits. For the first task, p’ is always zero; this follows from Theorem 6 in [11]. For all 1 < i  n, p’

can be calculated as the lcm of the pairwise gcd’s between task i’s period, and all other periods less

than i:

1' (gcd(,)...gcd(,)) ,i i i jp lcm p p p p j j i   (17)

Theorem 4: Considering task offsets upper bounded by p’ only removes all (and only) redundant

offset configurations from a search.

Algorithms 2009, 2

1462

Proof: Trivially follows from Theorem 10 in [11], the definition of p’ given by (17) and the basic

numerical properties of gcd and lcm.

Given the complexity results outlined in Section 2, it is unlikely that even small instances of the

offset assignment problem may be solved exactly in a tractable time. In order to obtain relatively quick

‘good’ solutions to the problem, heuristics can be employed. Given the similarity of the considered

problem to the multiprocessor scheduling problem, it follows that algorithms that have been useful in

this area may also be applied in the current context. Before describing two such algorithms, the notion

of symmetry will be extended further. In previous papers, the potential effects of symmetry on the

hyperperiod of the task set have not been considered. From (12) and (13), it is clear that only the

relative offsets of individual tasks define the subsets of tasks that are congruent. Thus, let the harmonic

period h’ of a task i be defined as follows:

1(gcd(,)...gcd(,)) ,i i i jh lcm p p p p j j i   (18)

This is a simple extension of the notion of phase capacity. Suppose we now consider a reduced task

set ’, in which the tasks are identical to those in , with the exception that each and every period p is

replaced by h. Such a reduced task set would then have a reduced hyperperiod hr defined as follows:

1(, ,)r nh lcm h h  (19)

Equation (18) defines a hyperperiod that contains no symmetries; since hr ≤ h (and in most cases

hr << h) an alternative formulation to decide TSAFP would be to perform hyperperiod simulation

using ’. To show that such an algorithm is proper, from (12) and (13) it would need to be shown that

’ contains all (and only) those task congruences that are present in .

Theorem 5: ’ contains all (and only) those task congruences that are present in .

Proof: By showing that gcd(p1, p2) = gcd(h1, h2). Let x = gcd(p1, p2) and y = gcd(h1, h2). From (18) and

by the definition of lcm, we have h1 = ax and h2 = bx, where a and b are some positive (non-zero)

co-prime integers. Then we have y = gcd(ax, bx); since a and b are co-prime, by definition

gcd(ax, bx) = x. Since we have that in fact y = x, the Theorem is proved.

This shows that all task congruences are preserved by using such a method, and no further

congruences are introduced. It can be noted that this also gives a fast and effective way to detect

instances which can be decided rapidly using traditional means, for example equivalent synchronous

systems; i.e., those in which all periods are co-prime, or task sets with high degrees of harmonic

coupling. The LCS algorithm can be modified to detect such instances as follows: if nh’ << 2n then

hyperperiod simulation is used; else the procedure defined in Section 3 is used. However, early

experience with LCS indicates that in the average case, a more suitable test can be nh’ < npMax, where

pMax is the largest of the task periods.

Algorithms 2009, 2

1463

4.2. The MULTIFIT Algorithm

In [10], the authors suggest a basic heuristic for offset assignment, achieved by sorting the list by

non-decreasing period before application of a basic First-Fit (FF) algorithm under the assumption that

each successive task is ‘easier’ to fit around the previous tasks. Given the analysis of the previous

Section, it is clear that a better option would be to order the tasks by non-decreasing harmonic period;

this leads to the First-Fit-Phase (FFP) algorithm. FFP first performs such a sort, then each task is

assigned—one by one— the lowest indexed offset that will schedule it, until either all task are

scheduled (returning TRUE) or one or more tasks couldn’t be scheduled (returning FALSE). The LCS

algorithm is used for the feasibility test, and to reduce the search space only offsets bounded by each

tasks phase capacity p’ are considered. The MULTIFIT algorithm proposed in this paper uses FPP as a

key component in a binary search; MULTIFIT for the classical multiprocessor scheduling problem

was originally proposed in [13], and it has been proven that the resulting makespan can be no further

than 22% away from the optimal makespan. The modified algorithm considered in this paper is very

similar; a binary search is performed to find the minimum value of  such that applying FFP schedules

the task set. Since FFP (and hence LCS) are called multiple times, the gcd’s of each pair of tasks are

computed once only and stored in an array, and sorting is performed once only. The initial upper

bound is set to the sum of tasks execution times, and the lower to the largest execution time in the task

set. The MULTIFIT algorithm proposed in this paper is shown in Figure 6.

Figure 6. MULTIFIT algorithm, in pseudo-code.

01 procedure MULTIFIT(, n)
02 {
03 u := sum(ci), i  ; // Set upper bound
04 l := max(ci), i  ; // Set lower bound
05 Sort(); // Sort by phase capacity
06 WHILE u  l // Binary search loop
07 c := (u – l) / 2; // Take the midpoint
08 t := FFP(, c); // Attempt FFP at this value
09 IF t = TRUE
10 u := c; // Set new upper bound
11 O = oi, i  ; // Store solution
12 ELSE
13 l := c + 1; // Raise lower bound
14 END IF
15 END WHILE
16 Return(u, O)

As mentioned, for fixed n LCS runs in polynomial time; hence for fixed n, MULTIFIT has

complexity O(np’max), i.e., pseudo-polynomial. The second algorithm to be described is based upon a

local-search version of the classical LPT algorithm described by Graham [17].

Algorithms 2009, 2

1464

4.3. The SWAPFIT Algorithm

The LPT algorithm for multiprocessor scheduling first sorts the tasks in order of decreasing

execution time, and assigns the tasks one by one onto the first available processor; the latter operation

is known as list processing. It has been proven that the makespan resulting from LPT is no further

than 33% from optimal. The rationale behind SWAPFIT is simple; there is a permutation of the tasks

such that application of list processing produces an optimal makespan, and in [17], it is shown that the

list produced by sorting for non-increasing execution times produces a permutation that is very close to

optimal. Starting from a good, initial solution, an attempt is made to sort the list into a better order,

guided by resulting changes in the value of the objective function. In the SWAPFIT algorithm, list

processing is modified as follows; each task in the list is assigned, one by one, an offset (bounded by

p’) that minimizes the worst-case release of the task. LPT is initially employed to obtain a starting

solution. Next, every pairwise set of tasks in the list is reversed, one by one; if such a reverse causes

the objective function to decrease when the tasks are list processed, it is accepted. If not, the change is

rejected, and the tasks swapped back. The SWAPFIT algorithm is shown in Figure 7.

Figure 7. SWAPFIT algorithm, in pseudo-code.

01 procedure SWAPFIT(, n)
02 {
03 r := TRUE; // Set repeat flag
04 k := 0;
05 Sort(); // Sort
06 b := List(); // Set initial incumbent
07 WHILE r = TRUE AND k < n DO // Loop until limit
08 r := FALSE; // Reset flag
09 FOR i := 1 TO n-1 DO
10 FOR j := i TO n DO
11 Swap(i, j); // Pairwise swap
12 b' := List(); // Check for improvement
13 IF b’ < b
14 b := b’; // Improved solution
15 O = oi, i  ; // Store solution
16 r := TRUE; // Repeat again
17 ELSE
18 Swap(i, j); // Go back to previous list
19 END IF
20 END FOR
21 END FOR
22 k := k + 1; // Increment loop counter
23 END WHILE
24 Return(b, O)

For SWAPFIT, it can be seen that the inner loop of pairwise reversals performs approximately 0.5

n2 reverses and list processes, and this process continues until either no more beneficial changes can be

made, or an upper bound on allowed iterations is reached. As with most local search techniques, no

sub-exponential bound can be placed on the number of iterations of this outer loop; in practice, this

seems proportional to (but significantly less than) n. By setting an upper bound as n and simply

returning the best solution found if this bound is exceeded, the algorithm again runs in pseudo-

Algorithms 2009, 2

1465

polynomial time for fixed n, with complexity O(max(n3, np’max)). Since LCS is called multiple times,

the gcd’s of each pair of tasks are again computed once only and stored in an array.

Before moving onto describing the computational experiments, it is worthwhile discussing

performance bounds for the two algorithms. The quoted performance bounds for the original versions

of both MULTIFIT and LPT are known to be extremely tight for multiprocessor scheduling [13,17].

However, it is clear that the performance bounds do not hold for the current algorithms. When periods

are evenly divisible, it can be seen that FFP results in a packing that is identical to First Fit (FF);

however for general problem instances, no bounds are currently known. That said, it can be

conjectured that both heuristics will produce a ‘good’ schedule; exactly how good this schedule is

likely to be for general instances of the problem is investigated in Section 5. A general lower bound

(zl) for the optimal value of general problem instances can be obtained through (20):

max(, (max()))l Tick iz u t c i    (20)

where u is the task set utilization. However it can be observed that this bound can be arbitrarily far

from the true value, simply by considering subsets of tasks with co-prime periods; it follows from the

Chinese remainder theorem that no choice of task offsets can avoid them being congruent. In many

cases a tighter bound can be obtained by employing LCS to determine the largest co-prime task

phasing. This observation leads to an alternate formulation for exact solutions to the problem; the

Iteratively Tightening Lower Bound (ITLB) algorithm.

4.4. The ITLB Algorithm

The ITLB algorithm builds from the fact that in any schedule, there is a task ‘bottleneck’ that

defines the optimal value achievable for the problem instance. This bottleneck is most likely to be

between tasks whose pairwise gcd’s are low; for example, a subset of tasks with co-prime periods. The

ITLB algorithm works as follows; an initial incumbent solution b is found using SWAPFIT, and the

tasks are then sorted according to non-decreasing harmonic period; tasks with low harmonic period are

the most difficult to separate. Then, starting with low i, the first i tasks are solved to optimality, with

backstepping guided by b. The optimal value l found by this process constitutes a lower bound on z; as

the number of tasks is increased above i, it is clear to see that l cannot possibly decrease. Given the

bound l, and a set of offsets O’ for the first i tasks, the algorithm then attempts to schedule the

remaining n-i tasks using SWAPFIT, such that the optimal value does not increase. If this can be

achieved, then a provably optimal schedule has been found; if it cannot, i is incremented to deepen the

search, and b and l are updated if a better solution or tighter lower bound have been found, and the

process repeated. The ITLB algorithm is shown in Figure 8.

The call to Solve() on line 8 finds the best solution to the first i tasks; while the call to Fathom() on

line 9 applies the heuristic to schedule the remaining tasks. It can be seen that with every iteration the

lower bound is non-decreasing, and the incumbent is potentially improved; the iterations repeat until

optimality is proved. In the worst case, every possible offset combination is enumerated and tested,

and it is clear to see that the problem is solved exactly. However, it is also clear that the algorithm may

be terminated at any point, and the best know solution returned; in addition, the deviation from this

solution from the best known lower bound can also be returned. Thus, unlike regular backstepping

Algorithms 2009, 2

1466

algorithms for this and similar problems, ITLB constitutes a complete anytime algorithm for TSOAP.

The following Section presents the performance data for the described algorithms.

Figure 8. ITLB algorithm, in pseudo-code.

01 procedure ITLB(, n)
02 {
03 {b, O} := SWAPFIT(, n); // Get a good initial solution
04 l := max(ci), i  ; // Get initial lower bound
05 i := 2; // Set initial search depth
06 Sort(); // Sort by harmonic period
07 WHILE b > l DO
08 {l, O’} := Solve(, i, b);
09 {b’, S} := Fathom(, O’, i); // Attempt to fathom problem
10 IF b’ < b
11 {b, O} := {b’, S}; // Store better solution
12 END IF
13 i := i + 1; // Increment search depth
14 END WHILE
15 Return(l, O); // Return the solution
16 }

5. Performance Analysis

This Section describes a series of computational studies that were performed to gauge both the

execution time and performance of the proposed algorithms. In each of the tests described in this

section, a ‘typical’ desktop PC setup was employed to perform the assessments. The hardware used

was standard off-the-shelf office computing equipment. The PC was based around an Intel® Core-2

Duo® processor running at 2.13 GHz, with 1 GB of RAM. The operating system employed was

Windows® XP, and all software was written in C++ using the Borland® C++ Builder package, and

compiled to favor speed. Timing measurements were taken using the Pentium® performance counter.

5.1. TSAFP Algorithm Testing

The LCS algorithm was implemented and first tested in comparison to direct hyperperiod

simulation. In order to keep the value of h tractable task periods were limited to the interval [1, 100]

ms, and the number of tasks restricted to 10; this ensured each individual test could be performed in

less than 20 minutes on the target hardware. In total 1,000 different representative task sets were

generated as follows; periods were randomly generated, and assigned to tasks. Following this, (3) was

used to determine the tick interval, and (17) applied to calculate p’. Offsets were then randomly

assigned within this bound. Task computation times were then assigned in the interval [0.1 tTick, tTick]

s. The resulting task sets were then used as input to both LCS and a hyperperiod simulation

algorithm, and the resulting computation times for each are shown in Figures 9 and 10. A summary of

the results is given in Table 1, with units of seconds.

Following this, a number of tests were performed to gauge the increase in complexity of the

proposed algorithm as the number of tasks in the input set was increased. The restriction on task

Algorithms 2009, 2

1467

periods was lifted for these tests, and task periods were generated in the interval [1, 1,000] ms. Starting

from n = 5, the number of tasks was increased in steps of 5 up to and including n = 30 tasks. At each

step, 100,000 task sets were randomly generated and used as input to LCS. The results of these tests

are given in Table 2, with units of seconds, and are shown graphically in Figure 11.

Figure 9. Hyperperiod simulation performance.

0

100

200

300

400

500

600

700

800

900

1000

1100

0 200 400 600 800

Test No

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Figure 10. LCS algorithm performance.

0

0.00001

0.00002

0.00003

0.00004

0 200 400 600 800

Test No

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Table 1. Comparative results of computation times.

 LCS Hyperperiod
Min 0.0000023 0.0000218
Max 0.0000385 1,007.2945080
Ave 0.0000066 188.4035393

It can be seen from Table 1 that in all cases, the LCS method was significantly faster than basic

hyperperiod simulation for solving TSASP. As can be seen from the results, LCS is extremely robust

in terms of the task parameters; in comparison, hyperperiod simulation sees huge fluctuations in

computation time as the task parameters vary, in some cases taking in excess of 16 minutes to solve

these vastly restricted instances. Considering now the results of Table 2, it can be seen that as the

number of tasks increases, the worst case computation time reflects the exponential in n; however,

Algorithms 2009, 2

1468

even given this complexity rise the worst case recorded for n = 30 was under 400 µs. It should be

noted that reduced hyperperiod simulation (as outlined in Section 4.1) was employed on average less

than 1% of the time. Despite this exponential rise, the LCS algorithm in its current formulation is still

extremely efficient at this level, and gives a huge gain in efficiency over basic hyperperiod simulation.

For example, with n = 30 and periods in the range 1–1,000 ms, out of 100 randomly generated

instances, not a single one could be solved in under 1 hrs computation time. Extrapolating the results

from Table 1—using the calculated length of h—indicated that most would take around 1070 Centuries

to solve.

Table 2. Effect of increasing task numbers.

N Max Average
5 0.00000166 0.00000126
10 0.00003905 0.00000628
15 0.00021083 0.0000111
20 0.00043122 0.00003358
25 0.00090671 0.00011151
30 0.00245345 0.00029952

Figure 11. Running time increase.

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

5 10 15 20 25 30

Number of Tasks

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Worst Case

Average

5.2. TSOAP Algorithm Testing

The MULTIFIT and SWAPFIT algorithms were tested both in terms of their computation time and

the quality of the schedule they produced. First, task sets were generated as per the previous Section.

For each value of n 1,000 task sets were considered, and the computation time required for both

algorithms on each instance was recorded. A summary of the results is given in Table 3 and Figures 12

and 13, with units of seconds. It was observed that in every instance, the value of the objective

function found by SWAPFIT (zs) was  that found by MULTIFIT (zm), and in most cases, significantly

lower.

Following this, in order to gauge the performance of each algorithm the instances were solved

exactly using the ITLB algorithm outlined in Section 4. It should be noted that even with broken

symmetries and the application of the ITLB algorithm, computation times varied considerably. A 30

Algorithms 2009, 2

1469

minute computation time limit was placed on each instance. Every instance with n  15 was solved

exactly within this bound; in most cases taking considerably less time, a significant achievement given

the complexity of the problem. For instances with n > 15, approximately 30% of instances could not be

solved exactly within this time bound; however in each of these cases a solution that was probably

within 5% of optimality was returned. The best know lower bound was used for the performance

comparison. The results allowed the performance of each of the heuristic algorithms to be further

analyzed. Table 4 shows the average and maximum deviation from optimality for both algorithms

(as a percentage) in these selected instances.

Table 3. Summary of algorithm running times (s).

 SWAPFIT MULTIFIT
N Max Ave Max Ave
5 0.00068 0.000009 0.000766 0.000018
10 0.01792 0.000836 0.005827 0.000243
15 0.152797 0.011035 0.042646 0.001635
20 0.84614 0.058131 0.988282 0.016758
25 4.81073 0.231637 5.02838 0.120799
30 8.99549 0.780521 10.3763 1.04288

Figure 12. MULTIFIT running times.

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

8.0000

9.0000

10.0000

11.0000

5 10 15 20 25 30

Number of Tasks

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Worst Case

Average

It can seen from these Tables and Figures that the running time for SWAPFIT was competitive with

MULTIFIT, having a marginally better average and worst case running time in most instances.

However, whilst SWAPFIT consistently found optimal schedules, and was never further than 4.68%

from optimality, with an average deviation of 0.11%, the same could not be said for MULTIFIT. The

average deviation was 22.36% for the latter algorithm, with deviations as large as 63.63% being

observed. In summary, the SWAPFIT algorithm seems to be far more consistent than MULTIFIT both

in terms of its running time and the resulting solution quality; the algorithm seems to capture the

essence of the problem much better. Although SWAPFIT can only be considered a local search

algorithm, it can be observed that a single pair-wise reversal of tasks in a list has the potential to

radically change the entire resulting schedule; this ability to widely explore the search space whilst

Algorithms 2009, 2

1470

honing in on a good solution may explain its excellent performance. As a final point, it can also be

observed that since task computation times are often over-estimated by as much as 5%, the reported

bounds for SWAPFIT and the errors for unsolved ITLB instances can effectively be neglected in most

cases, as they are a far smaller source of potential error.

Figure 13. SWAPFIT running times.

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

8.0000

9.0000

10.0000

5 10 15 20 25 30

Number of Tasks

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Worst Case

Average

Table 4. Summary of algorithm performance (% deviation from best know lower bound).

 SWAPFIT MULTIFIT
N Max Ave Max Ave
5 0.00 0.00 41.27 1.66
10 3.64 0.04 48.66 13.56
15 2.07 0.04 58.20 23.88
20 3.75 0.10 54.16 27.06
25 3.84 0.16 59.22 33.24
30 4.68 0.31 63.63 36.36

6. Conclusions

In this paper, the problem of assigning offsets to tasks in order to minimize worst-case congruent

release of tasks in a thrift scheduler has been investigated, and the complexity of the problem has been

shown. Several new approaches to solving the problem have been formulated; in practice both the time

complexity and the performance of these algorithms seems acceptable for real-world task instances. In

particular, the LCS algorithm, in conjunction with the SWAPFIT offset assignment algorithm, very

quickly produces a schedule that seems to be either optimal or extremely close to it. It can also be

noted that the ITLB algorithm also performs well, and may be used by system developers who wish to

obtain a provably good solution within a certain time limit; initial experience indicates that even for

larger instances, a solution that is within 10% of optimal can be found within 5 minutes. However,

although the MULTIFIT algorithm performs well in its original problem domain, the same cannot be

said for the modified version employed in this paper. An additional benefit of the algorithms

developed in this paper is that they are guaranteed to find a schedule; many current tools to support

Algorithms 2009, 2

1471

thrift cyclic scheduling (and its close relatives) provide no such guarantee. Further work in this area

will include deeper investigations into the performance of SWAPFIT, with further experiments

employed to classify its performance. Improvements to the ITLB algorithm will also be investigated,

along with the possibility of formulating an exact algorithm in which the number of offsets to be

considered is proportional to O(2n). Further work will also consider algorithms for problem instances

in which n > 30.

In conclusion, it has been shown that for most real-world instances of the described problem, it can

be solved to near-optimality in a very acceptable time. The algorithms are relatively simple, allowing

integration into existing development tools. Further work will investigate alternate approaches to

solving the offset assignment problem, by using ILP techniques, and will further investigate the

performance of the SWAPFIT algorithm, to explore its performance in other problem domains.

References

1. Buttazo, G. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and

Applications; Springer Verlag: New York, NY, USA, 2005.

2. Baker, T.P.; Shaw, A. The cyclic executive model and Ada. Real-Time Syst. 1989, 1, 7–25.

3. Locke, C.D. Software architecture for hard real-time applications: Cyclic executives vs. fixed

priority executives. Real-Time Syst. 1992, 4, 37–52.

4. Xu, J.; Parnas, D.L. Fixed priority scheduling versus pre-run-time scheduling. Real-Time Syst.

2000, 18, 7–23.

5. Bate, I.J. Scheduling and Timing Analysis for Safety Critical Real-Time Systems. PhD.

Dissertation. Department of Computer Science, University of York, Heslington, York, UK, 1998.

6. Short, M.; Pont, M.J.; Fang, J. Exploring the impact of pre-emption on dependability in

time-triggered embedded systems: A pilot study. In Proceedings of the 20th Euromicro

Conference on Real-Time Systems (ECRTS 2008), Prague, Czech Republic, July 2–4, 2008;

pp. 83–91.

7. Short, M.; Pont, M.J.; Fang, J. Assessment of performance and dependability in embedded control

systems: methodology and case study. Contr. Eng. Pract. 2008, 16, 1293–1307.

8. Burns, A.; Hayes, N.; Richardson, M.F. Generating feasible cyclic schedules. Contr. Eng. Pract.

1995, 3, 151–162.

9. Pont, M.J. Patterns For Time Triggered Embedded Systems; ACM Press(Addison Wesley): New

York, NY, USA, 2001.

10. Gendy, A.K.; Pont, M.J. Automatically configuring time-triggered schedulers for use with

resource-constrained, single-processor embedded systems. IEEE Trans. Ind. Inf. 2008, 4, 37–45.

11. Baruah, S.K.; Rosier, L.E.; Howell, R.R. Algorithms and complexity concerning the preemptive

scheduling of periodic tasks on one processor. Real-Time Syst. 1990, 2, 301–324.

12. Goossens, J. Scheduling of offset free systems. Real-Time Syst. 2003, 24, 239–258.

13. Coffman, E.G.; Garey, M.R.; Johnson, D.S. An application of Bin-Packing to multiprocessor

scheduling. SIAM J. Comput. 1978, 7, 1–17.

14. Gerber, R.; Hong, S.; Saksena, M. Guaranteeing real-time requirements with resource-based

calibration of periodic processes. IEEE Trans. Softw. Eng. 1995, 21, 579–592.

Algorithms 2009, 2

1472

15. Engblom, J.A. ; Ermedahlx, A.; Sjodinxz, M.; Gustafsson, J.; Hanssonx, H. Worst-case execution-

time analysis for embedded real-time systems. J. Softw. Tools Technol. Transf. 2001, 4, 437–455.

16. Garey, M.R.; Johnson, D.S. Computers and Intractability: A guide to the Theory of

NP-Completeness; W.H. Freeman: New York, NY, USA, April, 1979.

17. Graham, R.L. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 1969, 17,

416–429.

18. Knuth, D.E. Semi numerical algorithms. In The Art of Computer Programming, 2nd ed.;

Addison-Wesley: Reading, MA, USA, 1973; Vol. 2.

19. Mok, A.; Rosier, L.; Tulchinsky, I.; Varvel, D. Algorithms and complexity of the periodic

maintenance problem. Microprocess. Microprogram. 1989, 27, 657–664.

20. Short, M. Some complexity results concerning the non-preemptive ‘thrift’ cyclic scheduler.

In Proceedings of the 6th International Conference on Informatics in Control, Robotics and

Automation (ICINCO 2009), Milan, Italy, July 2009; pp. 347–350.

21. Short, M. A note on the efficient scheduling of periodic information monitoring requests. Eur. J.

Oper. Res. 2010, 201, 329–335.

22. Campbell, A.M.; Hardin, J.R. Vehicle minimization for periodic deliveries. Eur. J. Oper. Res.

2004, 165, 668–684.

23. Zeng, D.D.; Dror, M.; Chen, H. Efficient scheduling of periodic information monitoring requests.

Eur. J. Oper. Res. 2006, 173, 583–599.

24. Leiserson, C.; Prokop H.; Randall, K.H. Using de Bruijn Sequences to Index a 1 in a Computer

Word; MIT Technical Report; Available online: http://supertech.csail.mit.edu/papers/debruijn.pdf

(accessed August 9, 2009).

25. Niedermeier, D. Invitation to fixed-parameter algorithms; Oxford University: Oxford, UK, 2006.

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

This article is an open-access article distributed under the terms and conditions of the Creative

Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

